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ABSTRACT The pipeline leakage problem is a very challenging and critical issue. Solving this problem
will save the nation a lot of money, resources and more importantly, it will save the environment. This
paper discusses the state of the art of leak detection systems (LDSs) and data fusion approaches that are
applicable to pipeline monitoring. A comparison of LDSs is performed based on well-defined criteria.
We have classified and critically reviewed these techniques. A thorough analysis and comparison of all
the recent works have been provided.

INDEX TERMS Data fusion, leak detection, pipeline monitoring, sensors, wireless sensor networks, WSN,
acoustic sensors.

I. INTRODUCTION
Pipeline links are vital for a nation’s infrastructure and social
and economic well-being. Damaged water pipes deteriorate
the quality of the transported commodity, resulting in taste,
odor, and aesthetic problems in the water supply as well as
public health problems [7]. Oil spills are known to destroy
ecosystems and kill scores of aquatic organisms. Pipe damage
results in other losses as well, such as increased operational
and maintenance costs, loss of transported commodities
(including oil, water, and gas), damage to property, disrup-
tion of service, disruption of industrial processes, increased
environmental hazards, and imbalances in ecosystems. There
is no doubt that efficient leak detection in pipelines can
conserve a large amount of resources, save money, reduce
carbon footprints, and achieve high levels of operational effi-
ciency [28], [4].

Pipeline deterioration is caused by static factors, such as
soil type, pipe material, size, etc., and dynamic factors, such
as changes in pressure zones and climate. Little is known
about the breaking modes of buried pipes, and the physical
mechanism is not completely understood. The broad aspects
of pipeline leak detection encompass physical modeling of
the pipe in the soil, understanding the nature of pipe failure,
empirical and/or statistical modeling of historical failures,
inspecting pipes to identify stress factors, rating the pipe
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conditions, and modeling the deterioration to forecast future
failures and residual life.

The length and size of the pipeline, type of product carried,
proximity of the pipeline to a high consequence area, swift-
ness of leak detection, location of nearest response personnel,
leak history, and risk assessment results, etc., determine the
efficiency of a leak detection system. The parameters for the
evaluation of a leak detection system (LDS) are derived based
on API1995b and the Alaska Department of Environmental
Conservation 1999. Generally, for any good LDS, the most
important four criteria are [24], [38]: Reliability, Sensitivity,
Accuracy, and Robustness, and these criteria are what we use
in this work.

The following are some of the Characteristics of Leak
Detection Systems under different environments, which were
taken in consideration during this study:

A. TYPE OF FLUIDS
Pipelines transport a variety of fluids, such as gases, crude oil,
petroleum products, steam, carbon dioxide, water, wastewa-
ter, etc.

B. TYPE OF OPERATION
Pipelines may operate in single-batch or multi-batch mode.
In the single-batchmode of operation, pipelines operate con-
tinuously around the clock. Inmulti-batchmode, the pipelines
function is based on a time schedule.
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FIGURE 1. Classification of LDSs.

C. CHARACTERISTICS OF LEAKS
Leaks can occur suddenly or gradually depending on the
causes and circumstances. Sudden leaks occur due to external
damage, resulting in a significant change in the temperature,
flow, pressure, etc. Gradual leaks may occur due to corro-
sion. Sudden leaks may be successfully detected using an
internally based LDS. In contrast, gradual leaks have very
low magnitudes, and dedicated equipment, such as externally
based LDSs, may be required to identify such leaks.

D. OPERATIONAL PHASE
Pipeline conditions vary. The pumping condition involves the
transport of fluid, whereas in the paused flow condition, the
fluid flow is zero. Sometimes, valves will be used to block
the fluid flow in a given segment. This special flow phase is
known as the shut-in or blocked-line condition.
The rest of the paper is organized as follows. In the next

section, presents the leak detection techniques as mentioned
in recent works. This section also includes discussion about
WSN-based techniques that are used in monitoring pipelines.
The third section discusses in detail the data fusion in pipeline
monitoring. Finally, we conclude our work with recommen-
dations and future directions in this subject.

II. STATE OF THE ART OF LEAK
DETECTION TECHNOLOGIES
The related work on leak detection systems as in [20] and [53]
classified leak detection systems into visual, internal, and
external based on the physical principles involved in the
leak detection process. Monitoring can be continuous or
non-continuous. In the classification by [34], non-continuous
inspection includes acoustic and non-acoustic methods,
whereas continuous monitoring includes measurement and

model-basedmethods. Reference [49] classified technologies
based on the area of inspection, such as internal pipe sur-
face, pipe wall integrity, and pipe bedding/void conditions.
References [35], [44], and [51] classified leak detection sys-
tems into non-technical and hardware- and software-based
methods. Non-technical methods do not involve any devices
and use only natural senses, such as hearing and smelling,
to identify a leak, whereas the technical methods use special
devices to identify leaks; in the hardware methods, these
devices include liquid sensing cables, vapor sampling, etc.,
and in the software methods, these devices include negative
pressure waves, pressure point analysis, etc. Reference [3]
divided the leak detection systems into visual, physical,
acoustic, ultra-spectrum, and electromagnetic. A similar
classification by [22] divides LDSs into visual, acoustic,
and Electromagnetic-Radio Frequency (EM-RF) techniques.
Fig. 1 depicts the LDSs classification. Recent high level
abstraction classification for water distributed network leak
detection in [56], which classify LDS into transient, model,
and data based approaches.

LDSs can be broadly classified into continuous and non-
continuous monitoring systems. In non-continuous monitor-
ing systems, the inspection is performed at regular intervals.
Depending on themode of inspection, pipeline operations can
either continue or need to stop. For example, visual inspection
or a helicopter survey does not require pipeline operations
to be stopped, whereas an intelligent pigging system may
require the operations to be stopped. The remote sensing
of liquid hydrocarbons using aircraft mounted gas remote
sensing is given in [48]. This system detects evaporative
plumes from pools of oil, gasoline, condensate, or pentane.
Continuous monitoring systems monitor pipelines around the
clock and are based on a physical principle. This approach
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can further be classified into external and internal
systems.

A. VISUAL TECHNOLOGIES
1) VISUAL MANUAL INSPECTION
Visual inspection requires the manual patrolling of the
pipeline for leaks. Patrolling can be performed by any means
(e.g., walking, in a vehicle, or from a helicopter). The operator
examines the area for stains or other evidence of leaks. The
leak detection capability depends on the ability of the inspec-
tion team, frequency of inspection, and the size of the leak.
Limited for reachable pipelines; and not real-time detection,
which has a negative effect in terms of loss of oil and gas as
well as environmental pollution.

2) SMOKE/GAS TESTING
A smoke bomb is placed inside a water pipe with a blower
to push the smoke. The smoke filters out through any
cracks, thus exposing them. Water utilities used Formier 10
gas (10% hydrogen and 90% nitrogen) for approximately
20 years [18]. Hydrogen is a very lightweight gas and easily
escapes through small cracks. The time taken for the gas
to reach the surface depends on the depth of the pipe, soil
conditions, and size of the leak. The gas detector is sensitive
to small leaks. This method is not usable in large pipe mains
due to the larger volume of gas required.

3) CLOSED CIRCUIT TELEVISION (CCTV)
CCTV technology typically involves the use of a video cam-
era, lighting source and event recording software. The camera
is passed through the pipe and records the interior surface.
The operator later looks for defects in the pipe from the
recorded images.

B. INTERNAL SYSTEMS
Internal systems use field sensors to monitor the operational
and hydraulic conditions of the pipeline, e.g., measurements
of the flow, pressure and temperature. The normal working
parameters of the pipeline are determined either manually by
pipeline controllers or based on sophisticated algorithms and
hydraulic models, e.g. in [59], which function with particle
swarm optimization AI technique to get accurate detection
and localization.

A difference between the measured and predicted oper-
ational parameters indicates a leak. Typically, the remote
field sensors provide data to a centralized monitoring station,
where the data undergoes filtering, signal processing and
modules with leak detection algorithms to identify a leak.
Internal systems generally do not require the installation of
extensive hardware throughout the pipeline. Fig. 2 illustrates
different types of internal LDS techniques.

1) REGULAR OR PERIODIC MONITORING
OF OPERATIONAL DATA
a: VOLUME BALANCE
Volume balance identifies the imbalance between incom-
ing and outgoing volumes. Volume balance can detect

FIGURE 2. Internal LDSs.

catastrophic failures; however, its usage is rare due to its
limited performance.

b: RATE OF PRESSURE/FLOW CHANGE
The rate of pressure or flow change is based on the principle
that a leak causes a rapid change in pressure. First, a sudden
pressure drop can also be due to transient conditions. Filtering
techniques need to be used to differentiate operational condi-
tions from leak conditions. Second, pressure waves damp out
as they traverse a longer length and thus additional pressure
sensors need to be installed along the pipelines. This method
is only effective for large leaks, and transient conditions may
trigger false alarms.

c: NEGATIVE PRESSURE WAVE (NPW)
Sudden leaks create a negative pressure wave or rarefaction
wave, which prop- agates in both directions from the leak.
NPW is easy to install and maintain and capable of con-
tinuously monitoring pipelines. However, the system cannot
distinguish between leak scenarios and normal operations,
thereby giving raise to false alarms. ATMOS, a novel tech-
nique that was developed recently and is based on the rarefac-
tion method, shows tolerance to transient, shut-in, and slack
flow conditions, thus triggering few false alarms [13].

2) COMPUTATIONAL PIPELINE MONITORING (CPM)
CPM detects hydraulic anomalies in pipeline operating
parameters [5].

a: MASS BALANCE WITH LINE PACK CORRECTION
The changes to a line pack are observed by various sen-
sors, e.g., pressure, temperature and densitometers, at mul-
tiple locations between the inlet and outlet flow meters. The
pipeline is divided into multiple segments based on certain
factors, such as elevation profile, location of instruments,
desired level of accuracy, etc. The changes measured by
various sensors are adjusted in the mass balance to account
for transient flows, anticipated fluid changes, and other flow
conditions. The capability depends on the selection of the
alarm set points, repeatability of the instrumentation, skill of
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the pipeline controller, etc. The method is retrofit table but
less adaptable to complex pipeline configurations.

b: REAL TIME TRANSIENT MODELING (RTTM)
The parameters derived from a simulation model are com-
pared with actual field data to look for discrepancies. Leaks
occurring under all flow conditions can be modeled using
this software, and small leaks can be detected in seconds.
However, RTTMneeds extensive training and skilled workers
to operate and maintain.

C. EXTERNAL SYSTEMS
External systems use local sensors to detect fluids escap-
ing from pipes. Impedance methods use cables with fiber
optic or electro-chemical detection to sense liquids. Sniffing
methods depend on vapor sensing through tubes. Acoustic
methods depend on sensing noises induced by leaks. These
systems are highly sensitive to leaks and can accurately
locate them [24], [21]. However, due to the high costs, these
methods are employed only in sensitive locations or for short
pipeline segments [41], [38].

1) LIQUID SENSING CABLES
Similar to optical fiber methods, liquid sensing probes or
cables are laid throughout the pipeline. Leaking fluids come
into contact with cables and change their electrical proper-
ties, such as impedance, electrical resistance, dielectric con-
stant, etc. A dedicated evaluation unit connected to the cable
identifies the changes to the cable and detects a leak. Liquid
cables can continuously monitor and accurately locate leaks.
As with optical fibers, cable replacement may be required
after a leak occurs.

2) VAPOR SENSING CABLES [21]:
In the vapor sensing method, a highly permeable, pressure-
tight air tube is fitted along the entire length of the pipe.
When a leak occurs, the leaked material diffuses into the
tube due to the concentration gradient. After a certain time,
an accurate image of the substance surrounding the tube is
obtained. A column of air that is pumped at constant speed
passes through a gas sensor, and the substance produces a
peak, indicating a leak. The increase in the gas concentration
produces a leak peak, and the height of the peak is pro-
portional to the concentration of the substance, which is an
indicator for the leak size (Fig. 3). Initially, electrolytic cell
is used to inject a test gas from the end of the detected line to
pass through the entire length of the pipe. The detector unit
marks the start peak and the end peak to calculate the length
of the pipe. When a leak occurs, the ratio of leaked distance
to the overall distance is calculated to identify the location of
the leak.

3) FIBER OPTIC SENSING CABLES
In this method, a fiber op- tic cable is installed along the entire
length of the pipeline. When a liquid comes into contact with
the cable, the transmission characteristics of the fiber change.

FIGURE 3. Vapor sensing tube [21].

FIGURE 4. Leak detection using a fiber optic cable [33].

While a pulsed laser propagates through the fiber, any
changes to the density or composition of the fiber cause
the light to scatter backwards. Spectral analysis reveals the
temperature profile, leading to leak detection and localiza-
tion [21], [33]. The process is depicted in Fig. 4. Cable
replacement may be required after a leak. Recent advances
in fiber optic sensors include quasi-distributed sensing,
e.g., integrated Bragg gratings, and distributed sensing,
e.g., interferometry and fiber sheath sensors ([52], [25]).

When a pipeline leak occurs, the liquid moves from a
high-pressure area to a low-pressure area and a turbulent
flow is generated. This flow generates a characteristic sound
that can be picked up by a specially designed hydrophone.
Using sophisticated software, Leak ACO detects this signal,
analyzes it, and evaluates the measurement results, thus iden-
tifying and providing the location of the leak.

4) ACOUSTIC EMISSION (AE) TESTING
When a pipeline leak occurs, turbulent liquid flow occurs in
a high-pressure to a low-pressure area, creating a low fre-
quency sound signal. Acoustic sensors affixed to the outside
of the pipe, e.g., accelerometers, hydrophones, piezoelectric
transducers, etc., pick up these signals. The deviation of
the sound signals from a baseline fingerprint triggers a leak
alarm. The received signal is stronger near the leak site,
enabling localization of the leak. For pipes, such as PCCP,
wire breaks release energy and cause a series of discrete
events. AE monitoring of wire breaks is limited only to on-
going wire events and cannot be used to detect already broken
wires. Another recent technique [58] using a combination of
the ultrasonic sound and flow rate signals in order to detect
and localize a small pipeline leak.
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D. ACOUSTIC TECHNOLOGIES
1) LISTENING RODS
Acoustic signals from leaks propagate through the soil to the
surface. Listening rods placed on the ground in the proximity
of the leak pick up these noises and determine the location of
the leak.

2) INLINE ACOUSTIC LEAK DETECTION
Inline acoustic leak detection sensors pass through pipes
while in service and detect sounds due to leaks. The equip-
ment can be tethered or free swimming. This method detects
leaking joints and welds very well.

3) LEAK NOISE CORRELATOR
Acoustic sensors placed on either side of a suspected leak
transmit leak signals to a noise correlator. The correlator is
typically a computer that analyzes the input sound spectrum
and pinpoints leaks based on the time lag and sensor-to-sensor
spacing.

4) SONAR OR ULTRASOUND
A major drawback of ultrasonic devices is that they cannot
be operated above and below the water line simultaneously.
To overcome this limitation, CCTV and sonar can bemounted
on the same carrier vehicle so that CCTV can capture the
information from above the waterline, while sonar captures
the information below the waterline to account for the short-
comings of both systems [50].

FIGURE 5. Principle of magnetic flux leakage [27].

E. ELECTROMAGNETIC SYSTEMS
1) MAGNETIC FLUX LEAKAGE (MFL)
MFL analyzes the flux leakage in a magnetic field whenmag-
netized by strong, powerful magnets. A flawless pipe exhibits
a homogeneous magnetic flux distribution, while a damaged
pipe causes a flux leakage, as shown in Fig. 5. The detection
system also consist of a smart tool that can reflect the changes
in the flux distribution in case of leakage or corrosion; this
tool acquire the measurements from a sensor, which is placed
between the poles of the magnet. DC inspection of pipes
can be performed using Hall Effect devices and magneto

resistive materials, while AC inspection can be performed
using pick up coils. This testing mode is non-invasive and
accurately detects cracks, corrosion, and the thinning of pipe
walls. However, MFL is usable only on ferrous pipes and
requires access to the surface of the pipe. The analysis of
test results requires experienced personnel. Traditional MFL
only detects defects perpendicular to the magnetic field and
cannot identify defects parallel to it. To overcome this, a new
inspection method called Traverse Field Inspection (TFI) is
employed in the Spiral MFL tool [27].

2) REMOTE FIELD EDDY CURRENT (RFEC)
In BEM, a solenoid exciter probe generates pulsed eddy
currents and magnetic flux lines within the pipe. Anomalies
such as cracks or defects disrupt the current flow, which is
captured by a receiving probe placed at a distance of 2.5 pipe
diameters. The contour maps obtained after intensive post
processing reveal the corrosion and thickness of the pipe
wall [50].

3) REMOTE FIELD TRANSFORMER COUPLING (RFTC)
RFTC detects any broken wires in pre-stressed concrete
cylinder pipes (PCCP) and holes or perforations in the steel
used in PCCP [50].

4) BROADBAND ELECTROMAGNETIC (BEM)
In BEM, a primary winding or exciter coil generates a short
burst of pulsedwaves in the broadband frequency range. Eddy
currents are induced in the adjacent ferrous conductive mate-
rial shortly after the excitation pulses have been turned off;
these eddy currents create a time varying magnetic field. The
varying magnetic field induces a time varying voltage on the
secondary winding or the receiver coil, which is correlated to
the thickness of the pipe. BEM is similar to RFEC, but the
signal transmitted covers a broad frequency spectrum [50].
BEM is immune to electromagnetic interference and differs
from other electromagnetic inspection methods because of its
frequency independence.

5) GROUND PENETRATING RADAR (GPR)
GPR transducers radiate a short burst of varying radio fre-
quencies into the ground and identify buried objects based
on the scattering of the EM waves. The propagation of EM
waves in soils is governed by parameters such as permittivity,
magnetic permeability and conductivity. The occurrences of
leaks increase the moisture content of the soil nearby and
cause dielectric variation. Reflections occur at the interfaces
between media with different electrical properties. The time
lag between the transmitted and reflected waves determines
the depth of the objects. An array of antennae attached to
a survey vehicle driven along the transmission main detects
the pipe anomalies. A three-dimensional (3D) GPR image is
obtained using the raw field data after software processing.
Example GPR data before and after interpretation are shown
in Fig. 6. Highly skilled expertise is needed to interpret
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FIGURE 6. GPR data before and after interpretation [32].

the data. From the perspective of system design, GPR falls
into three main categories ([32]):

1. Time domain: Impulse GPR
2. Frequency domain: frequency modulated continuous

waveform (FMCW), stepped frequency continuous
waveform (SFCW), and noise-modulated continu-
ous waveform (NMCW) GPR

3. Spatial domain: Single frequency GPR

F. PIPELINE MONITORING USING WSN
A sensor node in Wireless Sensor Network (WSN) typically
consists of transducers (to determine variations in tempera-
ture, pressure, strain, etc.), analog-to-digital converters, sig-
nal processing, power sources, memory, etc. Typical sensors
used in pipeline monitoring are discussed in this section.

1) ACOUSTIC SENSORS
Acoustic sensors are based on the principle that a liquid
escaping through a hole in a pipeline produces a detectable
sound. Acoustic sensors are easy to install and maintain and
can continuouslymonitor a long pipeline. An important draw-
back is their high susceptibility to noise sources, such as sys-
tem noises, environment noises, radio chatter, wind, Doppler
effects, etc. To eliminate system noises, various techniques,
such as band pass filtering [17], Fast Fourier Transform (FFT)
and time-averaging Wigner-Ville distribution [54], can be
used. Acoustic sensors can be used along with other sensors
to overcome these limitations. In [46] they used piezoelectric
sensors along with acoustic sensorsto identify leaks and other
pipe defects. In [4], they proposed to extract time-domain
statistical features from the acoustic sensors instead of the
amplitude and the frequency domain related features.

2) PIEZOELECTRIC SENSORS
Piezoelectric sensors (PZT) or lead zirconate titanate sensors
can monitor the physical properties of pipelines, such as
pressure, acceleration, vibration, acoustic waves, etc., and
convert them into electric signals. The strength of the signal is
determined by factors, such as the amount of energy released,
distance from the monitored event, orientation of the sensor,
transmission media, etc. [40], [39], [29]. Piezoelectric sen-
sors are a suitable candidate for pipeline monitoring because
they exhibit high tolerance to harsh conditions and are not
sensitive to electromagnetic radiation. However, piezoelectric
sensors are not free from generating false alarms because
a sensor deployed to detect one physical quantity may be

affected by another, e.g., a pressure sensor may be affected by
vibrations in the pipeline. To compensate for this limitation,
secondary sensors can be used where the pressure sensors are
used along with accelerometer piezoelectric sensors to detect
pressure transients.

3) CHEMICAL SENSORS
Chemical sensors determine a defect based on a change in
chemical composition. Oxygen, carbon monoxide, and mer-
cury vapor sensors are some examples of chemical sensors.
The parameter to be detected and the resultant effect vary
between different types of chemical sensors. For example,
mercury sensors cause a change in resistance in the case
of a gas leak [10]. In another approach, the weight of the
material changes considerably. Chemical sensors are very
handy device in hazardous environments. Reference [57]
demonstrate recent advances in using WSNs in oil and gas
industry, and provide new directions in this subject.

WSNs provide effective solutions for pipeline monitoring,
due to its low cost, flexibility and ease of deployment in
inaccessible terrain. However, some design issue need to be
addressed before selecting wireless deployment. The major
design issues that should be taken in consideration when
using WSN for monitoring pipelines are: power source, com-
munication standard, node antenna, communication protocol,
localizations, network reliability, density of sensor nodes,
packet loss control and network congestion control.

III. DATA FUSION IN PIPELINE MONITORING
This section classifies and describes the data fusion
approaches in pipeline monitoring, and provides the relevant
architecture models.

A. CLASSIFICATION AND ARCHITECTURE MODELS
The fusion of data from multiple sensors, called multi-sensor
data fusion, provides more information than a single sensor.
Multi-sensor data fusion can also include fusing overlap-
ping measurements from the same sensor obtained at dif-
ferent times. Data fusion improves performance in at least
four ways: representation, accuracy, certainty, and complete-
ness [1]. Durrant-Whyte classified data fusion based on the
relationship among the sources, such as complementary, com-
petitive, and co-operative [15].

1) COMPLEMENTARY
Non-redundant data from different sensors can be fused to
provide a complete view.

2) REDUNDANT (COMPETITIVE)
The same pieces of data from a single sensor or multiple
sensors can be fused to increase the associated confidence.

3) CO-OPERATIVE
Different data can be fused to provide a realistic view.

The abstraction levels of the input and output in the
fusion process, including the measurement, signal, feature,
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FIGURE 7. Signal processing using EMD, HHT and kurtosis [47].

and decision, can also form a basis for classification. Ref-
erence [31] applied these levels to classify fusion into sig-
nal fusion, pixel fusion, feature-level fusion, and symbol
fusion. Boudjemaa and Forbes classified data fusion based
on time, domains, attributes, and sensors [7]. DaSarathy clas-
sified data fusion according to its input and output charac-
teristics [12]: DaI-DaO (Data Input/Data Output), DaI-FeO
(Data Input/Feature Output), FeI-FeO (Feature Input/Feature
Output), FeI-DeO (Feature Input/Decision Output), DeI-DeO
(Decision Input/Decision Output).

Data fusion architecture models can be data based, such
as JDL [36] and DaSarathy [11], activity based, such as
Boyd control loop, intelligence cycle, and the omnibus
model [6], or role based, such as object-oriented and
Frankel-Bedworth [19].

Reference [26] provided a data centric taxonomy of data
fusion methodologies and discussed the fusion of imper-
fect data, the fusion of correlated data, and the fusion of
inconsistent data. Imperfect data can be fused using proba-
bilistic, evidential, fuzzy reasoning, possibility theory, rough
set theory, random set, and hybridization approaches. The
fusion of correlated data can be achieved using correlation
elimination and correlation presence. The fusion of incon-
sistent data focuses on removing the outliers, disorders, and
conflicts.

B. EXISTING DATA FUSION APPROACHES
Some of the Data Fusion (DF) schemes applied in pipeline
monitoring are discussed as follows:

1) HOMOGENEOUS DF OF SEISMIC PULSES
Reference [47] used Dempster-Shafer (D-S) method to fuse
data from multiple seismic sensors in a proactive pipeline
monitoring system. The data fusion increased the accuracy
of the decisions by 8-25%. To detect the seismic pulses,
geophones were deployed along the length of the pipeline
at a depth of approximately half a meter, with varied sensor
spacing. Different sources, such as people walking, driving

FIGURE 8. Signal processing to extract features [55].

a car, manual digging, etc., generated seismic signals with
different frequencies, as shown in Fig. 7a. The signals were
then amplified, filtered, and A/D converted, followed by the
extraction of the features. Fig. 7b shows the decomposi-
tion of the original time series data into intrinsic oscillation
mode functions (IMF) using empirical mode decomposi-
tion (EMD). Each IMF component was subjected to a
Hilbert-Huang Transform (HHT) to obtain the amplitude and
frequency. Normalized Kurtosis gives the feature vectors of
different signals, as shown in Fig. 7c, and extracts the features
of each target.

2) DATA DRIVEN FRAMEWORK USING DF
Reference [55] proposed a data driven framework that used
piezoelectric wafers to generate and sense ultrasonic waves.
Multiple signal processing techniques were applied to extract
asmany as 365 features. Thewave patternswere then checked
using an adaptive boosting algorithm and five machine learn-
ing classifiers for damage detection. The systemwas shown to
exhibit an average accuracy of 84.2-89%. As shown in Fig. 8,
the received signals were preprocessed to remove low/high
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FIGURE 9. Sensor and feature fusion at the decision level [37].

frequency vibrations via a band pass filter of the range from
190 to 450 kHz. By normalizing the signals, the ambient
effects were contained to a certain degree. Various signal
processing methods, such as the wavelet transform, Hilbert
transform,Mellin transform, etc., were then applied to extract
features.

3) DF BASED ON VOTING STRATEGY
Ultrasonic waves, despite their ability to monitor across long
distances, suffer from sensitivity to environmental changes,
such as wet conditions, surface vibrations and temperature
extremes.

A voting strategy-based data fusion in a spatially dis-
tributed sensor network is given in [37]. Certain features, such
as the normalized mean squared error (MSE), correlation
coefficient, curve length, loss of local coherence, etc., were
used to detect the damage. For data fusion, the independent
decisions were fused to arrive at the outcome, i.e., decision-
level data fusion was employed. The features for all moni-
tored signals were compared against the threshold, as shown
in Fig. 9. A lower false alarm rate means that the result is
highly accurate. For each transducer pair, a voting strategy
was used to increase the credibility. The system seemed to

increase the detection probability to more than 90% and
reduced the false alarms to under 5%.

4) FUSION OF GPR AND EMI FOR BURIED PIPES
A multisensory system was used to fuse data from seismic,
GPR, and EMI sensors to reduce false alarms in landmine
detection [45]. The responses of the three types of sensors to
the soil condition differed from each other. EMI sensors were
sensitive to soil conductivity, while the seismic sensor was
sensitive to the difference between the mechanical properties
of the soil and the landmine; GPR was sensitive to dielec-
tric properties. A good use of the complementary features
from sensors reduced the false alarm rate significantly. Ref-
erence [2] proposed a multisensory data fusion architecture
to assess the locations and structural conditions of the buried
pipes.

Using a combination of ground penetrating radar and
electromagnetic waves, inspection can be performed without
draining the pipelines. GPR can detect the presence and depth
information of buried pipes but cannot distinguish metallic
and plastic pipes. Electromagnetic sensors can detect the
condition of metallic pipes but cannot measure the depth.
A data fusion algorithm that is based on artificial neural
networks and uses a combination of inputs from GPR and
EMI can detect and classify various defects, such as major
cracks and leaks in pipelines. However, this architecture is
only conceptual, and the implementation results are not yet
known.

5) HETEROGENEOUS DF OF NDE METHODS USING
GEOMETRIC TRANSFORMATION
In [47] they employed a neural network-based geometric
transformation algorithm to fuse data from images obtained
from three NDE methods: IR thermal imaging, magnetic
flux leakage (MFL), and ultrasonic testing (UT). Given a
training data set, the radial basis function identified redun-
dant and complementary features using artificial neural net-
works (ANN). Redundancy increased the reliability of defect
characterization by identifying the common information
in different NDE methods. Complementarity improved the

FIGURE 10. Data fusion combinations for MFL, UT and thermal imaging [47].
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TABLE 1. Description of comparison criteria. TABLE 1. (Continued.) Description of comparison criteria.

accuracy of defect characterization by identifying the defect
characteristics unique to each inspection method.

Let x1(r, c1) and x2(r, c2) denote the two different NDE
images, where r represents the redundancy feature and c1 and
c2 represent the complementary features. Then, the redun-
dancy (hr) and complementary information (gr) are defined
in equations 1 and 2:

f {x1(r, c1), x2(r, c2)} = h(r) (1)

f {x1(r, c1), x2(r, c2)} = h(c1, c2) (2)

The redundant relation between the data are given by
equation 3.

h1(r)♦g1(x1) = g2(x2) (3)

In equation 3, ♦ represents a homomorphic operator and
g1(x1) is a radial basis function that takes the training data set
as an input and outputs the best function approximation for x1.
g2(x2) is a conditioning function and application dependent.
For example, if the data x2 is spread over a wide range,
a logarithmic function can be used for g2(x2). From equa-
tion 4, if the homomorphic operator is chosen as an addition
operator + and g2 is assumed as the identity function, then
h1(r) is given by equation 4.

h1(r) = x2 − g1(x1) (4)

Similarly, the complementary relationship can also be
defined as in equation 5 and h2(c1, c2) is obtained, but the
neural network is trained with the complementary data.

h2(c1, c2)♦g1(x1) = g2(x2) (5)

The training of the artificial neural network with diverse
and sufficient NDE signatures is essential for improved
fusion. The data fusion for different NDE combinations is
shown in Fig. 10.

IV. COMPARISON AND ANALYSIS
As explained in the previous sections, the leak detection
problem is a very complex and multidisciplinary problem.
Hence, in order to conduct a fair comparison among available
techniques, it requires identifying multiple criteria. Through
our study, we compile a list of criteria to compare these
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TABLE 2. Features comparison of internal lds methods.

TABLE 3. Features comparison of external lds methods.

techniques. Moreover, these criteria are classified into three
categories: Technical, Operational and Economical.
Technical criteria are related to the technical performance

of a specific technique in achieving these criteria such as
leak size, response time, leak location estimate, false alarms,
robustness. For example, ‘‘leak size’’ is an important feature
which determines the sensitivity of a specific technique to
detect the leak; is it able to detect a small leak? Another crit-
ical feature is the ability to localize the leak; some technique
can detect the leak but it is unable to localize.

On the other hand, operational criteria are related to func-
tioning features of a specific techniquewhile it is on operation

such as: shut-in condition, availability, complex configura-
tion, simplicity, ease of testing and ease to maintain. For
instance, shut-in condition feature tells whether a specific
technique can work while the pipeline is on operation or off.

Finally, economical criteria are related to economical fea-
tures of a specific technique while it is on operation such as
ease of training and cost. Table 1 describes the criteria used
in the comparison study.

Table 2&3 compare internal and external LDS system char-
acteristics based on the features stated above, respectively.
In addition, Table 4 summarizes and compares the capabil-
ities and limitations of different existing techniques.
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TABLE 4. Capabilities and limitations of existing LDSs.
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TABLE 4. (Continued.) Capabilities and limitations of existing LDSs.

V. CONCLUSION
Each leak detection system is a unique system and designed
based on the pipeline for which it is developed for. The choice
of LDS should be based on a fit-for-purpose approach. The
operating parameters, such as the pipeline size, length,

instrumentation design, etc., dictate the applicability of an
approach. The time taken to detect a leak, number of false
alarms, accuracy of the installed instrumentation, and many
other factors influence the performance of a leak detection
system. The capabilities of each LDS and the degree to which
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they mitigate the risks discussed in this paper can be used as a
guideline when choosing a leak detection approach. The rule
of thumb is that field test results from similar applications
always provide the best recommendations. The use of infor-
mation from multiple LDSs increases the detection accuracy.
There are multiple uncertainties in data sources, including
hydraulic noise, errors in analog-to-digital conversion, the
non-repeatability of field sensors, data communication errors,
timing, drift, transient conditions, etc. The uncertainty in the
data is a crucial issue because, without proper inputs, a correct
output cannot be achieved no matter how efficient the filter-
ing, signal processing or data fusion algorithms may be. The
quality of a data fusion framework depends on good input
data and the performance of the fusion system. A thorough
review of the available historical data regarding pipe perfor-
mance and failure can give greater insight into applying data
fusion and accurately predicting pipe deterioration. Future
directions for developing and improving leak detection sys-
tems are varied from increasing the accuracy, by minimizing
the false alarms and precisely determining the leak position,
to using the new technologies in improving these types of
monitoring systems, such as machine learning, Internet of
Things, and drones monitoring.

REFERENCES
[1] D. Bellot, A. Boyer, and F. Charpillet, ‘‘A new definition of qualified gain

in a data fusion process: Application to telemedicine,’’ in Proc. 5th Int.
Conf. Inf. Fusion, vol. 2, Jul. 2002, pp. 865–872.

[2] M. Abdel-Aleem, C. Chibelushi, and M. Moniri, ‘‘Multisensor data fusion
for the simultaneous location and condition assessment of underground
water pipelines,’’ in Proc. Int. Conf. Netw., Sens. Control, Apr. 2011,
pp. 416–421.

[3] H. Al-Barqawi and T. Zayed, ‘‘Condition rating model for underground
infrastructure sustainable water mains,’’ J. Perform. Constructed Facilities,
vol. 20, no. 2, pp. 126–135, May 2006.

[4] F. Wang, W. Lin, Z. Liu, S. Wu, and X. Qiu, ‘‘Pipeline leak detection by
using time-domain statistical features,’’ IEEE Sensors J., vol. 17, no. 19,
pp. 6431–6442, Oct. 2017.

[5] API 1130 Computational Pipeline Monitoring, Amer. Petroleum Inst.,
Washington, DC, USA, 2002.

[6] M. Bedworth and J. O’Brien. ‘‘The omnibus model: A new model of data
fusion?’’ IEEE Aerosp. Electron. Syst. Mag., vol. 15, no. 4, pp. 30–36,
Apr. 2000.

[7] J. Xu, K. T.-C. Chai, G. Wu, B. Han, E. L.-C. Wai, W. Li, J. Yeo,
E. Nijhof, and Y. Gu, ‘‘Low-cost, tiny-sizedMEMS hydrophone sensor for
water pipeline leak detection,’’ IEEE Trans. Ind. Electron., vol. 66, no. 8,
pp. 6374–6382, Aug. 2019. doi: 10.1109/TIE.2018.2874583.

[8] S.-Y. Cheung and P. Varaiya, ‘‘Traffic surveillance by wireless sensor
networks: Final report,’’ California Path Program, Inst. Transp. Stud., Univ.
California, Berkeley, Berkeley, CA, USA, Tech. Rep. UCB-ITS-PRR-
2007-4, 2007.

[9] J. Chinrungrueng, U. Sununtachaikul, and S. Triamlumlerd, ‘‘A vehicular
monitoring system with power-efficient wireless sensor networks,’’ in
Proc. 6th Int. Conf. ITS Telecommun., Jun. 2006, pp. 951–954.

[10] A. Czubak and J. Wojtanowski, ‘‘On applications of wireless sensor net-
works,’’ in Internet—Technical Development and Applications (Advances
in Intelligent and Soft Computing), vol. 64, E. Tkacz and A. Kapczynski,
Eds. Berlin, Germany: Springer, 2009, pp. 91–99.

[11] B. V. Dasarathy, ‘‘Sensor fusion potential exploitation-innovative architec-
tures and illustrative applications,’’ Proc. IEEE, vol. 85, no. 1, pp. 24–38,
Jan. 1997.

[12] B. V. Dasarathy, Decision Fusion. Los Alamitos, CA, USA: IEEE Com-
puter Society Press, 1994.

[13] A. de Joode and A. Hoffman, ‘‘Pipeline leak detection and theft detection
using rarefaction waves,’’ in Proc. 6th Pipeline Technol. Conf., Apr. 2011,
pp. 1–9.

[14] O. Duran, K. Althoefer, and L. D. Seneviratne, ‘‘Automated pipe inspec-
tion using ANN and laser data fusion,’’ in Proc. IEEE Int. Conf. Robot.
Automat. (ICRA) , vol. 5, Apr./May 2004, pp. 4875–4880.

[15] H. F. Durrant-Whyte, ‘‘Sensor models and multisensor integration,’’ Int. J.
Robot. Res., vol. 7, no. 6, pp. 97–113, Dec. 1988.

[16] G. Fan, H. Chen, L. Xie, and K. Wang, ‘‘An improved CDMA-based MAC
protocol for underwater acoustic wireless sensor networks,’’ in Proc. 7th
Int. Conf. Wireless Commun., Netw. Mobile Comput. (WiCOM), Sep. 2011,
pp. 1–4.

[17] C. M. Fang, S. C. Lin, Y. C. Chin, P. Y. Chen, H. R. Lin, and P. Z. Chang,
‘‘5.4 GHz high-Q bandpass filter for wireless sensor network system,’’
in Proc. IEEE Sensors, Oct. 2009, pp. 1487–1491.

[18] M. Farley and S. Hamilton, ‘‘Non-intrusive leak detection in large diam-
eter, low-pressure non-metallic pipes: Are we close to finding the perfect
solution,’’ in Proc. IWA World Water Congr., Sep. 2008, pp. 1–9.

[19] C. B. Frankel and M. D. Bedworth, ‘‘Control, estimation and abstraction
in fusion architectures: Lessons from human information processing,’’
in Proc. 3rd Int. Conf. Inf. Fusion, Jul. 2000, pp. MOC5/3–MOC510.

[20] G. Geiger, ‘‘State-of-the-art in leak detection and localization,’’ in Proc.
Oil Gas Eur. Mag., 2006, pp. 1–25.

[21] G. Geiger, T. Werner, and D. Matko, ‘‘Leak detection and locating—
A survey,’’ in Proc. 35th Annu. PSIG, Jan. 2003, pp. 1–20.

[22] T. Hao et al., ‘‘Condition assessment of the buried utility service infras-
tructure,’’ Tunneling Underground Space Technol., vol. 28, pp. 331–344,
Mar. 2012.

[23] A. Haoui, R. Kavaler, and P. Varaiya, ‘‘Wirelessmagnetic sensors for traffic
surveillance,’’ Transp. Res. C, Emerg. Technol., vol. 16, no. 3, pp. 294–306,
Jun. 2008.

[24] H. D. Hollander and B. Bollermann, ‘‘Why is pipeline leak detection more
than just installing a flowmeter at inlet and outlet?’’ in Proc. Pipeline
Technol. Conf., Apr. 2007, pp. 1–9.

[25] S.-C. Huang, W.-W. Lin, M.-T. Tsai, and M.-H. Chen, ‘‘Fiber optic in-line
distributed sensor for detection and localization of the pipeline leaks,’’
Sens. Actuators A, Phys., vol. 135, no. 2, p. 570- 579, Apr. 2007.

[26] B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi, ‘‘Multisensor
data fusion: A review of the state-of-the-art,’’ Inf. Fusion, vol. 14, no. 1,
pp. 28–44, Jan. 2013.

[27] M. Kirkwood, ‘‘Overcoming limitations of current in-line inspection tech-
nology by applying a new approach using spiral magnetic flux leakage
(SMFL),’’ in Proc. 6th Pipeline Technol. Conf., 2011, pp. 1–14.

[28] M. Kurata, J. Kim, J. P. Lynch, G. W. van der Linden, H. Sedarat,
E. Thometz, P. Hipley, and L.-H. Sheng, ‘‘Internet-enabled wireless struc-
tural monitoring systems: Development and permanent deployment at
the new carquinez suspension bridge,’’ J. Struct. Eng., vol. 139, no. 10,
pp. 1688–1702, Oct. 2013.

[29] E. N. Landis and L. Baillon, ‘‘Experiments to relate acoustic emission
energy to fracture energy of concrete,’’ J. Eng. Mech., vol. 128, no. 6,
pp. 698–702, Jun. 2002.

[30] Y. Lu and J. E. Michaels, ‘‘Feature extraction and sensor fusion for ultra-
sonic structural health monitoring under changing environmental condi-
tions,’’ IEEE Sensors J., vol. 9, no. 11, pp. 1462–1471, Nov. 2009.

[31] X. Luo, M. Dong, and Y. Huang, ‘‘On distributed fault-tolerant detection in
wireless sensor networks,’’ IEEE Trans. Comput., vol. 55, no. 1, pp. 58–70,
Jan. 2006.

[32] N. Metje, ‘‘Mapping the underworld—State-of-the-art review,’’ Tun-
neling Underground Space Technol., vol. 22, nos. 5–6, pp. 568–586,
Sep./Nov. 2007.

[33] A. Mishra and A. Soni, ‘‘Leakage detection using fiber optics dis-
tributed temperature sensing,’’ in Proc. 6th Pipeline Technol. Conf., 2011,
pp. 1–12.

[34] D. Misiunas, J. Vitkovsky, and G. Olsson, ‘‘A. Simpson, detection and
localization techniques,’’ J. Loss Prevention Process Industries, vol. 25,
no. 6, pp. 966–973, Nov. 2012.

[35] P.-S. Murvay and I. Silea, ‘‘A survey on gas leak detection and localization
techniques,’’ J. Loss Prevention Process Ind., vol. 25, no. 6, pp. 966–973,
Nov. 2012.

[36] E. F. Nakamura, A. A. F. Loureiro, and A. C. Frery, ‘‘Information fusion
for wireless sensor networks: Methods, models, and classifications,’’ ACM
Comput. Surv., vol. 39, no. 3, Aug. 2007, Art. no. 9.

[37] J. A. Oagaro and S.Mandayam, ‘‘Multi-sensor data fusion using geometric
transformations for gas transmission pipeline inspection,’’ in Proc. IEEE
Instrum. Meas. Technol. Conf., May 2008, pp. 1734–1737.

[38] Leak Detection Technology Study, For PIPES Act, H.R. 5782, U.S. Dept.
Transp., Washington, DC, USA, Dec. 2007.

97438 VOLUME 7, 2019

http://dx.doi.org/10.1109/TIE.2018.2874583


U. Baroudi et al.: Pipeline Leak Detection Systems and Data Fusion

[39] M. Pour-Ghaz, T. Barrett, T. Ley, N. Materer, A. Apblett, and J. Weiss,
‘‘Wireless crack detection in concrete elements using conductive surface
sensors and radio frequency identification technology,’’ J. Mater. Civil
Eng., vol. 26, no. 5, pp. 923–929, May 2014.

[40] M. Pour-Ghaz, J. Kim, S. S. Nadukuru, S. M. Connor, R. L. Michalowski,
A. S. Bradshaw, R. A. Green, J. P. Lynch, A. Poursaee, and W. Jason
Weiss, ‘‘Using electrical, magnetic and acoustic sensors to detect damage
in segmental concrete pipes subjected to permanent ground displacement,’’
Cement Concrete Compos., vol. 33, no. 7, pp. 749–762, May 2011.

[41] J. Summa, ‘‘Pipeline leak detection operational improvements—An
overview of currently available leak detection technologies and US reg-
ulations/standards,’’ in Proc. Pipeline Technol. Conf., Apr. 2011.

[42] R. Pullin, K. M. Holford, and M. Baxter, ‘‘Modal analysis of acoustic
emission signals from artificial and fatigue crack sources in aerospace
grade steel,’’ Key Eng. Mater., vol. 293, pp. 217–226, Jan. 2005.

[43] S. Roundy, D. Steingart, L. Frechette, P. Wright, and J. Rabaey, ‘‘Power
sources for wireless sensor networks,’’ in Wireless Sensor Networks (Lec-
ture Notes in Computer Science), vol. 2920, H. Karl, A. Wolisz, and
A. Willig, Eds. Berlin, Germany: Springer, 2004, pp. 1–17.

[44] S. Scott and M. Barrufet, ‘‘Worldwide assessment of industry leak detec-
tion capabilities for single & multiphase pipelines,’’ Texas A&M Univ.,
College Station, TX, USA, Project Rep., 2003.

[45] W. Scott, Jr., K. Kim, G. Larson, A. Gurbuz, and M. Lambert, ‘‘Pipeline
break detection using pressure transient monitoring,’’ J. Water Resour.
Planning Manage., vol. 131, no. 4, pp. 316–325, Jul. 2005.

[46] I. Stoianov, L. Nachman, S. Madden, T. Tokmouline, and M. Csail,
‘‘PIPENET: A wireless sensor network for pipeline monitoring,’’ in Proc.
6th Int. Symp. Inf. Process. Sensor Netw., Apr. 2007, pp. 264–273.

[47] J. Sun, J. Zhang, and X. Wang, ‘‘Multi-sensor data fusion and target
location in pipeline monitoring and a pre-warning system based on multi-
seismic sensors,’’ in Proc. Better Pipeline Infrastruct. Better Life (ICPTT),
2013, pp. 961–974.

[48] B. Tolton and A. Banica, ‘‘Remote sensing of liquid hydrocarbon leaks
from pipelines,’’ in Proc. Pipeline Technol. Conf., Mar. 2013.

[49] M. Tuccillo, J. Jolley, K. Martel, and G. Boyd, ‘‘Report on condition
assessment technology of wastewater collection systems,’’ Office Res.
Develop., U.S. Environ. Protection Agency, Cincinnati, OH, USA, Tech.
Rep. EPA/600/R-10/101, 2010.

[50] J. M. M. Tur and W. Garthwaite, ‘‘Robotic devices for water main
in-pipe inspection: A survey,’’ J. Field Robot., vol. 27, no. 4, pp. 491–508,
Jul./Aug. 2010.

[51] T. R. Vrålstad, A. G. Melbye, I. M. Carlsen, and D. Llewelyn, ‘‘Compar-
ison of leak-detection technologies for continuous monitoring of subsea-
production templates,’’ SPE Projects, Facilities Construct., vol. 6, no. 2,
pp. 96–103, Apr. 2013.

[52] T.Walk, ‘‘Technology update on leak detection systems,’’ in Proc. Pipeline
Technol. Conf., 2010, pp. 1–9.

[53] J. Xu, Z. Nie, F. Shan, J. Li, Y. Luo, Q. Yuan, and H. Chen, ‘‘Leak
detection methods overview and summary,’’ in Proc. ICPTT, Nov. 2012,
pp. 1034–1050.

[54] H. Yang, H. Ye, S. Zhai, and G. Wang, ‘‘Leak detection of gas transport
pipelines based on wigner distribution,’’ in Proc. Int. Symp. Adv. Control
Ind. Processes (ADCONIP), May 2011, pp. 258–261.

[55] Y. Ying, J. H. Garrett, I. J. Oppenheim, L. Soibelman, J. B. Harley, J. Shi,
and Y. Jin, ‘‘Toward data-driven structural health monitoring: Application
of machine learning and signal processing to damage detection,’’ J. Com-
put. Civil Eng., vol. 27, no. 6, pp. 667–680, Nov. 2013.

[56] T. K. Chan, C. S. Chin, and X. Zhong, ‘‘Review of current technologies and
proposed intelligent methodologies for water distributed network leakage
detection,’’ IEEE Access, vol. 6, pp. 78846–78867, 2018.

[57] Y. M. Aalsalem, W. Z. Khan, W. Gharibi, M. K. Khan, and Q. Arshad,
‘‘Wireless sensor networks in oil and gas industry: Recent advances,
taxonomy, requirements, and open challenges,’’ J. Netw. Comput. Appl.,
vol. 113, pp. 87–97, 2018.

[58] X. Lang, P. Li, J. Cao, Y. Li, and H. Ren, ‘‘A small leak localization method
for oil pipelines based on information fusion,’’ IEEE Sensors J., vol. 18,
no. 15, pp. 6115–6122, Aug. 2018.

[59] H. Zhang, Y. Liang, W. Zhang, N. Xu, Z. Guo, and G. Wu, ‘‘Improved
PSO-based method for leak detection and localization in liquid pipelines,’’
IEEE Trans. Ind. Informat., vol. 14, no. 7, pp. 3143–3154, Jul. 2018.

[60] T. Ma, O. O. Youzwishen, and M. Hylton, ‘‘Avoidance of slack flow in
liquid pipelines,’’ in Proc. ASME Int. Pipeline Conf., Calgary, AB, Canada,
Oct. 2004, pp. 491–497.

[61] (Aug. 6, 2012). Study Outlines Pipeline Leak-Detection Selection—Oil
Gas. Accessed: Jun. 24, 2019. [Online]. Available: https://www.ogj.com/
articles/print/vol-110/issue-8/../study-outlines-pipeline-leak.html

[62] A Way With Words Website. Accessed: Jun. 24, 2019. [Online]. Available:
https://www.waywordradio.org/shut_in/

[63] Evaluation Methodology for Software Based Leak Detection Systems. doc-
ument API 1155, 1st ed., Amer. Petroleum Inst., Feb. 1995.

[64] Computational Pipeline Monitoring for Liquid Pipelines. document API
1130, 2nd ed., Amer. Petroleum Inst., Washington, DC, USA, Nov. 2002.

UTHMAN BAROUDI received the B.Sc. andM.S.
degrees from King Fahd University of Petroleum
and Minerals (KFUPM), Dhahran, Saudi Arabia,
in 1988 and 1990, respectively, and the Ph.D.
degree from Concordia University, Montreal,
Canada, in 2000, all in electrical engineering.
In 2000, he joined Nortel Networks, Ottawa,
Canada, to work in Research and Development
for next generation wireless networks. He is cur-
rently an Associate Professor with the Department

of Computer Engineering, KFUPM. He has more than 80 publications in
referred Journal and Conference Proceedings, and 19 U.S. patents. His
research interests include cloud robotics networks, network design for the
IoT, wireless adhoc, and sensor and actuator networks.

ANAS A. AL-ROUBAIEY received the B.S. degree
in computer engineering from Arab Academy
for Science and Technology, Alexandrea, Egypt,
in 2001, and the M.S. degree in computer net-
works and the Ph.D. degree in computer sciences
and engineering from the King Fahd University of
Petroleum and Minerals (KFUPM), Saudi Arabia,
in 2009 and 2015, respectively. He was a Teach-
ing Assistant in Sana’a and then Taiz Univer-
sity, until 2004. He is currently a Researcher with

KFUPM. His research interests include intrusion detection systems, mid-
dleware, systems integration, real time and distributed systems, wireless
sensor and actuator networks, energy aware protocols, and power harvesting
in WSN. He has several publications and patents in these areas. He was a
Reviewer in a number of ISI journals.

ABDULLAH DEVENDIRAN received theM.S. degree in computer networks
from the King Fahd University of Petroleum and Minerals, Saudi Arabia,
in 2016. His current research interests includemulti-channel protocols imple-
mentations for wireless networks and web/mobile applications development.

VOLUME 7, 2019 97439


	INTRODUCTION
	TYPE OF FLUIDS
	TYPE OF OPERATION
	CHARACTERISTICS OF LEAKS
	OPERATIONAL PHASE

	STATE OF THE ART OF LEAK DETECTION TECHNOLOGIES
	VISUAL TECHNOLOGIES
	VISUAL MANUAL INSPECTION
	SMOKE/GAS TESTING
	CLOSED CIRCUIT TELEVISION (CCTV)

	INTERNAL SYSTEMS
	REGULAR OR PERIODIC MONITORING OF OPERATIONAL DATA
	COMPUTATIONAL PIPELINE MONITORING (CPM)

	EXTERNAL SYSTEMS
	LIQUID SENSING CABLES
	VAPOR SENSING CABLES  [21]:
	FIBER OPTIC SENSING CABLES
	ACOUSTIC EMISSION (AE) TESTING

	ACOUSTIC TECHNOLOGIES
	LISTENING RODS
	INLINE ACOUSTIC LEAK DETECTION
	LEAK NOISE CORRELATOR
	SONAR OR ULTRASOUND

	ELECTROMAGNETIC SYSTEMS
	MAGNETIC FLUX LEAKAGE (MFL)
	REMOTE FIELD EDDY CURRENT (RFEC)
	REMOTE FIELD TRANSFORMER COUPLING (RFTC)
	BROADBAND ELECTROMAGNETIC (BEM)
	GROUND PENETRATING RADAR (GPR)

	PIPELINE MONITORING USING WSN
	ACOUSTIC SENSORS
	PIEZOELECTRIC SENSORS
	CHEMICAL SENSORS


	DATA FUSION IN PIPELINE MONITORING
	CLASSIFICATION AND ARCHITECTURE MODELS
	COMPLEMENTARY
	REDUNDANT (COMPETITIVE)
	CO-OPERATIVE

	EXISTING DATA FUSION APPROACHES
	HOMOGENEOUS DF OF SEISMIC PULSES
	DATA DRIVEN FRAMEWORK USING DF
	DF BASED ON VOTING STRATEGY
	FUSION OF GPR AND EMI FOR BURIED PIPES
	HETEROGENEOUS DF OF NDE METHODS USING GEOMETRIC TRANSFORMATION


	COMPARISON AND ANALYSIS
	CONCLUSION
	REFERENCES
	Biographies
	UTHMAN BAROUDI
	ANAS A. AL-ROUBAIEY
	ABDULLAH DEVENDIRAN


