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ABSTRACT This paper investigates the problem of fault detection, isolation, and estimation for a networked
system with actuator and sensor faults. To deal with the bandwidth constraint, an event-triggered scheduling
mechanism is utilized to determine whether the sensor observation shall be transmitted to the fault filter
according to the importance of information. In this study, two independent Markovian jump chains are
introduced to describe the temporal occurrence of sensor fault and the random switching between the
normal condition and the faulty ones of the actuator, respectively. To alleviate the compromise between
the model number of fault models and computational complexity in the existing interacting multiple models
(IMM) approaches, a novel event-triggered fault detection and diagnosis algorithm is proposed based on
the augmented IMM framework, where the fault location to be detected is added into the model set and
the fault amplitude to be estimated is augmented into the system state. Finally, a Monte Carlo simulation
involving tracking a two-dimension moving target is provided to illustrate the effectiveness and efficiency
of the proposed method.

INDEX TERMS Event-triggered mechanism, fault diagnosis, stochastic hybrid systems, Markovian jump
systems.

I. INTRODUCTION
Over recent years, with the development of technology and
science, modern engineering systems are faced with huger
investment, larger scale, more sophisticated structure and
more complex function [1]–[3]. Reliability consideration,
which sometimes possesses a higher priority than perfor-
mance, is an increasing demand for modern systems to
become safe. This requirement extends beyond the normally
accepted safety-critical systems of nuclear reactors and air-
craft where safety is of paramount importance, to systems
such as autonomous vehicles and fast railways where the
system availability is vital. Faults or malfunctions from sen-
sors, actuators and plant components may change the sys-
tem behavior in a drastic manner, ranging from performance
degradation to system instability in the worst case. Conse-
quently, it is clear that fault detection and diagnosis (FDD)
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has been becoming a critical subject in modern control theory
and practice to reduce the accident risk and enhance the
system security.

Until now, FDD field has received much attention and
some interesting results have been achieved, see [4], [5] and
the references therein. The main task of FDD is to per-
form fault detection, isolation and identification if there are
faults anywhere in the system. Fault detection is to determine
whether the faults happen; Fault isolation is concentrated on
pinpointing at the component (sensors, actuators, or plant
components) where the faults are located; Fault identification
is to estimate the size or severity of fault and the time of its
occurrence in some cases. The key point of the traditional
observer-based FDD schemes is to construct the residual
generator, design the residual evaluation function and the
fault threshold, then make a decision whether an alarm of
fault is activated by comparing the evaluation function with
the prescribed threshold [4], [6]–[8]. For example, [6] stud-
ied the observer-based fault detection problem for uncertain

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 95857

https://orcid.org/0000-0003-3578-7598
https://orcid.org/0000-0001-9269-334X


Z. Jin et al.: Event-Triggered FDD for Networked Systems With Sensor and Actuator Faults

linear time-variant systems, where the sufficient condition
of the existence of a robust fault detection filter was pre-
sented via linear matrix inequality techniques. In [7], the fault
detector was designed for networked control systems with
signal quantization and packet dropouts, where the residual
systemwas proved stochastically stable with a prescribedH∞
performance level. The fault detection problem for a class
of linear quantized feedback systems was explored in [8],
where a residual generator was constructed to make a balance
between the sensitivity to faults and the robustness against
disturbances as well as quantization errors. These results are
a little conservative as the FDD problem is converted into a
H∞ filtering problem, which is solved based on the lower
and upper bound of the worst case. Besides, the consen-
sus tracking problem for nonlinear multi-agent systems with
actuator faults was investigated in [9] based on the adaptive
sliding mode method, where the partial loss of effectiveness
fault and biased fault were taken into account. [10] pro-
posed a fault-tolerant consensus control strategy for a class
of nonaffine multi-agent system, where the proposed neural
network-based adaptive consensus protocol had the capacity
of rapid response to the actuator faults.

As is known to all, systems with faults consist of
continuous-valued sate evolution and the abrupt change of
parameter and structure in the system. This class of systems
could be described as a typically stochastic hybrid system,
which characterizes the random jump of system parame-
ters [11]. As one of the most cost-effective adaptive method
for state estimation of stochastic hybrid systems, the inter-
acting multiple model (IMM) approach has a significantly
potential role in the solution of the FDD problem of mod-
ern engineering systems. In the traditional IMM-based FDD
methods [12], [13], the model set is composed of the normal
model and fault models associated with potentially partial
and total faults from sensors, actuators and plant components,
and the fault extent is taken as model parameters to be pre-
determined. However, performance compromise has to be
tolerated to resolve the conflict between the model number
of the fault model set and the computational complexity
since the fault extent actually allows a continuous-value in
the real domain. To overcome this weakness, [14] proposed
a combined FDD framework based on variable-structure
IMM and maximum likelihood estimation, where a new fault
model with estimated fault extent was added to the model set
once the fault was detected. Then, the results of [14] were
extended in [15] to deal with actuator fault fusion diagnosis
for dynamic systems with multiple sensors based on the
asynchronous IMM approach, where the fault factor of the
partial fault was estimated by using the maximum likelihood
estimation algorithm. Besides, a novel fault detection, iso-
lation and estimation method for multi-sensor systems was
proposed in [16] based on the augmented IMM structure and
the strong tracking filtering approach, where the unknown
fault amplitude was directly augmented into the system state
to avoid the dilemma of predetermining the fault extent as the
model parameters in the traditional IMM approaches.

Note that in the above literature for FDD problem, all
sampled data are released under the time-triggered schedul-
ing scheme into the communication network. However, espe-
cially for wireless network systems (e.g., unmanned marine
vehicles in [17], [18]), bandwidth constraint cannot allow
free transmission for a vast of data, which could result in
the network-induced phenomenon, such as packet dropout,
delay and network congestion, even the system crash. More-
over, from the resource utilization efficiency point of view,
measurement outputs of sufficiently small fluctuation are
not worth being transmitted to avoid the waste of limited
bandwidth resource. Besides, wireless sensors and actuators
are usually powered by batteries with limited energy storage,
some of which are hard to repair and not even replaceable.
To deal with bandwidth limitation and power restriction,
event-triggered scheduling scheme becomes a hot research
topic and has produced fruitful achievements, see [19]–[23].
Under the event-triggered mechanism, each sensor sends its
measurements to the remote processor only when the cer-
tain events are activated. Event-triggered mechanism could
improve the effectiveness and efficiency of communication
bandwidth and power energy via reducing the sensor-to-
estimator transmission of data with low importance over
wireless sensor networks. For nonlinear networked systems
under the event-triggered scheme, [24] designed a polyno-
mial fuzzy fault detection filter based on the residual eval-
uation function, where the constructed residual system was
proved asymptotically stable by the polynomial T-S sys-
tem approach. [25] was concerned on the problem of fault
detection and isolation for event-triggered systems, where
the solution of fault diagnosis in the H∞ performance index
was presented by using a Leuberger observer. The problem
of event-triggered fault detection filter and controller coordi-
nated design for networked control systems with sensor faults
was explored in [26] based on the Wirtinger-based integral
inequality method. Most of the current event-triggered FDD
approaches are presented in the H∞ sense, which is a little
conservative since it just finds the solution of the worst case.
To overcome this conservativeness and improve the accuracy
of FDD, the estimation-based event-triggered FDD algorithm
in the minimummean square error sense is one of our motiva-
tions to carry out this study, which still remains an unresolved
problem.

In this paper, the event-triggered FDD problem is studied
for networked control systemswith actuator and sensor faults.
First, the faulty system is described as a stochastic hybrid
system, where two independent Markovian jump chains are
introduced to characterize the switchings between the system
models (including faulty and normal) and the occurrence of
sensor fault, respectively. Then, to improve the efficiency of
limited bandwidth resource, the event generator is designed
to determine whether the newly sampled measurement out-
put shall be transmitted through the sensor-to-filter channel.
A novel estimation-based event-triggered fault filter is pro-
posed based on the augmented IMM framework, where the
fault location to be detected is added into themodel set and the
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fault amplitude to be estimated is augmented into the system
state. Besides, the statistical knowledge of event-triggered
information is utilized to improve the estimation accuracy
of fault amplitude and enhance the detect capacity of fault
location.

The remainder of this paper is arranged as follows.
Section II presents the system description of linear time-
invariant systems with actuator and sensor faults, and the
event-triggered data scheduling mechanism is designed.
An event-triggered fault detection, isolation and estimation
algorithm is established based on augmented IMM frame-
work in section III. Section IV illustrates the effectiveness and
efficiency of the proposed algorithm by simulation results and
conclusions are drawn in section V.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. SYSTEM FORMULATION
In this paper, we consider the state estimation for a class
of stochastic linear time-invariant systems along with the
possible occurrence of the sensor fault and actuator fault.
The output of the target system is measured by the sen-
sors and then evaluated by the event generator before being
transmitted through the bandwidth-limited communication
network. Assume that the sensor nodes and actuator nodes
may encounter fault due to the constraints on actuator fatigue,
sensor sensing, temporal failure and so on. The dynam-
ics of stochastic linear time-invariant systems with faults is
described as

xk+1 = Axk + Buk + Dfk + Gwk (1)

yk = δkHxk + vk (2)

where k denotes the discrete-time index, xk ∈ Rdx is the
continuous-valued system state, uk is the system input with
the dimension du, yk ∈ Rdy is the sensor measurement,
wk ∈ Rdw and vk ∈ Rdv are mutually independent, addi-
tive, white Gaussian noises with zero mean and covariance
matrices Q > 0 and R > 0, respectively. fk represents the
fault vector with the dimension df to be detected. δk denotes
the measurement state, which is determined by the sensor
fault. A, B, G, D, H are known matrices with appropriate
dimensions.

Due to aging, wear and other reasons, the fault signal fk
inevitably appears in the process of equipment operation.
For simplicity, it is assumed in this paper that only one of
actuators and process components breaks down at a certain
instant and the fault amplitude remains constant or slowly
changes. fk = e0 means that the system works well without
any fault, where e0 is a zero column vector with the dimen-
sion df . Otherwise, fk = emf ak (1 ≤ m ≤ df ) denotes
the mth fault element is in effect with the fault amplitude
f ak and others are normal, where em is the mth column of
unit matrix Idf denoting the fault direction. The number of
candidate operational models including normal and faulty is
df + 1. Let mk = m (0 ≤ m ≤ df ) denote the system
model m is in effect at time k , where m = 0 is the no fault

model and otherwise mth fault occurs. Let the probability
vector µf ,k = [µ0

f ,k , · · · , µ
df
f ,k ]

T indicate the probability of
the system matched to each model at time k , i.e., Pr{mk =

m} = µmf ,k and
df∑
m=0

µmf ,k = 1. The transition matrix for the

evolution of the probability vector µf ,k is given as5f whose
elements are defined as π fnm = Pr{mk = m|mk−1 = n} for

0 ≤ n,m ≤ df with
df∑
m=0

π
f
nm = 1.

Remark 1: the fault signal fk is introduced to indicate the
health condition of actuators and process components, which
contains the ovrall information (including type, shape, loca-
tion and size) of potential faults. If fk is used to represent the
actuator fault for the purpose of fault diagnosis, then it holds
true that D = B and df = du, and the final control input
is uk + fk .
The measurement state δk , which indicates the sensor fault,

is also assumed as a two-state Markov chain independent of
mk and takes values in �δ = {0, 1}, where 1 implies that the
sensor can monitor the state of the target without any loss and
0 stands for the occurrence of measurement missing owing
to sensor’s temporal failure and limited sensing capacity. Let
Mδ = 2 be the number of elements in�δ . The transition prob-
ability matrix is5δ with elements π δij = Pr(δk = j|δk−1 = i)
for all i, j ∈ �δ . At time k , the probability distribution of δk
is denoted as µδ,k = [µ1

δ,k , µ
2
δ,k ], where

µ1
δ,k + µ

2
δ,k = 1, 0 ≤ µ1

δ,k , µ
2
δ,k ≤ 1 (3)

Taking these fault occurrence into account, the overall
system (1) and (2) after the fault occurs could be seen as
a typically stochastic hybrid system with continuous state
evolution xk and discrete model transition of mk and δk .

The measurement innovation consists of the part of yk
containing new information but not carried in y1, · · · , yk−1.
For a given mode pair mk = m and δk = j, the measurement
innovation zj,mk ∈ Rdz is calculated to reflect the dynamic
change of the system state.

zj,mk = yk − E(yk |δk = j,mk = m, Ik−1) (4)

where Ik−1 is the history sequence received at the estimator
center up to time k − 1.

B. EVENT-TRIGGERED DATA SCHEDULING MECHANISM
In the traditional time-triggered scheduling schemes,
the observations of the system are sampled and sent peri-
odically with equidistant time intervals completely irrespec-
tive of the sampled signals. This is a conservative choice,
which leads to excessive occupation of the limited band-
width resource and the scarce battery power. To improve
the resource efficiency, it’s of great significance to adopt the
event-triggered scheduling mechanism that does not reply on
periodicity. In the event-triggered case, the sensor measure-
ments are transmitted through the wireless communication
channel only when some predefined conditions dependent
of the measurement signal itself are violated. In this section,
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a novel closed-loop event-triggeredmechanism is proposed to
effectively save the communication bandwidth and decrease
the energy consumption, where the measurement innovation
is introduced to trigger certain events.

For the purpose of fault detection, isolation and estimation,
the fault amplitude is regarded as the unknown state variable
to be estimated and augmented directly into the system state
xk . For a givenmode pairmk = m, δk = j, the augmented vec-
tors and the corresponding matrices are defined as follows:

x̄k =
[
xk
f ak

]
, ūk =

[
Buk
0

]
, w̄k =

[
Gwk
0

]
Ām =

[
A Dem
0 1

]
, H̄j = [jH 0]

Q̄m = E(w̄k w̄Tk ) = diag{GQGT , 0} (5)

After extending the fault amplitude f ak into the original
state vector xk , then the corresponding discrete-time aug-
mented state transition in (1) and (2) could be modified as

x̄k+1 = Āmx̄k + ūk + w̄k (6)

yk = H̄jx̄k + vk (7)

Next, the Mahalanobis transformation is introduced to
decouple and normalize the measurement innovation zj,mk
in (4). For a given mode pair mk = m, δk = j, the normalized
innovation is obtained as

z̃j,mk = (W j,m
k )T zj,mk (8)

where W j,m
k ∈ Rdz×dz is given by

W j,m
k = U j,m

k (3j,m
k )−1/2

and 3j,m
k = diag(λ1,j,mk , · · · , λ

dz,j,m
k ) is the diagonal matrix,

whose diagonal scalar elements λ1,j,mk , · · · , λ
dz,j,m
k are the

eigenvalues of H̄jP̄
j,m
k|k−1H̄

T
j +R > 0.U j,m

k is a unitary matrix,
which is solved below.

Furthermore, the relationship between the diagonal
matrix 3j,m

k and the unitary matrix U j,m
k in (8) could satisfy

(U j,m
k )T (H̄jP̄

j,m
k|k−1H̄

T
j + R)U

j,m
k = 3

j,m
k (9)

W j,m
k (W j,m

k )T = (H̄jP̄
j,m
k|k−1H̄

T
j + R)

−1

(10)

where P̄j,mk|k−1 is the estimation error covariance matrix of the
augmented state vector x̄k .
Remark 2: Mhalanobis transformation is widely used to

deal with the Mahalanobis distance, which was introduced
by P. C. Mahalanobis [27]–[29]. The normalized informa-
tion throughMhalanobis transformation is unitless and scale-
invariant, and takes into account the correlations of the data
set.
Remark 3: Through the Mahalanobis transformation (8),

the measurement innovation zj,mk is transformed into the
dimensionless and normalized one z̃j,mk , which is composed
of a set of independent and identically distributed principal
elements of zj,mk .

After the measurement innovation z̃j,mk is normalized
by (8), then the sensor node decides whether it will be sent to
the estimator for further processing according to the designed
event trigger. Let γ j,mk be the decision variable to represent
the event occurrence: γ j,mk = 1 implies that the normalized
innovation z̃j,mk is directly sent to the estimator and γ j,mk = 0
otherwise. Based on the independent and identical distribu-
tion of the normalized innovation, a closed-loop deterministic
event-triggered scheme is devised in this paper as

γ
j,m
k =

{
1 ‖z̃j,mk ‖∞ > θ j,m

0 otherwise
(11)

where θ j,m is a deterministic threshold to decide whether the
sensor transmits the explicit data. Note that {‖z̃j,mk ‖∞ ≤ θ

j,m
}

is equivalent to max{|z̃1,j,mk |, · · · , |z̃dz,j,mk |} ≤ θ j,m.
Remark 4: The fault amplitude is taken into account the

design of the event-triggered scheduling mechanism in this
paper, and the fault location is seen as the system parameter.
When the fault signal occurs, the event detector is activated
to transit the sensor measurements to rapidly detect, isolate
and estimate the amplitude and location of the fault signal.

III. EVENT-TRIGGERED FAULT DETECTION, ISOLATION
AND ESTIMATION
System with faults is composed of state evolution in contin-
uous value and parameter or structure changes in discrete
value, and thus is a typical hybrid system. As a common
technology in hybrid systems, IMM approach is adopted to
efficiently and effectively deal with fault detection, isolation
and estimation for faulty systems.

The novelty of IMM approach comes from the appropri-
ate timing of hypothesis reduction and performs at a rela-
tively low computation cost. To show the proper timing of
hypothesis reduction, a complete cycle from the previous
measurement update up to and including the current one
is discussed in this section. One filtering cycle is divided
into four steps: 1) the model-conditioned re-initialization
at the input of filters; 2) the model-conditioned filtering
with event-triggered information; 3) the model probability
update; 4) the state estimation combination at the output of
model-conditioned filters. In addition, compared with the
traditional time-triggered IMM approach, the event-triggered
one need be redesigned based on the Gaussian assumption,
where the implicit information involved in event-triggered
scheduling mechanism is further explored in the update
stage of the model-conditioned filtering and model proba-
bilities. In this section, a complete cycle of event-triggered
IMM fault diagnosis scheme is devised explicitly as fol-
lows, including detection, isolation and estimation of fault
signals.
Remark 5: For stochastic hybrid systems, the optimal

hybrid filter involves all possiblemode sequence histories and
their associated continuous state evolution. As time k goes on,
the number of mode sequence histories grows exponentially,
which makes the optimal hybrid filter impractical. To address
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this exponential growth to the bounded computational
complexity, IMM framework introduces an initial interaction
step at the beginning of each filtering cycle based on Gaus-
sian mixture and moment matching. It is the effective input
mixing process that achieves the best compromise between
computational effort and estimation quality.

A. MODEL-CONDITIONED RE-INITIALISATION
Under the event-triggered scheduling mechanism (11), the
measurement information set available to the remote estima-
tor at time k is denoted as

I (k) = {γ j,mk zj,mk }
⋃
{γ

j,m
k }

with I (−1) , ∅ and the received information sequence
up to time k is Ik = {I (1), · · · , I (k)}. Different from the
conventional time-triggered case, the received information in
event-triggered case is composed of two parts: the decision
variable γ j,mk and the coupled information γ j,mk × z

j,m
k .

Given the situation that the mode pair mk = m, δk = j is
in effect at time k , the model-conditioned priori estimation of
the augmented state is defined as

x̂ j,mk|k−1 = E(x̄k |mk = m, δk = j, Ik−1)

P̄j,mk|k−1 = Cov(x̄k − x̂
j,m
k|k−1) (12)

and then the corresponding posteriori estimation is

x̂ j,mk|k = E(x̄k |mk = m, δk = j, Ik )

P̄j,mk|k = Cov(x̄k − x̂
j,m
k|k ) (13)

According to the Markovian property of mk , the mix-
ing probability of mk is computed based on the Bayesian
theorem

π
n|m
f ,k = Pr(mk−1 = n|mk = m, Ik−1)

=
Pr(mk = m|mk−1 = n, Ik−1)

Pr(mk = m|Ik−1)
×Pr(mk−1 = n|Ik−1)

=
π
f
nmµ

n
f ,k−1

µ̄mf ,k
(14)

where the predicted probability of mk is obtained by

µ̄mf ,k = Pr(mk = m|Ik−1) =
df∑
n=0

π fnmµ
n
f ,k−1 (15)

Similarly, the mixing probability of δk is

π
i|j
δ,k = Pr(δk−1 = i|δk = j, Ik−1)

=
π δijµ

i
δ,k−1

µ̄
j
δ,k

(16)

where the predicted probability of δk is

µ̄
j
δ,k = Pr(δk = j|Ik−1) =

∑
i∈�δ

π δijµ
i
δ,k−1 (17)

Then, due to the independence between the system
modemk and the measurement state δk , the initial input of the
basic filter for the mode pair mk = m, δk = j is re-initialized
by executing the interaction or mixture of the estimates of all
filters at the previous time, e.g.,

x̆ j,mk−1|k−1 =
df∑
n=0

∑
i∈�δ

x̂ i,nk−1|k−1π
n|m
f ,k π

i|j
δ,k

P̌j,mk−1|k−1 =
df∑
n=0

∑
i∈�δ

[
P̄i,nk−1|k−1 + (x̌ j,mk−1|k−1 − x̂

i,n
k−1|k−1)

×(x̌ j,mk−1|k−1 − x̂
i,n
k−1|k−1)

T
]
π
n|m
f ,k π

i|j
δ,k (18)

B. MODEL-CONDITIONED FILTERING WITH
EVENT-TRIGGERED INFORMATION
According to the dynamics of stochastic hybrid systems,
the priori state estimate and the corresponding estimation
error covariance matrix matched to the mode pair mk = m,
δk = j are obtained as

x̂ j,mk|k−1 = Amx̆
j,m
k−1|k−1 + ūk

P̄j,mk|k−1 = AmP̆
j,m
k−1|k−1A

T
m + Q̄m (19)

The posteriori model-matched estimation of the aug-
mented state depends on whether the event detector is acti-
vated to transmit the normalized innovation to the remote
filter. To devise the model-conditioned filter with event-
triggered scheduling, we consider the following two cases.

1) γ j,mk = 1: the event detector is activated to transmit the
latest measurement information from the sensor node to the
remote estimator. Since the exact point-measurement infor-
mation is received, the posteriori estimation of the system
state is similar to measurement update of classic Kalman
filter, e.g.,

x̂ j,mk|k = x̂ j,mk|k−1 + K
j,m
k z̃j,mk

P̄j,mk|k = P̄j,mk|k−1 − K
j,m
k (K j,m

k )T (20)

where K j,m
k = P̄j,mk|k−1H̄

T
j W

j,m
k .

2) γ j,mk = 0: The processor center does not receive any
specific measurement from the sensor node, but is aware of
the implicit information extracted from the event-triggered
mechanism (11). Then, according to the characteristic of
the innovation-based event-triggered mechanism designed
in (11), the overall information sequence available to the
processor center could be modified as Ik = {Ik−1}

⋃
{γ

j,m
k =

0} = {Ik−1, ‖z̃
j,m
k ‖∞ ≤ θ

j,m
}.

Based on the standard Gaussian property of the normalized
innovation z̃j,mk , the probability of detector keeping silent
could be obtained by solving the integration on the set�j,m

=

{z̃j,mk |‖z̃
j,m
k ‖∞ ≤ θ j,m}. If γ j,mk = 0, then z̃j,mk is certainly

located in the set�j,m, that is to say Pr(Ik |z
j,m
k ,mk = m, δk =

j, Ik−1) = 1. Considering the independent and identical
distribution of components of the normalized innovation z̃j,mk ,
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one can yield

Pr(I (k)|mk = m, δk = j, Ik−1)

=

∫
�j,m

p(z̃j,mk |mk = m, δk = j, Ik−1)dz̃
j,m
k

=

dz∏
h=1

∫
�j,m

p(z̃h,j,mk |mk = m, δk = j, Ik−1)dz̃
h,j,m
k

= [2Q(θ j,m)− 1]dz (21)

and

Q(x) =

x∫
−∞

N (y; 0, 1)dy (22)

where N (x; 0, 1) is the probability density function of the
standard Gaussian variable x with zero mean and variance 1.
Then, given that the mode pair mk = m, δk = j is in

effect at time k , the truncated expectation of the normalized
innovation conditioned on the information sequence Ik =
{Ik−1, ‖z̃

j,m
k ‖∞ ≤ θ

j,m
} is derived together with (21)

E(z̃j,mk |mk = m, δk = j, Ik )

=

∫
�j,m

z̃j,mk p(z̃j,mk |mk = m, δk = j, Ik )dz̃
j,m
k

=

∫
�j,m

z̃j,mk
p(z̃j,mk |mk = m, δk = j, Ik−1)

Pr(Ik |mk = m, δk = j, Ik−1)

×Pr(Ik |z
j,m
k ,mk = m, δk = j, Ik−1)dz̃

j,m
k

= 0 (23)

and the corresponding covariance is also deduced by integra-
tion by parts formula as follows

Cov(z̃j,mk |mk = m, δk = j, Ik )

=

∫
�j,m

z̃j,mk (z̃j,mk )T p(z̃j,mk |mk = m, δk = j, Ik )dz̃
j,m
k

= (1− β(θ j,m))Idz (24)

and

β(x) =
2
√
2π

xe
−x2
2 [2Q(x)− 1]−1 (25)

where Idz is an identity matrix with dz dimensions.
Consequently, according to the law of total expectation,

the posteriori estimation of the augmented state matched to
the mode pair mk = m, δk = j could be achieved along
with (24) and (25)

x̂ j,mk|k = E(x̄k |mk = m, δk = j, Ik )

= E
{[
x̂ j,mk|k−1 + K

j,m
k z̃j,mk

]
|mk = m, δk = j, Ik

}
= x̂ j,mk|k−1 + K

j,m
k E

{
z̃j,mk |mk = m, δk = j, Ik

}
= x̂ j,mk|k−1 (26)

Meanwhile, the corresponding estimation error covariance
matrix is given based on the principle of orthogonality

P̄j,mk|k = Cov(x̄k − x̂
j,m
k|k |mk = m, δk = j, Ik )

= P̄j,mk|k−1 − K
j,m
k (K j,m

k )T

+K j,m
k Cov(z̃j,mk |mk = m, δk = j, Ik )(K

j,m
k )T

= P̄j,mk|k−1 − β(θ
j,m)K j,m

k (K j,m
k )T (27)

Summarizing the above derivations from (20)-(27),
the model-matched recursive estimation derivations for the
augmented state with event-triggered data scheduling are
presented by

x̂ j,mk|k = x̂ j,mk|k−1 + γ
j,m
k K j,m

k z̃j,mk

P̄j,mk|k = P̄j,mk|k−1 −
[
γ
j,m
k + (1− γ j,mk )β(θ j,m)

]
P̄j,mk|k−1

×H̄T
j (H̄jP̄

j,m
k|k−1H̄

T
j + R)

−1H̄jP̄
j,m
k|k−1 (28)

C. MODEL PROBABILITY UPDATE
In this section, we will focus on the update of model proba-
bilities according to the received event-triggered information
sequence Ik . However, the irregularity and sparsity caused by
event-triggered mechanism make it hard. To deal with this
challenge, the model probability update is divided into two
scenarios in the case of the decision variable γ j,mk = 1 or 0.
1) γ j,mk = 1: Similar to the classic IMM algorithm,

the model probability update step in the proposed event-
triggered one could be carried out by using the Bayesian rule.
Together with the independence between mk and δk , one can
have

µ
j,m
k = Pr(mk = m, δk = j|Ik )

=
p(I (k)|mk = m, δk = j, Ik−1)

p(I (k)|Ik−1)
×Pr(mk = m, δk = j|Ik−1)

=
N (z̃j,mk ; 0, Idz )µ

j,m
k|k−1

df∑
m=0

∑
j∈�δ

N (z̃j,mk ; 0, Idz )µ
j,m
k|k−1

(29)

where the model-likelihood probability density is computed
by

p(I (k)|mk = m, δk = j, Ik−1)= p(z̃
j,m
k |mk = m, δk = j, Ik−1)

= N (z̃j,mk ; 0, Idz ) (30)

and the one-step prediction probability of the mode pairmk =
m, δk = j at time k is deduced as

µ
j,m
k|k−1 = Pr(mk = m, δk = j|Ik−1)

=

df∑
n=0

∑
i∈�δ

π δijπ
f
nmµ

i,n
k−1 (31)

2) γ j,mk = 0: The statistical knowledge of the implicit infor-
mation involved in the event-triggered conditions is further
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utilized to update the model probability. Therefore, the corre-
sponding model probability could be approximated together
with (21) and (31)

µ
j,m
k = Pr(mk = m, δk = j|Ik )

=
[2Q(θ j,m)− 1]dzµj,mk|k−1

df∑
m=0

∑
j∈�δ

[2Q(θ j,m)− 1]dzµj,mk|k−1

(32)

Furthermore, the posteriori probability of the systemmodel
at mk = m and δk = j is accumulated, respectively, as

µmf ,k = Pr(mk = m|Ik ) =
∑
j∈�δ

µ
j,m
k

µ
j
δ,k = P(δk = j|Ik ) =

df∑
m=0

µ
j,m
k (33)

D. OUTPUT COMBINATION
To avoid the inherent defect of the conventional algorithm
called ‘‘estimation after decision’’ in [30], the IMM frame-
work introduces the output combination step by combing all
the mode-conditioned estimates matched to different modes
weighted by the posteriori probability of the mode pair. Thus,
the overall estimation of the augmented state, which embod-
ies the fault extent f ak , is generated by

x̂k|k =
df∑
m=0

∑
j∈�δ

x̂ j,mk|kµ
j,m
k

P̄k|k =
df∑
m=0

∑
j∈�δ

µ
j,m
k [P̄j,mk|k + (x̄k|k − x̂

j,m
k|k )(x̄k|k − x̂

j,m
k|k )

T ]

(34)

Remark 6: Since the fault signal is involved in the aug-
mented state x̄k , the acquisition of the estimate of the aug-
mented state is equivalent to that of the amplitude of the
fault signal. Meanwhile, the location of the fault occurrence
is detected by the updated model probability µmf ,k , (0 ≤ m ≤

df ) and µ
j
δ,k (j ∈ �

δ).

E. FAULT DETECTION AND ISOLATION
Model probabilities are utilized as the index of fault modes
and normal mode. Once µm̄f ,k = max{µmf ,k}

df
m=1 ≥ µ̄f , and

for a = 1, 2, · · · ,L, we also have µm̄f ,k−a ≥ µ̄f , then
it is indicated that the m̄th fault is in effect in the system,
where µ̄f ∈ (0, 1] is the predetermined detection threshold
of fault signal and L is seen as the length of time window.
The fault detection threshold may determine the sensitivity
of the proposed algorithm to the faulty mode. Meanwhile,
if the probability of the sensor fault µ0

δ,k ≥ µ̄δ , then we
also conclude that the sensor suffers from the failure and
malfunction due to various factors, where µ̄δ is the detection
threshold of the sensor fault.

IV. SIMULATIONS AND EXPERIMENTS
In this section, a single target tracking scenario in a two-
dimension space is given to show the effectiveness and effi-
ciency of the proposed event-triggered IMM fault diagnosis
algorithm obtained in the previous section, where the system
state x = [X , Ẋ ,Y , Ẏ ] denotes the position and velocity along
the X and Y axes, respectively.

Consider the dynamic system (1) and (2) with the following
model parameters:

A =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 , B =


0.5T 2 0
T 0
0 0.5T 2

0 T


H =

[
1 0 0 0
0 0 1 0

]
, D = G = B

Q = 0.01×
[
1 0
0 1

]
, R = 25×

[
1 0
0 1

]
where T = 1 is the sampling period and the control input
uk = [5 5]T .

In this simulation, there exist two actuators and we assume
that the Actuator 1 has encounter the failure at time τf = 45s
with constant fault extent f ak = 20. Meanwhile, the mea-
surement missing phenomenon is set to happen at 25s. The
sensor fault δk is governed by aMarkovian jump chain, which
has two modes {0, 1}, and the failure rate p = 0.1 and the
recovery rate q = 0.8. The switching between the normal
condition and the faulty ones is also described as a first-
order Markovian jump chain. Thus, the transition probability
matrices of three system models and the measurement state
are, respectively, given by

5f
=

 0.9 0.05 0.05
0.05 0.9 0.05
0.05 0.05 0.9

 , 5δ =

[
0.2 0.8
0.1 0.9

]
where the initial model probabilities are {µ0

f , µ
1
f , µ

2
f } =

{0.7, 0.1, 0.2} and {µ0
δ , µ

1
δ} = {0.5, 0.5}. The probability

threshold µ̄f = 0.5 and µ̄δ = 0.5
For convenience, the event-triggered threshold θ j,m is sim-

plified as θ for the mode pair mk = m and δk = j. To analyze
the influence of the proposed event-triggered mechanism on
the estimation quality and bandwidth occupation, the value
of θ is chosen from the set θ ∈ {0, 0.5, 0.8}, where θ = 0
indicates that the event-triggered mechanism is reduced to
the time-triggered one and the sensor node could transit the
measurement data at a fixed time interval. Then, the proposed
event-triggered IMM fault diagnosis algorithm has become
the classic IMM one based on the time-triggered scheduling.
500Monte Carlo runs are carried out in the simulation section
and the estimation performance is evaluated in terms of the
root square mean error (RMSE).

Fig. 1 shows the posteriori model probability evolution
curves calculated the proposed event-triggered fault diagnosis
algorithm with θ = 0.5, which are averaged from 500 Monte
Carlo runs. As we can see, the probability of the normal
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FIGURE 1. Model probability curves obtained by the proposed
event-triggered fault diagnosis algorithm with θ = 0.5.

FIGURE 2. The missing probability curve of the measurement data.

model is dominant before the fault occurs. However, once
the Actuator 1 fault happens at time k = 45s, the model
probability of Actuator 1 fault has a sudden increase and
quickly exceeds the probability threshold plotted by green
dashed line. Meanwhile, the possibility of normal model
drops rapidly and the probability of Actuator 2 fault keeps
very low described as red dashed line. Thus, the conclusion
has been drawn that the fault could be correctly detected and
located, which is consistent with the truth.

Fig. 2 shows the updated posteriori probability of the mea-
surement missing (or the sensor fault occurrence) obtained
by the proposed algorithm with θ = 0.5. In this simulation
example, the occurrence time of measurement missing is set
at 25s during 500Monte Carlo runs. From Fig. 2, it is obvious
that the proposed event-triggered fault diagnosis algorithm
could precisely distinguish the temporal failure of sensor.

Since the Actuator 1 fault is set to occur at time k = 45s,
Fig. 3 and Fig. 4 reveal the simulation results of fault sig-
nal during the time interval [45s, 100s]. Fig. 3 depicts the
fault amplitude estimation of the proposed fault diagnosis
algorithm with different event-triggered thresholds in one
run. The associated RMSE curves of the fault amplitude

FIGURE 3. The estimated fault amplitude of the proposed event-triggered
fault diagnosis algorithm when the fault occurs.

FIGURE 4. The RMSE curves of the fault amplitude of the proposed
event-triggered fault diagnosis algorithm when the fault occurs.

estimation over 500 Monte Carlo runs are provided in Fig. 4.
From Fig. 3 and Fig. 4, the classic IMM fault diagnosis has
lowest estimation error of fault amplitude and fattest response
to the fault signal. Moreover, it is observed that the proposed
fault diagnosis algorithm could have a more exact estimation
accuracy and faster response speed as the event-triggered
threshold become smaller.

Fig. 5 and Fig. 6 compares the RMSE curves of the posi-
tion and velocity estimation along the horizontal direction
calculated by the proposed fault diagnosis algorithm with
different event-triggered thresholds. From Fig. 5 and Fig. 6,
it can be seen that there are two obvious error peaks, where
one peak near at 25s is caused by the measurement missing
(or the temporal sensor fault) and another peak near at 45s
results from the sudden switching between the normal model
and Actuator 1 fault. As indicated in Fig. 5 and Fig. 6,
we can observe that the proposed event-triggered fault diag-
nosis algorithm can also track the true trajectory with a low
estimation error in the RMSE sense. In addition, the esti-
mation performance of the proposed algorithm becomes bet-
ter with the decrease of even-triggered threshold, even in
peak positions. Compared with classic IMM fault diagnosis
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FIGURE 5. Comparison of RMSE in position along the horizontal direction
with 500 Monte Carlo runs.

FIGURE 6. Comparison of RMSE in velocity along the horizontal direction
with 500 Monte Carlo runs.

algorithm with full-rate communication, although there is
a slight deterioration of the estimation performance, our
proposed algorithm can save 5% and 10% communication
bandwidth for θ = 0.5 and 0.8, respectively. From the above
discussions, it is verified that the proposed event-triggered
fault diagnosis algorithm could dramatically improve the
efficiency of limited bandwidth by not transmitting a large
amount of data of less importance while satisfying the desir-
able estimation quality.

V. CONCLUSION
In this paper, we have proposed a novel FDD algorithm
based on the augmented IMM framework for event-triggered
stochastic systems with actuator and sensor faults. The transi-
tions of the system models (including normal and faulty) and
the measurement missing are characterized by two indepen-
dent first-order Markovian jump chains, respectively. Com-
pared with time-triggered IMM fault diagnosis methods,
the proposed event-triggered approach could substantially
enhance the efficiency of bandwidth resources and battery
power while guaranteeing the satisfactory ability of fault

diagnosis and estimation performance. Our proposed method
has been performed to detect and isolate the fault by model
probabilities, and estimate the fault extent by augmenting
the fault extent into the state vector. To avoid additional
computational burden, the statistical knowledge implicit in
the designed event-triggered mechanism is utilized to update
model probability, and estimate fault severity when the detec-
tor keeps silent. Meanwhile, the simulation results demon-
strate that it owns a fast response speed to the actuator fault
signal and can exactly detect the temporal sensor fault. The
proposed method has a simply recursive framework of fault
diagnosis for the real-time monitoring of various applications
over wireless sensor networks, such as battlefield surveillance
and intelligent transportation. Future works could focus on
the event-triggered fusion diagnosis problem for multi-sensor
networked systems, e.g., the sensor sampling frequency is
arbitrary and asynchronous. Besides, the proposed event-
triggered FDD algorithm will be applied into the practi-
cal systems to show the practical usefulness, especially for
unmanned marine vehicles.
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