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ABSTRACT This paper studies the physical-layer multicasting design for downstream G.fast digital sub-
scriber line (DSL) transmission, which corresponds to a multi-user multi-tone (i.e., multi-carrier) scenario.
The design goal is to maximize the weighted-sum-group-rate (WSGR) under per-line power constraints.
First, as an information-theoretic upper bound, full-rank precoding-based multicasting is considered with
joint channel coding across tones. For a single multicast group, this problem corresponds to a non-linear
convex semidefinite program (SDP), which is coupled across tones. To reduce the computational complexity,
a Lagrange dual decomposition method is developed. This approach is then extended toward multiple
multicast groups based on difference-of-convex (DC) programming. Furthermore, a practical multicasting
scheme is considered based on rank-one single-stream precoding and independent per-tone channel coding.
For this case, instead of relying on computationally complex semidefinite relaxation, a successive convex
approximation-based trust-region algorithm is developed. Finally, the simulations of a G.fast cable binder
show that the practical multicasting scheme operates close to the information-theoretic multicasting upper
bound.

INDEX TERMS G.fast, dynamic spectrum management, physical-layer multicasting, rank-one precoding.

I. INTRODUCTION
Introduced by the International Telecommunication Union
(ITU), G.fast [2] is the digital subscriber lines (DSL) access
technology that marks the beginning of ‘‘ultra-broadband
copper access’’ by offering gigabit (i.e. fiber-like) trans-
mission speeds. These speeds are achieved by employing
discrete multi-tone modulation (DMT) in a broad spectrum
up to 212 MHz over very short copper telephony lines
(below 100 m). Importantly, the use of such high frequencies
leads to increasingly stronger levels of crosstalk interfer-
ence among the lines within a cable binder [3]. This resulted
in many advanced precoding-based unicasting strategies for

The associate editor coordinating the review of this manuscript and
approving it for publication was Bijoy Chand Chatterjee.

downstream DSL transmission [4]–[6], where all subscribers
or users receive independent data streams.

To further improve DSL networks, other transmission
strategies that fully take advantage of these strong crosstalk
interference have to be developed. To that end, this paper con-
siders physical-layer multicasting, taking into consideration
that some users may request the same data streams at the same
time. This is for instance the case with IP-multicast based
(radio and TV) broadcasting, video conferencing or live event
streaming. In such a scenario, physical-layer multicasting
is indeed able to outperform standard unicasting in G.fast,
due to these strong crosstalk interference, which provides the
cable binder with a multiple-input-multiple-output (MIMO)
capacity or power gain. A similar scenario appears in the
specific case of a cloud radio access network (C-RAN) in
small-cell deployment, where the fronthaul or backhaul links
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between the centralized processor and the base stations are
provided by copper telephony lines. Such a C-RAN using
the data-sharing cooperation strategy is then able to take
advantage of a possible DSL multicasting capability [7], [8].
Moreover, a recent consideration of the DSL community is
that future DSL technologies should encompass point-to-
multipoint transmission to many in-home access points and
devices [9], yielding potential multicasting use cases.

A practical and widely adopted transmission scheme
for physical layer multicasting is rank-one precoding,
which corresponds to using a single precoder vector and
data stream for each multicast group. This scheme has
been extensively studied in wireless communications for
single-carrier channels. Two basic precoding design problems
are sum-power minimization under signal-to-interference-
plus-noise ratio (SINR) constraints (the quality-of-service
(QoS) problem), and SINRmaximization under a sum-power
constraint (the max-min-fairness problem). However, even
for single-group multicasting, these precoding design prob-
lems are non-convex [10]. A first approach to solving such a
precoding design problem is based on semidefinite relaxation
(SDR), by reformulating the problem as a rank-one con-
strained semidefinite program (SDP). Hence, subsequently
dropping the non-convex rank-one constraint leads to a con-
vex SDP which corresponds in fact to the single-group
multicasting capacity [11]. This convex SDP has a possibly
full-rank transmit covariance matrix as a solution, which may
be approximated by a rank-one matrix using a randomization
procedure [12]. This SDR approach has been extended for
multi-group multicasting in [13].

On the other hand, directly optimizing the precoding vec-
tors based on successive convex approximation (SCA) [14]
has been shown to outperform the SDR approach, both in
terms of performance and computational complexity. See
e.g. [15] where a locally-optimal iterative second-order cone
programming (SOCP) is proposed for the single-group mul-
ticasting scenario. Moreover, a globally-optimal branch-and-
bound algorithm for single-group multicasting has been
proposed in [16]. For multi-group multicasting, on the
other hand, a SCA approach has been proposed by
relying on the feasible-point-pursuit-SCA algorithm for
non-convex quadratically constrained quadratic programs
(QCQPs) [17], [18].

Nevertheless, DSL transmission corresponds to a
multi-tone (i.e. multi-carrier) scenario, such that in this paper,
different from the QoS and max-min-fairness design prob-
lems, the weighted-sum-group-rate (WSGR) maximization
design problem for multi-group multicasting is studied. This
problem has been tackled in [19], [20] by a two-step heuristic
algorithm for a single-carrier scenario. However, the first
step corresponds to the QoS problem given fixed SINR
constraints which is being solved by the computationally
complex SDR approach. The second step consists of a power
reallocation given fixed precoding vectors via a subgradient
approach. In addition, a SCA approach has been recently pro-
posed for maximizing the minimum group rate with antenna

selection for multi-carrier systems with (a limited number)
of sub-carriers in [21]. However, the large number of tones in
DSL together with the design problem being coupled across
the tones leads to excessive computational complexity, which
is specifically addressed in this paper.

A. MAIN CONTRIBUTIONS
In this paper, the physical-layer multicasting design problem
of maximizing the WSGR is considered for downstream
G.fast DSL transmission, which corresponds to a multi-user
multi-tone (i.e. multi-carrier) scenario.

The first part of this paper considers full-rank precoding-
basedmulticasting, bymeans of full-rank transmit covariance
matrices in combination with joint channel coding across
tones. This means that users of the samemulticast group com-
municate at the same total bit-rate aggregated over all tones,
while they may have a different set of SINR values across
the tones. For the single-group case, this leads to a non-linear
convex SDP which is coupled across tones, corresponding to
the multicasting capacity. To deal with the large number of
tones in G.fast, a Lagrange dual decomposition method with
a subgradient search is proposed for solving this SDP. This
approach is then generalized for multi-group multicasting by
relying on SCA-SDP, based on difference-of-convex (DC)
programming. Unfortunately, since a practical implementa-
tion of this multicasting scheme has not yet been realized,
it is information-theoretic in nature and merely serves as an
upper bound for practical multicasting schemes.

The second part of this paper considers a practical rank-one
single-stream precoding based multicasting scheme, together
with independent per-tone channel coding, such that users of
the samemulticast group communicate at the same bit-rate on
every tone independently, according to the minimum SINR
value. For this case a trust-region method based on SCA
is proposed to maximize the WSGR. In addition, inspired
by [22], a zero-forcing (ZF) rank-one precoding based mul-
ticasting scheme is proposed based on the two-layer block-
diagonalizing precoder of [23], [24], to further reduce the
computational complexity.

Finally, simulations of downstream transmission in a
10-line G.fast cable binder are provided. The practical
multicasting scheme is shown to operate close to the
information-theoretic upper bound.

B. ORGANIZATION AND NOTATION
This paper is organized as follows. Section II introduces
the system model for downstream G.fast DSL trans-
mission. Section III addresses WSGR maximization for
full-rank precoding-based multicasting, while Section IV
considers rank-one precoding-based multicasting. Section V
presents simulation results for a G.fast cable binder. Finally,
Section VI concludes the paper.

Lower-case boldface letters are used to denote vectors and
uppercase boldface letters for matrices. Further, IA is used as
the identity matrix of size A, (.)T as the transpose, (.)H as the
Hermitian transpose, (.)∗ as the complex conjugate, E {.} as
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FIGURE 1. A multi-user G.fast DSL network typically experiences strong
crosstalk interference at high frequencies between the copper lines.

expectation,[X]ij as the i, j-th element of X, Tr {.} as trace,
diag(x) a diagonal matrix with x on the diagonal, | · | as the
scalar absolute value, and 1 as a vector of ones.

II. SYSTEM MODEL
Downstream transmission in a G.fast cable binder with N
lines or users is considered (see Fig. 1). Assuming standard
synchronous DMTwithK tones and a sufficiently long cyclic
prefix, the transmission is modeled independently across the
tones as

yk = Hkxk + zk , for k = [1, . . . ,K ], (1)

where xk , [x1k , . . . , x
N
k ] is the transmit vector on tone k ,

with xnk the signal transmitted on line n, yk , [y1k , . . . , y
N
k ]

is the receive vector on tone k , with ynk the signal received
by user n, zk , [z1k , . . . , z

N
k ] is the vector of uncorrelated

additive noise signals on tone k , with unity noise power,
i.e., E{|znk |2} , 1. The N × N complex channel matrix on
tone k is denoted by

Hk ,

h1,Hk
...

hN ,Hk

 , (2)

where the hn,Hk is the channel row vector from the access
node to the receiver of user n. The diagonal elements of
Hk represent the direct channels, whereas the off-diagonal
elements represent the crosstalk channels. Although the direct
channels of Hk typically are dominant below 30 MHz (i.e.
|[Hk ]nn| � |[Hk ]nm|,m 6= n), this is not valid for higher
frequencies of G.fast where the direct channels may even be
weaker than the crosstalk channels [3].

Perfect knowledge of the channel matrices is assumed.
In DSL systems the channel characteristics vary slowly with
time such that the access node is indeed able to estimate and
track the channel characteristics by sending pilot symbols
interleaved with the data symbols [2].

In G.fast, per-line spectral mask constraints and aggregate
transmit power (ATP) constraints are enforced, i.e.,

E{|xnk |
2
} ≤ Pmask

k , ∀k, n (3)∑
k

E{|xnk |
2
} ≤ PATP, ∀n. (4)

The capacity of this multi-tone channel for user n in bits/s
is then given by Rn = fs

∑
k b

n
k where fs is the DMT symbol

rate and bnk represents the achievable bit-rate (in bits per DMT
symbol) on tone k

bnk = log2
(
1+ SINRnk

)
(5)

with SINRnk the SINR at the receiver of user n on tone k . Note
that in Section III and IV the natural logarithm is adopted
in (5) and fs is dropped for concise notation, such that all
bit-rates in those sections are expressed in nats/DMT symbol.

III. FULL-RANK PRECODING-BASED MULTICASTING
In this section, a dual decomposition algorithm for full-rank
precoding-based multicasting is proposed, which corre-
sponds to the multicasting capacity for a single group.
Second, the proposed algorithm is generalized to multi-group
multicasting, by relying on DC programming.

A. SINGLE-GROUP MULTICASTING
From an information-theoretic perspective, the single-group
multicasting capacity for model (1) under per-line power
constraints can be shown to be [11], [25]

maximize
{Ck�0}

min
n

{∑
k

log
(
1+ hn,Hk Ckhnk

)}
s.t. [Ck ]nn ≤ P

mask
k , ∀k, n∑

k

[Ck ]nn ≤ P
ATP, ∀n (6)

where Ck , E{xkx
H
k } is the N × N positive-semidefinite

transmit covariance matrix on tone k . Observe that (6)
assumes joint channel coding across tones. All users thus
communicate at the same minimum bit-rate aggregated over
all tones, while they may achieve a different set of SINR
values across the tones. The use of independent chan-
nel coding on each tone separately, on the other hand,
restricts users from the same multicast group to communi-
cate at the same bit-rate at every tone separately, according
to the minimum SINR value. This is equivalent to shifting
the summation over the tones k outside the min-function in
the objective of (6). Although the use of independent chan-
nel coding is in fact optimal with respect to the unicasting
capacity1 [26, Ch. 5.3.3], this is not valid for the case of
multicasting.

Note that problem (6) does not assume any physical-layer
multicasting scheme, it merely assumes possibly full-rank
transmit covariance matrices. As a result, the capacity
promised by (6) can be considered as an upper bound for any
possible physical-layer multicasting scheme. However, for a
single tone (K = 1) channel with up toN = 3 users, rank-one
single-stream precoding is capacity-achieving since the opti-
mal transmit covariance matrix in (6) is rank-one [11], [27].
In addition, rank-2 Alamouti precoding is capacity-achieving
up to N = 8 users on a single tone [11].

1However, for practical (non-capacity achieving) codes, channel coding
across the tones may improve the bit error probability for a certain bit-rate.
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Since the minimum of a set of concave functions is
concave, (6) is a (non-smooth) convex problem. Notwith-
standing its convexity, (6) has a high complexity, due to
the coupling across tones and the large number of tones K
in DSL networks.2 Therefore, (6) is first reformulated into
a smooth problem and then decoupled into K independent
low-complexity subproblems, by relying on Lagrange dual
decomposition.

The smooth version of (6) is formulated by introducing the
auxiliary (positive real) variable t

maximize
t,{Ck�0}

t (7a)

s.t.
∑
k

log
(
1+ hn,Hk Ckhnk

)
≥ t ∀n (7b)

[Ck ]nn ≤ P
mask
k , ∀k, n (7c)∑

k

[Ck ]nn ≤ P
ATP, ∀n. (7d)

Since (7) is convex with strictly feasible constraints, strong
duality holds in (7) and Lagrange dual decomposition may
be used to decouple the constraint functions in (7b) and (7d).
Towards this end, define the non-negative Langrange multi-
pliers θ , [θ1, . . . , θN ] and λ , [λ1, . . . , λN ] corresponding
to (7b) and (7d), respectively. Then, the Lagrangian is formed
by augmenting the objective in (7a) with the weighted sum of
the constraint functions [29, Ch. 5]

L(t, {Ck}, θ ,λ)

= t −
∑
n

θn

(
t −

∑
k

log
(
1+ hn,Hk Ckhnk

))

−

∑
n

λn

(∑
k

[Ck ]nn − P
total

)
(8)

=

(
1−

∑
n

θn

)
t +

∑
n

∑
k

θn log
(
1+ hn,Hk Ckhnk

)

−

∑
n

λn

(∑
k

[Ck ]nn − P
total

)
(9)

and the Lagrange dual problem is

minimize
θ�0,λ�0

maximize
t,{Ck�0}

L(t, {Ck}, θ ,λ). (10)

If (1−
∑

n θn) is positive, it is easy to see that the Lagrangian
is unbounded from above (i.e. setting t = ∞ is optimal),
meaning that the Lagrange dual problem (10) is infeasible. If,
on the other hand, (1−

∑
n θn) is negative, the optimal t has

zero value, meaning that the primal problem (7) is infeasible.
This results in the hidden constraint

∑
n θn = 1 and yields

2Note that as the variable size scales with K in (6), the worst-case
complexity per iteration with interior-point methods scales withO(K3) [28],
where the maximum number of tones in G.fast is K = 4096.

the following equivalent Lagrange dual problem (where t has
been effectively removed):

minimize
θ�0,λ�0

∑
k

gk (θ ,λ)+ λTPtotal

s.t.
∑
n

θn = 1. (11)

where PATP , 1PATP. The Lagrange dual function consists
of K independent per-tone subproblems gk (θ ,λ)

gk (θ ,λ)

= maximize
Ck�0

∑
n

θn log
(
1+ hn,Hk Ckh

n
k

)
− Tr {diag(λ)Ck}

s.t. [Ck ]nn ≤ P
mask
k , ∀n. (12)

Each per-tone subproblem (12) is a smooth small-scale
convex problem and thus may be efficiently solved to its
global optimum with a standard optimization tool like e.g.
CVX [30].

The remaining difficulty lies in finding the optimal
Lagrange multipliers θ and λ that solve the equivalent dual
problem (11). A well-known technique for solving this dual
problem is the projected subgradient method [31]. A possible
subgradient direction for θ and λ at iterate i is

d(i)θ = R(i) (13)

d(i)λ = PATP
−

∑
k

diag
(
C(i)
k

)
(14)

where C(i)
k is the optimized transmit covariance matrix in

gk
(
θ (i),λ(i)), which yieldsR(i) , [R(i)1 , . . . ,R

(i)
N ]T withR(i)n =∑

k log
(
1+ hn,Hk C(i)

k hnk
)
. The basic update of the Lagrange

multipliers in the subgradient direction with step sizes δiθ and
δiλ is then written as

θ (i+1) = θ (i) − δiθd
(i)
θ (15)

λ(i+1)
= λ(i)

− δiλd
(i)
λ . (16)

The updated Lagrange multipliers should be Euclidean pro-
jected back on their respective constraint sets. For λ, this
projection is realized by simply replacing (16) with

λ(i+1)
=

[
λ(i)
− δiλd

(i)
λ

]+
. (17)

For θ , on the other hand, there is a joint Euclidean projection
needed onto two sets: C1

= {θ |1T θ = 1} and C2
= {θ |θ �

0}, which is detailed in Appendix A. Note that the Euclidean
projection onto the constraint set never results in moving
further away from the optimal point. For instance, if all
obtained data rates corresponding to θ (i) are equal at a certain
iteration i (i.e., θ (i) is the optimal Lagrange multiplier vector
with R(i)

= R1N ), then Euclidean projection of θ (i+1) results
into the same vector θ (i). Further, the projected subgradient
method is guaranteed to converge if the step sizes δiθ and δiλ
are chosen sufficiently small [31].

The complete algorithm is summarized in Alg. 1 and is
guaranteed to converge to the global optimum of the convex
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Algorithm 1 Single-Group Multicasting

Initialize θ = 1/N and λ � 0
repeat

Update θ = θ − δθdθ

Euclidean project θ onto the constraint set (see
Appendix A)
repeat

Update λ = [λ− δλdλ]+

for k = 1 · · ·K do
Update Ck by solving gk (θ ,λ) in (12)

end
until λn

∣∣∑
k [Ck ]nn − Ptotal

∣∣ < ε ∀n
Update R∗n =

∑
k log

(
1+ hn,Hk Ckhnk

)
∀n

until θn
∣∣minm{R∗m} − R

∗
n

∣∣ < ε ∀n

single-group multicasting problem (6). For a general number
of users N and tones K , the rank of the optimal Ck in (6)
may be larger than one. However, in case of a single user
(N = 1), the single optimal Lagrange multiplier θ∗ equals
one and the per-tone slave problems gk (θ∗,λ) have an
optimal rank-one solution (see e.g. [32] for an SVD-based
method). Furthermore, in case of a single tone (K = 1),
problem (7) may be simplified to a linear SDP [10].

B. MULTI-GROUP MULTICASTING
In this subsection, Alg. 1 is generalized for single-group
multicasting towards the case with multiple interfering mul-
ticasting groups. ConsiderG groups with 1 ≤ G ≤ N , and let
Gg denote the set of users in group g, and |Gg| the number of
users in group g. Each user n is member of one and only one
group, denoted by gn ∈ [1, . . . ,G]. Define Cg

k , E{xgkx
g,H
k }

as the N × N transmit covariance matrix of group g on tone
k , with xk =

∑
g x

g
k and Ck = [C1

k , . . . ,C
G
k ]. Then the

achievable bit-rate of user n on tone k is

bnk (Ck) , log
(
1+

hn,Hk Cgn
k hnk

1+
∑

j 6=gn h
n,H
k Cj

kh
n
k

)
. (18)

The goal is to maximize the WSGR by optimizing the trans-
mit covariance matrices under per-line power constraints:

maximize
{Cgk�0}

∑
g

αgmin
n∈Gg

{∑
k

bnk (Ck)

}
(19a)

s.t.
∑
g

[
Cg
k

]
nn ≤ P

mask
k , ∀n, k, (19b)∑

k

∑
g

[
Cg
k

]
nn ≤ P

total, ∀n, (19c)

where αg is the nonnegative weight of group g. Strictly speak-
ing, (19) is not equivalent to the true multi-groupmulticasting
capacity, which requires dirty-paper coding [33] among the
groups. However, (19) can be seen as a theoretical achievable
rate for any physical-layer scheme using only linear encoding
and decoding of the groups. From an optimization point of

view, (19) can also be seen as the SDR upper bound of the
rank-one single stream precoding scheme in Section IV.

Unlike the single-group case, (19) is non-convex due
the inter-group interference. Fortunately, the difference
of concave functions structure in (18) allows to lever-
age successive lower bound maximization (also known as
the majorization-minimization (MM) method). To see this,
define An

k , hnkh
n,H
k and the noise and interference covari-

ance matrix Xnk , 1+
∑

j 6=gn Tr
{
An
kC

j
k

}
, such that (18) may

be re-written as follows:

bnk (Ck) = log
(
Xnk + Tr

{
An
kC

gn
k

})
− log

(
Xnk
)
. (20)

A first-order approximation of the second term in (20) in Cg
k

around Ck , i.e.,

log
(
Xnk
)
≤ log

(
X
n
k

)
−

Tr
{
An
kC

gn
k
}

X
n
k︸ ︷︷ ︸

Cnk

+
Tr
{
An
kC

gn
k

}
X
n
k

, (21)

leads to a global concave lower bound for bnk (Ck)

b̃nk
(
Ck |Ck

)
= log

(
Xnk +Tr

{
An
kC

gn
k

})
−

Tr
{
An
kC

gn
k

}
X
n
k

−Cn
k .

(22)

Then, in iteration l, the successive lower bound maximiza-
tion updates the transmit covariance matrices, by solving
the following non-smooth convex problem given the iterate{
C(l−1)
k

∣∣∀k} from the previous iteration:

{
C(l)
k

∣∣∀k} = argmax
{Cgk�0}

∑
g

αgmin
n∈Gg

{∑
k

b̃nk
(
Ck |C

(l−1)
k

)}
s.t. (19b) and (19c). (23a)

Problem (23) may be again optimally solved using the
same approach as in Section III-A for the single-group case.
First the smooth version of (23) is formulated by introducing
the auxiliary variables {tg} for each group, i.e.,

maximize
{tg},{C

g
k�0}

∑
g

αgtg

s.t.
∑
k

b̃nk
(
Ck |C

(l−1)
k

)
≥ tg, ∀g, n ∈ Gg

(19b) and (19c). (24)

Since strong duality holds in (24), it can be shown to be equiv-
alent to the following constrained Lagrange dual problem:

minimize
{θg�0},λ�0

∑
k

gk ({θg},λ)+ λTPATP

s.t.
|Gg|∑
m=1

θ(g,m) = αg, ∀g. (25)

where θg , [θ(g,1), . . . , θ(g,|Gg|)]
T are the Lagrange mul-

tipliers of the |Gg| users in group g. Moreover, θn denotes
the Lagrange multiplier associated with user n of group gn.
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Algorithm 2 Multi-Group Multicasting

Initialize θg = αg1/|Gg|,∀g and λ � 0
Set l = 0 and initialize {C(l)

k } with feasible values
repeat

Set l = l + 1
repeat

Update θg = θg − δθgdθg ,∀g
Euclidean project all θg onto the contraint set
(App. A)
repeat

Update λ = [λ− δλdλ]+

for k = 1 · · ·K do
Update C(l)

k by solving gk ({θg},λ) in
(28)

end

until λn
∣∣∣∑k

∑
g

[
Cg,(l)
k

]
nn
− PATP

∣∣∣ < ε, ∀n
Update
R∗n =

∑
k b̃

n
k

(
C(l)
k |C

(l−1)
k

)
, ∀g, n ∈ Gg

until θn
∣∣∣minm∈Ggn

{
R∗m
}
− R∗n

∣∣∣ < ε, ∀n

until the objective value (19a) converges

The corresponding subgradient direction and basic update of
θg for group g in iteration i are given by

d(i)θg
= R(i)

g = [R(i)(g,1), . . . ,R
(i)
(g,|Gg|)]

T (26)

θ (i+1)g = θ (i)g − δ
i
θg
d(i)θg

(27)

with R(i)(g,m) , R(i)n =
∑

k b̃
n
k

(
C(i)
k |C

(l−1)
k

)
where C(i)

k are the
optimized transmit covariance matrices, obtained by solving
K independent per-tone smooth convex subproblems:

gk ({θ (i)g },λ
(i))

= maximize
{Cgk�0}

∑
g

∑
n∈Gn

θ (i)n b̃
n
k
(
Ck |C

(l−1)
k

)
−Tr

{
diag(λ(i))Cg

k

}
s.t. [Ck ]nn ≤ P

mask
k , ∀n. (28)

The complete algorithm for multi-group multicasting is
summarized in Alg. 2. The following convergence result for
Alg. 2 is stated below:
Theorem 1: The sequence of iterates {C(l)

} with C(l) ,
{C(l)

k |∀k} has a monotonically non-decreasing objective value
in (19a), and moreover, the iterates {C(l)

} are guaranteed to
converge to the set of stationary points of (19).

Proof: Alg. 2 is a special case of the non-smooth succes-
sive upper bound minimization algorithm discussed in [34].
For completeness, a full proof is provided in Appendix B. �

With respect to computational complexity, updating the
transmit covariance matrices in each iteration by solving
problem (28) for all tones is the most expensive step of Alg. 2.
It corresponds to a non-linear SDP with G matrices of size
N × N for every tone k , which may be solved by interior

point methods of standard solvers such as CVX [30]. Worst-
case, interior point methods require O(

√
N 2G log(1/ε)) iter-

ations to solve (28) for each tone up to accuracy ε, with
for each iteration an approximate computational complexity
of O((N 2G)3) [28]. The total complexity of Alg. 2 is hence
O(I1 I2 K

√
N 2GN 6G3 log(1/ε)), with I1 the number of SCA

outer iterations, and I2 the number of Lagrange multiplier
update iterations.
Remark 1: Alg. 2 may be seen as the multicasting

generalization of the primal domain DSB algorithm3 pre-
sented in [35], dedicated to weighted-sum-rate maximiza-
tion for standard downstream unicasting [corresponding
to a so-called broadcast channel (BC)]. That is, in case
of N single-user groups, the optimal Lagrange multiplier
vector θ∗ in (25) has a closed-form solution, given by
θ∗ = [α1, . . . , αN ]T , such that the K independent sub-
problems (28) correspond to a weighted-sum-rate maximiza-
tion in a downstream unicasting scenario. Remarkably, for
the unicasting case, these subproblems (28) admit optimal
rank-one solutions [35], which is not true in general for the
multicasting case.

IV. RANK-ONE PRECODING-BASED MULTICASTING
The bit-rates promised by full-rank precoding-based
multicasting, as studied in Section III, provide a theoret-
ical achievability, but to the best our knowledge, there is
no physical-layer multicasting scheme successfully imple-
mented and demonstrated that is able to practically achieve
these bit-rates for any number of users N and tones K .
In contrast, a widely adopted practical multicasting scheme
is based on rank-one precoding (i.e. using a single precoder
vector and a single stream for each multicast group on every
tone), which is efficiently implementable, but achieves only
sub-optimal bit-rates in general.

In the rank-one precoding case, the transmit vector on
tone k is

xk = Pkuk (29)

where Pk , [p1k , . . . ,p
G
k ] is the N × G (complex) precoder

matrix, with 1 ≤ G ≤ N multicast groups. uk , [u1k , . . . , u
G
k ]

is the data symbol vector, where ugk denotes the data symbol
of group g on tone k . The data vector is assumed to be inde-
pendently and identically distributed (i.i.d.) with normalized
powers, i.e., E{uku

H
k } = IG. The achievable bit-rate of user

n on tone k is

bnk (Pk) , log
(
1+

|hn,Hk pgnk |
2

1+
∑

j 6=gn |h
n,H
k pjk |

2

)
. (30)

Another practical assumption adopted in this section is
independent per-tone channel coding. Users of the same
group hence communicate at the same bit-rate on every

3Although the primal domain DSB algorithm in [35, Alg. 3] applies to a
full-duplex scenario, for the downstream scenario a specific instance of the
algorithm is obtained by setting all user weights in the upstream direction
equal to zero.

VOLUME 7, 2019 110665



W. Lanneer et al.: Physical-Layer Multicasting Design for Downstream G.fast DSL Transmission

tone separately, according to the minimum SINR on every
tone. Note that this ensures compatibility with practical DSL
systems in which QAM symbols are transmitted instead of
Gaussian signals, which may be modeled by inserting a SNR
gap approximation in (30).4 In addition, the per-line ATP
constraints are dropped, since these are always observed to be
inactive in our simulations (Section V). As a result, the corre-
sponding WSGR maximization problem fully decouples into
independent per-tone subproblems, which reduces both the
implementation and the optimization complexity. However,
it is stressed that both per-line ATP and joint channel coding
across tones may be included using the same Lagrange dual
decomposition approach as in Section III-B.

In the remainder of this section, an iterative trust-region
method for WSGR maximization is proposed, based on SCA
instead of computationally complex SDR. Then, to further
reduce the computational complexity, ZF rank-one precoding
is considered.

A. GENERAL RANK-ONE MULTICASTING
The WSGR maximization problem subject to per-line power
constraints is formulated independently for every tone k as
follows:

maximize
Pk

∑
g

αgc
g
k (31a)

s.t. cgk = min
n∈Gg

{
bnk (Pk)

}
, ∀g, (31b)[

PkPHk
]
nn
≤ Pmask

k , ∀n, (31c)

where αg is the weight of group g, and c
g
k is the bit-rate for

group g on tone k .
To solve (31), it is first re-formulated into a smooth prob-

lem by introducing a set of auxiliary (positive real) vari-
ables {tgk }:

maximize
tgk ,Pk

∑
g

αgt
g
k (32a)

s.t. bnk (Pk) ≥ t
g
k , ∀k, g, n ∈ Gg (32b)[

PkPHk
]
nn
≤ Pmask

k , ∀n, (32c)

Solving problem (32) is made difficult by the non-convex
constraint (32b) that needs to be tackled. First, the non-convex
term bnk (Pk ) in (30) is re-written as

bnk (Pk) = log
(
Xnk + S

n
k
)
− log

(
Xnk
)

(33)

with

Snk = pgn,Hk An
kp

gn
k (34a)

Xnk = 1+
∑
j 6=gn

pj,Hk An
kp

j
k (34b)

4Although in DSL the coded bits of a codeword are typically mapped into
QAM symbols that are transmitted over different tones (i.e. channel coding
across tones), the error rate performance is very close to and thus accurately
approximated by the per-tone channel coding case [36].

and An
k = hnkh

n,H
k . Unfortunately, since both log-terms

in (33) are non-convex due to the quadratic terms in (34a),
there is no longer a difference of concave functions structure,
so that the DC programming approach of Section III-B cannot
be used here. To deal with this issue, this section proposes
instead the concave approximation of bnk (Pk ) by b̃

n
k (Pk |Pk )

around a given point Pk as shown in (35) on the bottom of the
next page. This approximation is based on the first-order Tay-
lor expansion of the first log-term in (33) in the variables {pjk},
together with the first-order Taylor expansion of the second
log-term in the (convex) quadratic terms {pj,Hk An

kp
j
k}. Notice

that for the differentiation of a real function with respect
to a complex variable, the rules of Wirtinger are used (see
e.g. [37]). In addition, note that a first-order approximation
of the second log-term in the variables {pjk} is not done here.
It would in fact result in too much linearization and a very
inaccurate approximation of (33).

Since approximation (35) is neither a lower bound nor an
upper bound of bnk (Pk ), a trust region approach is adopted
to control the approximation accuracy. More specifically,
an iterative method (listed in Alg. 3) is proposed for solv-
ing (31) that generates a sequence of iterates {Pk (l)}, by rely-
ing on (35) that models the non-convex term in (32b) in
a sufficiently small neighborhood of Pk (l), also known as
the trust region [38]. Given this trust region-based model,
the precoder matrices are updated by solving the following
small-scale convex problem:

Pk (l+1) = argmax
{tgk },Pk

∑
g

αgt
g
k (36a)

s.t. b̃nk
(
Pk |Pk (l)

)
≥ tgk , ∀g, n ∈ Gg (36b)∥∥pgk − pgk (l)

∥∥2
2 ≤ 1

l
k , ∀g (36c)[

PkPHk
]
nn
≤ Pmask

k , ∀n (36d)

where (36c) is the trust region constraint with 1l
k ≥ 0

denoting the trust region radius at iteration l. Instrumental
here is the choice of the trust region radius, which should
result in a sufficient increase of the objective value in (31a)
compared to the objective value predicted by the model in
(36a). That is, 1l

k should be chosen for all tones k such that∑
g αg

(
cgk (l+1)− c

g
k (l)

)∑
g αg

(
tgk (l+1)− t

g
k (l)

) ≥ ρ, (37)

with 0 < ρ < 1 a pre-defined constant [38]. The numerator
and denominator in (37) are called the actual and pre-
dicted increase, respectively. Note that the predicted increase
is always non-negative, such that this trust region con-
dition yields a monotonically non-decreasing objective
value. See [38], [39] for elaborate trust region radius update
schemes. In Alg. 3 the radius is iteratively decreased with a
factor β1 ≤ 1 until (37) is satisfied. Moreover, the following
convergence result for Alg. 3 is provided in the theorem
below.
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Algorithm 3 Rank-1 Precoding-based Multicasting

Initialize λ � 0, {ρ, β1} ∈ (0, 1), β2 > 1, 1k ,1
max
k ,∀k

Initialize P(l)
k ,∀k with feasible values

Set l = 0
repeat

Set l = l + 1
for k = 1 · · ·K do

repeat
Update Pk (l) by solving (36) at tone k
Update cgk (l) = minn∈GG

{
bnk
(
Pk (l)

)}
,∀g

Update 1l
k = β11

l
k

until condition (37) is satisfied
Set 1l+1

k = min(β21l
k ,1

max
k )

end

until
∣∣∣∑k

∑
g αg

(
cgk (l)− c

g
k (l−1)

)∣∣∣ < ε

Theorem 2: The sequence {P(l)
k } generated by Alg. 3 has a

monotonically non-decreasing objective value and converges
to a stationary point of problem (31).

Proof: The monotonically non-decreasing objective
value convergence is easily established by the trust region
condition in (37) that is satisfied every iteration. To show
convergence to a stationary point, a similar proof outline
as in [38, Chapter 12] is followed. For completeness, a full
proof is provided in Appendix C. �
The computational complexity of Alg. 3 is dominated

by the computation of the precoder matrices of size N ×
G for every iteration in optimization problem (36) for all
tones. For each tone, problem (36) corresponds to quadrat-
ically constrained linear program (QCLP), which can be
equivalently reformulated as a SOCP, and thus may be effi-
ciently solved using the interior-point method in standard
solvers such as CVX [30]. In terms of worst-case complexity,
this requires O(

√
NG log(1/ε)) iterations for an ε-accurate

solution, with an approximate per-iteration complexity of
O((NG)3) [28]. Summing up, the total complexity of Alg. 3
isO(I1 K (NG)3.5 log(1/ε)), with I1 the number of SCA outer
iterations (including the unsuccessful trials when (37) is not
satisfied). It is remarked that the number of unsuccessful trials
can be limited by efficiently keeping track of the trust region
radii. Typically, 10-20 iterations are sufficient for Alg. 3 to
converge as shown in Section V.

Moreover, note that Alg. 3 has a significantly lower
per-iteration computational complexity than Alg. 2. This
results mainly from the use of G precoder vectors of length
N (i.e. rank-one precoding), instead of using G covariance
matrices of size N ×N (i.e. full-rank precoding). This yields
a per-iteration computational complexity of O((NG)3) for

Alg. 3 versus O((N 2G)3) for Alg. 2, since the computa-
tional complexity of interior-point methods scales (worst-
case) cubically with the number of optimization variables.

B. RANK-ONE ZF-PRECODING
Inspired by [22] to further reduce the computational com-
plexity, this section considers rank-one ZF-precoding for
multi-group multicasting, based on the block-diagonalizing
ZF precoder for downstream unicasting [23], [24]. In order
to cancel all inter-group interference, the premise is that the
precoder vector pgk of group g on tone k should lie in the
null-space of

H̃−gk ,
[
H1
k , . . . ,H

g−1
k ,Hg+1

k , . . . ,HG
k

]H
(38)

with Hg
k a channel matrix of size N × |Gg| containing the

|Gg| channel vectors associated with group g on tone k .
An efficient way to obtain these unitary null-space bases, is to
compute the QR decomposition of the Hermitian conjugated
H̃−gk (

H̃−gk
)H QRD
=

[
Q̃g
k ,Q

g
k

] [Rg
k
0

]
(39)

where Qg
k is an N × |Gg| unitary null-space basis of H̃−gk ,

i.e., Hj,H
k Qg = 0 for j 6= g. As a result, the ZF precoding

matrix Pk may now be expressed as

Pk =
[
Q1
kv

1
k , . . . ,Q

G
k v

G
k

]
, ∀k (40)

where vgk is a complex vector of length |Gg|.
Hence, defining ĥnk , hn,Hk Qgn

k , the design problem comes
down to WSGR maximization in the inner precoder vectors
{vgk} under per-line power constraints:

maximize
{vgk }

∑
g

αg min
n∈Gg

{
log

(
1+ |ĥnkv

g
k |
2
)}

(41a)

s.t.
[
PkPHk

]
nn
≤ Pmask

k , ∀k, n. (41b)

Notwithstanding there is no inter-group interference, problem
(41) is still non-convex due to the quadratic term inside the
log-function. Problem (41) can be tackled with a similar
iterative trust-region method as in Section IV-A, by using in
each iteration a first-order Taylor expansion of the log-term
around the previous operating point {vgk}, i.e.,

log
(
1+ |ĥnkv

gn
k |

2
)
≈ log

(
1+ |ĥnkv

g
k |
2
)

+
2

1+ |ĥnkv
gn
k |

2

(
Re
{
vgn,Hk ĥnk ĥ

n,H
k

(
vgnk − vgnk

)})
, ∀n.

(42)

b̃nk (Pk |Pk )= log
(
X
n
k + S

n
k

)
+

2

X
n
k+S

n
k

∑
j

Re
{
pj,Hk An

k

(
pjk−p

j
k

)}−log (Xnk)− 1

X
n
k

∑
j 6=gn

(
pj,Hk An

kp
j
k − pj,Hk An

kp
j
k

)
(35)
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Further details are omitted for brevity. Assuming the
same number of users in each group, i.e. |G| =

|Gg|,∀g, with N ≥ |G|, the total complexity reduces to
O(I1 K (|G|G)3.5 log(1/ε)), with I1 the number of SCA outer
iterations. Due to the ZF constraints, the number of SCA
iterations I1 is typically smaller than with general rank-one
precoding. Moreover, heuristic methods to compute the inner
precoder vectors {vk} are possible. For instance, the heuristic
method in [22] for the (single-tone) max-min-fairness prob-
lemwith a sum-power constraint can be used for initialization
(with simply scaling of the precoder vectors to satisfy the
per-line power constraints).
Remark 2: This rank-one ZF-precoding-based multicast-

ing scheme is a generalization of the BD-based ZF precoder
for downstream unicasting in [40]. In case of N single-user
groups, (41) turns into a smooth yet still non-convex problem.
However, in this case it may be solved by convex SDR, which
is tight since [40] provides a Lagrange dual decomposition
approach with an optimal rank-one solution. Such a SDR
approach is not tight in general for multicasting.

V. G.FAST CABLE BINDER SIMULATION
In this section, a cable binder is simulated consisting
of 10 lines with a length of 80 m, for the downstream
G.fast 212 MHz profile and using various multicasting
schemes. The channel matrices have been obtained by mea-
surements of a single cable binder. Following the G.fast
recommendation [2], the per-line ATP constraints are 8 dBm
while the per-tone PSD spectral masks are obtained from [41]
ranging from−65 dBm/Hz to−79 dBm/Hz. The tone spacing
1f is 51.75 kHz and the noise PSD is assumed to be −140
dBm/Hz. The symbol rate is 48 kHz. In these simulations,
the obtained bit loadings are capped at 14 bits and the ATP
constraints are always observed to be inactive. The following
schemes below are considered.
• ZF-Precoding-Based Unicasting (ZF-UC): is the base-
line unicasting scheme. It uses the ZF precoder matrix,
whereas the power allocation is optimized for WSGR
maximization, using a similar Langrange dual decom-
position method as in Section III.

• Rank-One ZF-Precoding-Based Multicasting (Rank-1
ZF-MC): as presented in Section IV-B. The initializa-
tion is based on a scaling of the inner precoder vectors
obtained by the heuristic successive precoding method
in [22, Alg. 3] to satisfy the per-line power constraints.

• Rank-One Precoding-BasedMulticasting (Rank-1MC):
as presented in Section IV-A. The same initialization
procedure as in Rank-1 ZF-MC is used.

• Full-Rank MC: as presented in Section III-B. To speed
up convergence, it is initialized with the solution of
Rank-1 MC.

A. SINGLE-GROUP MULTICASTING
In this subsection, the 10-line G.fast cable binder is consid-
ered to be a single-group. The numerical results in Table 1
show that all multicasting schemes achieve a significant gain

TABLE 1. Single-group multicasting scenario.

FIGURE 2. The minimum bit-rate across the frequency for the
single-group multicasting G.fast scenario. For ZF-UC and Full-Rank MC,
this corresponds to the mean user bit-rate.

over the baseline unicasting scheme. The multicasting capac-
ity is provided by the Full-Rank MC with channel coding
across tones (Section III-A). However, to the best of our
knowledge, this capacity cannot be practically achieved by
any physical-layer multicasting scheme. Moreover, the cor-
responding optimization method (Alg. 1) is very computa-
tionally complex due to the full-rank transmit covariance
matrices as optimization variables in combination with the
iterative Lagrange multiplier search. By contrast, rank-one
precoding-based multicasting provides practically achievable
date-rates and significantly lowers the computational com-
plexity (note that ZF-Rank-1 and Rank-1 MC are the same
for single-group multicasting). Moreover, the results show
that the performance gap between rank-one precoding and the
multicasting capacity is rather limited. In addition, the SDR
of problem (31) for the single-group case is included, lead-
ing to a convex SDP which yields a global upper bound
of (31) on every tone separately [10]. This is equivalent to
problem (19) with the summation over the tones shifted
outside the min-function, i.e., full-rank precoding-based
multicasting with independent per-tone channel coding
(Full-Rank MC-PTCC). The small gap between Full-Rank
MC-PTCC and Rank-1 MC indicates that Alg. 3 efficiently
solves the non-convex problem (31) for the single-group
case. Finally, standard unicasting (i.e. ZF-UC) is near-optimal
for low-frequency channels, which are diagonally dominant
(see Fig. 2). By consequence, the relative gain of multicasting
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TABLE 2. Multi-group multicasting – Scenario A.

TABLE 3. Multi-group multicasting – Scenario B.

is typically larger in case of a higher starting frequency (e.g.
to enforce spectral compatibility with VDSL2 35MHz in the
same cable binder)

B. MULTI-GROUP MULTICASTING
A first considered multi-group scenario (referred to as
scenario A) is obtained by dividing the 10-line G.fast cable
binder into G = 4 multicast groups with two or three
users per group. A second multi-group scenario (referred
to as scenario B) consists of a single six-user multicast
group, together with four unicast users (i.e. four single-user
groups). In contrast to scenario A, scenario B exhibits strong
non-convexity with possibly very sub-optimal solutions, due
to the unbalanced group sizes. For instance, in case all five
groups have the same unity weight {αg = 1}, the multicasting
schemes tend to shut down the large multicasting group in
favor of the single-user groups. To counter this, the weight
of the large multicasting group is increased to α1 = 3,
which is fair as this group represents more users than the
single-user groups. The numerical results of scenario A are
summarized in Table 2 for the case with unit group weights
(αg = 1,∀g). The numerical results of scenario B are
summarized in Table 3.

The numerical results show that also for the multi-group
case the G.fast channels admit a significant multicasting gain,
although naturally smaller than in the single-group case.
Nonetheless, the average bit-rate achieved by each group
with Rank-1 MC is increased by more than 200 Mbps in
both scenarios over the baseline unicasting scheme. Further,
the performance gap between Rank-1 MC and Full-rank MC
(the latter providing an information theoretic upper bound)
is rather small. Besides being practically achievable,
Rank-1 MC also has a much lower computational complexity
than Full-rank MC, since its corresponding problem (31)

FIGURE 3. The average group bit-rate across the frequency for the
multi-group multicasting G.fast scenario A.

FIGURE 4. The average group bit-rate across the frequency for the
multi-group multicasting G.fast scenario B.

is fully decoupled across the tones and only requires the
computation of rank-one precoder matrices (instead of
full-rank covariance matrices, see Section IV-A). The gain
of Rank-1 MC over Rank-1 ZF-MC is primarily achieved in
the higher frequency part of the spectrum (see Fig. 3 and 4),
where allowing some residual inter-group interference in
exchange for useful signal power gain yields a net SINR gain.

The convergence of the proposed iterative trust-region
methods (i.e. Rank-1 and ZF-Rank-1 MC) is shown in Fig. 5
for scenario A and B. In each iteration, if condition (37) is not
satisfied, the objective from the previous successful iteration
is used. Fig. 5 shows a fast convergence, with a relative
objective increase smaller than 10−3 after ten iterations in
both scenarios. For comparison, the SCA-based algorithm
proposed in [21] for minimum group rate maximization is
adopted here forWSGRmaximization and included in Fig. 5.
This method involves a non-linear constraint in each itera-
tion, which for the WSGR case however may be converted
equivalently into a geometric mean objective (which in turn
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FIGURE 5. Convergence of the proposed iterative trust-region methods
for the multi-group multicasting G.fast scenario A and B.

may be transformed into a system of SOC constraints [42]).
Both SCA methods exhibit a similar convergence speed and
achieve almost the same WSGR (only on some high fre-
quency tones a different local optimum is obtained), which
demonstrates the viability and stability of SCA for rank-one
precoding-based multicasting in G.fast DSL networks.

VI. CONCLUSION
This paper studied physical-layer multicasting design for
downstream G.fast DSL transmission, which corresponds to
a multi-user multi-tone (i.e., multi-carrier) scenario. As an
information-theoretic upper bound, the transmit covariance
matrices are assumed to be full-rank in combination with
joint channel coding across the tones. For a single group,
this corresponds to the multicasting capacity. Maximizing
the minimum total bit-rate leads to a non-linear convex
SDP, which is solved with Lagrange dual decomposition,
in order to decouple the problem across tones. This approach
is extended for maximizing the WSGR in a multi-group mul-
ticasting scenario, by relying on DC programming. In addi-
tion, rank-one single-stream precoding with independent
per-tone channel coding is considered as a practical multi-
casting scheme. To compute the precoding matrices in this
scheme, instead of relying on computationally complex SDR,
a SCA-based trust-region algorithm is developed. Finally,
simulations of a G.fast cable binder are provided to show
that the practical multicasting schemes operate close to the
information-theoretic multicasting upper bound.

APPENDIX A
EUCLIDEAN PROJECTION OF θ ONTO THE
CONSTRAINT SET
In each iteration i of the dual decomposition algorithm,
the subgradient update vector θ (i+1) = [θ̄1, . . . , θ̄N ] needs
to be jointly Euclidean projected onto two constraint sets:
C1
= {θ |1T θ = 1} and C2

= {θ |θ � 0}. This corresponds to

the following problem:

minimize
{θn}

1
2

∑
n

(
θn − θ̄n

)2
s.t.

∑
n

θn = 1, θn ≥ 0, ∀n, (43)

The (partial) Lagrangian of the above problem is

L(θ , µ) =
1
2

∑
n

(
θn − θ̄n

)2
+ µ

(∑
n

θn − 1

)
. (44)

It is observed that for fixed µ, minimizing the L(θ , µ) sub-
ject to non-negative {θn} admits the following closed-form
solution:

θn =
[
θ̄n − µ

]+
. (45)

Hence, the optimal µ can be derived by enforcing∑
n

[
θ̄n − µ

]+
= 1, (46)

which requires O(N log(N )) operations. More specifically,
first sorting the {θ̄n} values, which takes O(N log(N )) oper-
ations. Suppose that θ̄1 ≤ θ̄2 ≤ . . . ,≤ θ̄N . Then test-
ing whether the desired µ belongs to the interval [θ̄n, θ̄n+1]
reduces the problem to a univariate linear equation.

APPENDIX B
PROOF OF THEOREM 1
Alg. 2 is a special case of the non-smooth successive upper
boundminimization (SUM) algorithm presented in [34], with
results that are also valid for the case with complex variables.
Let f (C(l)) and m(C|C(l−1)) denote the objective value in
(19a) and (23a), respectively, with m(C|C(l−1)) referred to
as the model. Observe then that f (C) and m(C|C(l−1)) are
composite functions, with

∑
g αgmin{·} a concave function

and the {bnk (Ck)} and {b̃nk
(
Ck |C

(l−1)
k

)
} continuously differ-

entiable functions. Additionally, the power constraints (19b)
and (19c) form a convex and compact feasible region C
for the transmit covariance matrices C. Then the following
conditions hold:
1) The model m(C|C) is continuous in (C,C) ∈ C × C.
2) The model is a tight and global lower bound for the

objective function, i.e., for all C ∈ C:

f (C) = m(C|C)

f (C) ≥ m(C|C) for any set C = {Ck � 0}.

3) The directional derivative of the model and the objec-
tive function are equal in every point C = C ∈ C.

Hence, the monotonically non-decreasing convergence of
f (C(l)) is established by observing that

f (C(l)) ≥ m(C(l)
|C(l−1)) ≥ m(C(l−1)

|C(l−1)) = f (C(l−1))

for l = 1, 2, . . . (47)

due to condition 2 and the optimality of solving (23). More-
over, since the generated sequence {C(l)

} is always in the
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bounded set C, every subsequence (of which there exists at
least one) converges to a certain limit point C∗. In combina-
tion with (47) this implies that

f (C∗) = m(C∗|C∗) ≥ m(C|C∗) for any C ∈ C, (48)

and hence that C∗ is a stationary point of (24), and thus
equivalently also of (19) due to condition 3 [34].

APPENDIX C
PROOF OF THEOREM 2
Define the objective function of problem (31) at tone k as
fk (Pk ) ,

∑
g αgminn∈Gg{b

n
k (Pk )}. As each tone k is handled

independently, the tone index in this appendix is dropped for
conciseness. The monotonically non-decreasing convergence
of f (P(l)) is established by the trust region condition in (37)
that is satisfied in each iteration. To show convergence to a
stationary point, a similar proof outline as in [38, Chapter 12]
is followed. Observe that f (P) is a composite function where∑

g αgmin{·} is a concave function and the {bnk (Pk)} are
continuously differentiable; and that the power constraints
(31c) form a convex and compact feasible region P for the
precoding matrix P, such that f (P) is bounded from above.
Then the following conditions hold [38], [43]:

1) The objective function f (P) is locally Lipschitz contin-
uous and regular in P ∈ P .

2) The model m(P|P) is locally Lipschitz continuous and
regular in P ∈ P for all P ∈ P , and continuous in
(P,P).

3) The objective function and model have the same value
when P = P, i.e., f (P) = m(P|P) for all P ∈ P .

4) The directional derivative of the model and the objec-
tive function are equal in every point P = P ∈ P .

Further, based on [43], consider the following specific
first-order criticality measure for problem (31) in P ∈ P ,
without loss of generality:

πµ
(
P
)
, maximize

P∈P
m(P|P)− f (P)

s.t. ‖pgk − pgk‖
2
2 ≤ µ, ∀g. (49)

Note that πµ
(
P
)
is always positive for any µ > 0 and

non-decreasing in µ for all µ > 0. Moreover, πµ
(
P
)
= 0

if and only if P is a stationary point of (31). This means that
there exists no feasible direction in which the model m(P|P)
(which is a first-order approximation of f (P)) increases. The
condition that Alg. 3 converges to the set of stationary points
hence corresponds to

lim
l→∞

π1
(
P(l))
= 0. (50)

Condition (50) can be proven to hold by contradiction.
As the generated sequence {P(l)

} by Alg. 3 is in the bounded
set P , every subsequence must converge to a certain limit
point P∗. Suppose now that such a limit point is not a station-
ary point, i.e. π1

(
P∗
)
> 0. Then, it can be shown that there

exist strictly positive trust region radii1l ≥ 1min > 0 which
satisfy (37) for all iterations l of that subsequence, by using

conditions 1 to 4 [38, Th. 11.2.3/11.2.4]. This gives for every
iteration l

f (P(l+1))−f (P(l)) ≥ ρ
(
m(P(l+1)

|P(l))− f (P(l))
)

(51)

= ρπ1l

(
P(l)), (52)

where in case 1l ≥ 1, we have that

f (P(l+1))− f (P(l)) ≥ ρπ1l

(
P(l))
≥ ρπ1

(
P(l)) > 0. (53)

Otherwise, in case 1l < 1, we have that

f (P(l+1))− f (P(l)) ≥ ρπ1l

(
P(l))
≥ ρ1lπ1

(
P(l))

≥ ρ1minπ1
(
P(l)) > 0, (54)

where (54) is valid due to πx
(
·
)
/x being non-increasing in

x > 0 [43, Lemma 2.1(iv)]. This means that the objective
value increases in every iteration as long as a stationary point
is not approached, i.e., f (P(l+1)) > f (P(l)),∀l, such that the
subsequence f (P(l)) grows to infinity when l goes to infinity.
This contradicts with f (P) being bounded from above due to
the power constraints. Hence, P∗ must be a stationary point
with π1

(
P∗
)
= 0.
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