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ABSTRACT Effective and adaptable household energy management system needs to be established to
promote and implement demand response projects in smart grids. The current household energy demand
management strategy cannot provide users with a choice to ensure user comfort, its time sampling accuracy
is not high enough, and the operation using the rated power results in a large deviation from the actual
cost. In order to solve these problems, this paper proposes an optimization control strategy to achieve the
minimum electricity cost based on the user response, equipment operating power, and dynamic pricing. The
genetic algorithm is used for calculating the optimal operating parameters of each equipment by using the
operating power. The correctness and the high accuracy of the algorithm are verified by comparing with the
loop search optimization algorithm. The results show that the daily electricity cost is reduced by 29.0%, and
the peak-to-average ratio is reduced by 36.2% after adopting the proposed strategy.

INDEX TERMS Demand response, household energy demand management strategy, genetic algorithm,
operating power, user comfort.

NOMENCLATURE
A the equipment used in the optimization

strategy
Fcost the daily electricity cost
N the number of household electrical equip-

ment
Mi the number of operating cycles of the i-th

equipment
Pji(t) the power change with time of the i-th

equipment in the j-th action cycle, the unit
is kW

t the time, the unit is minute
λ(t) the electricity price at time t , the unit is

$/kW · h
Tset,min the allowable indoor minimum tempera-

ture set by the user
Troom the actual indoor temperature
Tset,max the allowable indoor maximum tempera-

ture set by the user
tbj the earliest opening time tolerable during

the j-th action cycle time
tej the latest opening time tolerable in the j-th

action cycle time

The associate editor coordinating the review of this manuscript and
approving it for publication was Khmaies Ouahada.

tdj the working time in the j-th action cycle
tpj the preferential opening time tolerable in

the j-th action cycle
tfinal,j the optimal opening time of the equipment

in the j-th action cycle
Qout the energy needed to exchange heat Qin

from the household
Win the electric energy consumed by air condi-

tioner
Pt the power at the time t
pi,t the power, where the first subscript indi-

cates the name of the household equip-
ment, and the second subscript indicates
the time period, for example, pi,3 is the
power of the i-th equipment at the 3rd
minute

I. INTRODUCTION
Intelligent electricity terminal consumption has become one
of the development trends of smart grids. The key to realizing
intelligent electricity consumption is to establish a conve-
nient and reliable interaction between power suppliers and
consumers. The demand response (DR) is a prerequisite for
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achieving this goal. According to the definition given by the
International Energy Agency in 2003, all factors responsible
for variation in the level of power demand over a period of
time, that is, the total amount of electricity consumption,
are demand response behaviors [1]. The household energy
management system (HEMS) is an extension of the smart
grid. By adopting HEMS, users can better participate in
implementing demand response projects and schedule the
usage of household appliances [2].

At present, the household energy demand management
strategy (HEDMS) has been studied in some literatures.
The algorithms applied in HEDMS include mixed integer
optimization algorithms, particle swarm optimization (PSO),
game theory, genetic algorithms (GA), etc. Reference [3]
used the mixed integer nonlinear optimization algorithm to
plan the household electricity consumption under the condi-
tions of time-of-use electricity price and incentive policy, and
proved users can save more than 25% of electricity cost (EC),
by ignoring the fact that equipment power is changing with
time. Reference [4] introduced the PSO into energy-efficient
buildings to minimize the conflict between the power con-
sumption and the user comfort, but only considered the illu-
mination and temperature control equipment in the building.
In [5], the binary backtracking search algorithm was applied
to optimize the timetable of household electrical equipment.
The algorithm showed the higher energy-efficiency compared
with the PSO algorithm but ignored the user comfort. Refer-
ence [6] studied the game theory between user behaviors and
the electricity price policy, and adopted a distributed algo-
rithm to reduce the peak-to-average ratio (PAR) and the EC
in the system, without considering the user comfort. In [7],
a heuristic scheduling optimization algorithm based on the
genetic harmony search was used to evaluate the single-user
and the multi-user separately with the main indicator EC,
the sampling time was one hour and did not give user the
option to actively choose the equipment. In [8], the equipment
information and the user personal habits were uploaded to the
knowledge base in the form of questionnaires. The knowledge
base classified and analyzed the behavior of each user, and
then recommended more reasonable behaviors to users, but
had no quantitative calculation. Reference [9] evaluated the
application effects of the GA and the artificial fish swarm
algorithm in the HEDMS. Under the premise of real-time
price and without considering the user comfort, the two algo-
rithms reduced the total EC by 21% and 30% respectively, but
ignored the fact that equipment power is changing with time.
Reference [10] used an equipment scheduling strategy with a
price prediction model, combining real time price (RTP) with
slope block rates, and using the actual hourly price adopted
by the Illinois Power Company with sampling time of one
hour. The results showed that the EC and PAR can be reduced.
Reference [11] used data-driven energy management based
on Bayesian optimal algorithm which reformulated the eco-
nomic dispatch problemwithout considering the user comfort
and the sampling time was 30 minutes. Reference [12] used
stochastic optimization and robust optimization, which were

solved by mixed-integer linear programming. The results
showed that the EC were reduced by 26.63% and 24.33%,
respectively. However, the sampling time was 1 hour and the
user could not actively choose the equipment. In summary,
the above research results show that HEDMS can effectively
reduce the daily EC and PAR, and has an important applica-
tion value in smart grids.

Although many research achievements in HEDMS have
been obtained, the following problems still need to be
addressed.

(1) All equipment is participating in the program by default
in most strategies, and the user is unable to choose the
equipment independently, which will cause the equipment
that the user does not want to participate in the plan to be
scheduled. This is inconvenient for the user and affects the
user’s autonomy. Hence, it needs to propose a strategy to
properly address the user inconvenience to encourage them
to participate in the DR [13].

(2) Most of the strategies use the rated power of the
equipment when planning the electrical equipment. However,
the power of some equipment changes in real time in actual
operations, therefore the obtained result is not optimal, which
will increase the daily EC [14].

(3) Most of the strategies adopt a sampling time of 15 min-
utes, 30 minutes, or one hour, which will not reflect the real-
time operation of the equipment well, and the control strategy
calculation results deviate from the optimal.

In view of the above problems, this paper presents an
HEDMS by using a genetic algorithm (GA) based on the
operating power whose the sampling time is 1 minute. Users
can participate in the demand response plan on their own
and can reduce the EC. Based on the user response and
the operating power, the minimum EC is achieved and the
calculation time is greatly reduced. The structure of the article
is arranged as follows: Section II introduces the frame of the
HEDMS, establishes the optimization model of the HEDMS
and the model of the household equipment; Section III adopts
the GA to optimize the specific parameters to obtain the open-
ing time of the equipment tfinal,j, and verifies the algorithm
by comparing with the results calculated by a loop search
optimization algorithm; Section IV verifies the strategy by
typical cases.

II. HOUSEHOLD ENERGY DEMAND
MANAGEMENT STRATEGY
The HEDMS aims to ensure the user comfort and minimize
the daily EC, and use a simple task-by-step optimization
search method for each power equipment as reference. The
power curve and the EC of all household equipment before
and after using the optimal control strategy are compared and
analyzed, the effectiveness and feasibility of the algorithm
are verified. The advantages of the strategy given in this
paper are as follows: (1) The working time of household
electrical equipment is set according to the user’s conve-
nience, meanwhile users can also choose the equipment to
participate in the DR. (2) The HEDMS proposed in this paper
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avoids the calculation of equipment that does not participate
in the DR, which improves the calculation speed of the algo-
rithm. (3) The operating power data of the equipment can
be acquired by the model simulation or directly analyzing
the historical operation data. The algorithm contains the data
extraction function over the time span of 1 minute. These
makes the power data closer to the actual instantaneous power
consumed.

The specific process of adopting the HEDMS is as follows.
Step 1: the user sets the operating parameters including

rated power, times, comfort settings, etc. According to the
equipment functions, the daily powers are simulated based
on the established model (if there is no parameter change,
the historical data can be directly set as default). Then the total
daily power can be obtained by superimposing the equipment
powers, and the EC is calculated by combining the electricity
price.
Step 2: the user can select the equipment that is expected to

participate in the HEDMS according to the user preference.
The data unit extracts the previous power data in a time step
of 1 minute. The GA calculates the operating parameters of
the equipment involved in the control, and obtains the power
data of the equipment through model simulation.
Step 3: Calculate the total daily power and EC after using

the control strategy.

A. OPTIMIZATION MODEL OF HOUSEHOLD EQUIPMENT
OPERATING PARAMETERS
The main purpose of the HEDMS in this paper is to reduce
the EC based on user comfort. The objective function of the
optimization model is to minimize the user daily EC. The
constraint is that the finally obtained operating parameters
should be within the time range set by the user. At the same
time, the indoor temperature should meet the user’s settings.
The specificmathematicalmodel can be expressed as follows.

The objective function is

Fcost = min
N∑
i=1

Mi∑
j=1

tfinal,j+tdj∑
tfinal,j

λ (t)× Pji (t) /60 (1)

The constraints are

Tset,min ≤ Troom ≤ Tset,max (2)

tbj ≤ tfinal,j ≤ tej (3)

B. OPERATING POWER MODEL OF HOUSEHOLD
EQUIPMENT
According to the survey results of household appliances and
usage patterns in 12 European countries, the household own-
ership rate of appliances such as air conditioners, refrigera-
tors, washing machines, dishwashers, televisions, DVDs, and
computers is high [15]. In this paper, the models of at least
twelve major categories of appliances have been established,
covering the overall parameter settings of house such as
smart meters, heating equipment, refrigeration equipment,
washing equipment, cooking equipment, lighting equipment,

computer electronics, batteries and other equipment that can
be flexibly converted according to different situations. Refin-
ing the large-scale model and building a specific household
appliance model, such as a washing machine, dishwasher,
dryer and other equipment in the washing equipment; also
induction cooker, microwave oven, electric kettle and other
equipment in the cooking equipment. This model can meet
the needs of most residential users in the daily life.

In the actual operating process of household electrical
equipment, most of the operating power is a variable value,
which is affected by some factors such as operating mode,
surrounding environment and so on. Taking a refrigerator as
an example, when the door opens or closes, the temperature
change will affect the power. Due to the opening of the door,
the refrigerator consumes 0.25W for each time and this value
corresponds to 3.75 W in the daily power [16], [17]. Simi-
larly, the operating power of the washing machine is affected
by factors such as water temperature, operating mode, and
washing machine efficiency. These factors mainly affect the
water heating process which constitutes about 90% of the
total power consumption [17], [18]. Therefore, the operat-
ing power characteristics of household appliances need to
be studied first. Based on the operating power, this paper
establishes the equipment mathematical or physical model
to express its operating power characteristics. Among them,
some typical models are listed.

(1) Overall parameter setting of the house. The physical
model is used to build the system architecture of the house.
The room exchanges heat with the environment, through
exterior walls, roofs and windows [19]. Fig. 1 shows the
house parameter setting interface and the model.

(2) Refrigerator power model. The two-phase fluid cooling
model is used to stabilize the temperature within the set
range [20]. The motor power in the model is output, con-
sidered as the operating power of the refrigerator. The com-
pressor drives the refrigerant through a condenser, an expan-
sion valve, and an evaporator. The controller turns the com-
pressor on and off to maintain the refrigerator compartment
temperature within a range around the set temperature. The
lower the temperature set in the refrigerator, the faster the
temperature rises during the actual operating period, so that
the refrigerator needs to be frequently turned on to maintain
the temperature. Fig. 2 shows the physical model of the
refrigerator.

(3) Air-conditioner model. The relevant cooling parame-
ters generated by the air-conditioner model are employed in
the house model to control the temperature of the house.

Fig. 3 shows the model of the air-conditioner. The energy-
efficiency ratio (EER) of the air-conditioner is an important
parameter to measure its performance. It can be expressed
as [18]:

EER = 3.412
Qin

Win
= 3.412

Qin

Qout − Qin
(4)

(4)Washingmachine model. In the parameter setting of the
washing machine, refer to [18], give the following variables
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FIGURE 1. The house parameter setting interface and the model.

FIGURE 2. The physical model of the Refrigerator.

FIGURE 3. The model of the air-conditioner.

for the user to set and select: operating mode and the water
temperature to simulate the operating power curve better. For
the same reason, add similar parameters in the dishwasher.

Fig. 4 and Fig. 5a are schematic diagrams showing the
setting interface of the washing machine and the power curve
of one washing cycle, respectively. Fig. 5b is a diagram of the

FIGURE 4. The setting interface of washing equipment.

FIGURE 5. The power curve of the operation once.

dishwasher. In Fig. 5a, P1 denotes the power corresponding
to the filling of water. The washing machine then provides
electric heating, increasing its power to P2 for a time period
which depends if it is connected to hot water or cold water.
After that, washing machine enters the washing mode, which
consumes power P3. Finally, the washing machine drains the
water, which consumes power P4. For dishwasher, P1 and P5
denote the power corresponding to the filling and draining of
rinse water; P2 and P3 correspond to heating water and wash-
ing dishes. Unlike a washing machine, the dishwasher needs
to dry the dishes after washing, which consumes power P4.
The time period of power consumption depends on the effi-
ciency of the machine.

(5) Induction cooker model. The state variable of the
cooker is its internal temperature. When the temperature of
the cooker reaches on the highest temperature among differ-
ent levels, the cooker stops working. At this time, the tem-
perature is lowered due to the influence of the ambient
temperature. When the temperature reaches the lowest level,
the cooker restarts heating. This periodic cycle keeps the
internal temperature within the working range and completes
the cooking task [21]. Fig. 5c and Fig. 6 are the schematic
diagram of operating power and parameter setting interface.
The on/off time period of induction cooker can be expressed
as (5) and (6).

ton =
1
C

(
pi,t −

T
R

)
(5)

toff =
1
C
·
T
R

(6)

where C is the specific heat capacity; T is the temperature
corresponding to the different levels; P is the power, can be
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FIGURE 6. The setting interface of induction cooker.

set by the intensity percentage;R is the resistance, determined
by the area of the induction cooker.

At the same time, through the display interface built in this
paper, users can view the power of each equipment. The basic
functions of the household appliances have been realized by
using the built model, and simulated to obtain data based on
the model.

III. EQUIPMENT PARAMETER OPTIMIZATION BASED ON
OPERATING POWER BY GENETIC ALGORITHM
In this section, based on the operating power data, combined
with the user’s habits, an optimization strategy is given to
obtain the operating parameters of the equipment to achieve
the lowest daily EC. The pseudo code of the GA based on
operating power is shown in Table 1.

A. HOUSEHOLD EQUIPMENT OPERATION
PARAMETER INITIALIZATION
The user sets the basic parameters of the equipment according
to the actual situation of the household, such as the number of
equipment, power, operating mode, etc. The user also needs
to input his own electricity habits parameters. The user’s
electricity habits are divided into the following parameters:
Times, priority opening time (Preferential On Time), working
time (Duration), the user’s allowable earliest opening time
(Optional Begin Time) and latest opening time (Optional End
Time).

Since the operating power data of the household electri-
cal equipment is not actually measured, the power data are
obtained throughmodel simulation of each household electri-
cal equipment in this paper. Using Matlab’s GUI and its inter
modulation function with Simulink simulationmodel, a smart
household electricity demand response platform is developed,
which realizes the data transfer between the interface and the
model. The power curve data of the equipment are obtained
by an extraction function with a step size of 1 minute. This
program is also suitable for extracting the model simulation
data in other platforms, so that the algorithm has certain
versatility and portability.

B. THE GA USED TO OPTIMIZE OPERATING PARAMETERS
The GA is a random search algorithm that draws on the
natural selection and genetic mechanism of the biological

TABLE 1. The pseudo code based on operating power.

world [22]. For mixed integer optimization algorithms, when
the problems belong to non-convex programming, mixed
integer nonlinear programming, the aforementioned opti-
mization methods may not find a feasible solution or the
computational expense is too high. Due to the inherited limi-
tation in PSO algorithm, local convergence occurs quite often
and global optimized solution cannot be always obtained.
The GA is a global optimization algorithm with good search
ability, which can quickly search all the solutions in the space,
and it does not need many mathematical requirements for
the optimization problem solved, whether linear or nonlinear,
discrete or continuous objective functions and constraints,
the GA can be processed. Therefore, this paper uses the GA
to optimize the solution.

The equipment in the HEDMS is divided into the follow-
ing two categories: transferable loads and non-transferable
loads. Non-transferable loads are mainly temperature control
devices such as refrigerators, water heaters, and air con-
ditioners. Transferable load means that the working time
of the equipment can be changed within a given range,
such as washing machine, dishwasher, and induction cooker.
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TABLE 2. Some household equipment parameters (Unit: Min).

The HEDMS in this paper is used for mainly the scheduling
of transferable load and processing the operating power data.
Control of overall participating household electrical equip-
ment is represented by a set A,

A = {1, 2, . . . , i, . . . ,N }

For any equipment i that belongs to A, the power data can
be represented by Pi. In actual situations, the time interval
for operating power data varies which results in the inability
to extract data at a specific moment. For example, during the
sampling process, the operating power data of 8:59:59 and
9:00:02 can be obtained, but the data of 9:00:00 is skipped.
This paper uses interpolation method to process power data.
Select the power value of the two nearest points before and
after the sampling point to average, as the power of the
sampling point.

The processing operating power data are:

Pi = [pi,1, pi,2, . . . , pi,1440]

According to the above analysis, the total daily power data
of the set A of the household equipment participating in the
control are

P = [P1,P2, . . . ,P1440]

where Pt =
∑
i∈A

pi,t , t = 1, 2, ..., 1440.

The operating parameters of some household equipment
are shown in Table 2. Different users may have quite different
daily usage habit of the equipment. These parameters can be
modified according to the actual situation. This paper takes
a family in a Chinese city as an example. The operating
power of PC, microwave ovens, DVDs and kettles is basically
the same as the rated power, and can also be calculated
by collecting the operational data through actual operation.
In this paper, the calculation and analysis of these equipment
are performed with the rated power. The preferential opening
time of the equipment is assumed according to the daily usage
habit of the user, indicating the time interval allowed by the
user. The allowable time period is an important parameter for
measuring the comfort of the user. It is the first guarantee
for user comfort, that is, scheduling within a time range the

user accepts. If the equipment scheduling result Tfinal,j is
obtained by the optimization algorithm, the closer to Tpj it
is, the better. That is to say, the algorithm obtains an optimal
on-time Tfinal,j within the allowable time period, so that the
electric equipment has the lowest cost after completing the
task.

This paper also designs a selection interface that is
expected to participate in the HEDMS. The interface reads
all the information of the household equipment, and the
user can select the desired control according to his or her
preference and actual situation. This is second guarantee for
user comfort. At the same time, by selecting, some equipment
that do not participate in the control, these equipment can be
excluded in the GA calculation, which improves the calcula-
tion speed of the algorithm.

Assume that the initial population has 300 individuals,
each of which contains the start time of all selected electrical
equipment, the opening time of each equipment participat-
ing in the control as the individual chromosome, and each
row represents an individual in the population. Each column
corresponds to the actual opening time of each household
appliance, and each opening time meets the limitation of the
opening time range.

After the initial population of the equipment opening time
is generated, the time is chromosomally encoded. Since
211 >1440>210210, the length of the chromosome is selected
to be 11 bits to accurately and completely indicate the time
of each equipment.

The size of the individual fitness value in the GA reflects
the degree of individual’s pros and cons in the popula-
tion. The greater the fitness value is, the higher the sur-
vival rate of the individual in the population. There are also
differences in the criteria for judging fitness based on the
objective function. To this end, the objective function of
the GA is:

Fcost = min
1440∑
t=1

λ(t)Pt/60 (7)

According to the objective function, the ultimate goal of the
problem is to solve the minimum value and define the fitness
value. In this paper, the daily EC of different individuals is
compared with the individual’s maximum EC, and then the
final result is subtracted from 1 to achieve normalization and
fitness distribution. The fitness value is:

fitness = 1− Fcost/max (Fcost) (8)

By appropriate selection methods, chromosome crossing
and variation methods and screening of new populations,
according to the number of iterations, selection, crossover,
mutation, screening and judgment are gradually carried out,
and finally the best gene population is obtained. The optimal
individual data of the population is selected and output, as the
actual opening time of each equipment participating in the
control.
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C. OPTIMIZATION ALGORITHM VERIFICATION
The design principle of the loop optimization search algo-
rithm is the stepwise iterative calculation.

Fcos t = min
N∑
i=1

Mi∑
j=1

∫ Tej+Tdj

Tbj
λ (t)× Pji (t) /60dt (9)

The user inputs the operating time and parameters of
various appliances during the initial setting, and obtains a
series of power data after the simulation. The power data
and the electricity price curve are iterated in the time period
when the user sets the earliest and the latest allowable time.
By calculating and selecting the lowest EC of the equipment
as the result, with output, opening time and operating time of
the equipment at this time. Each type of appliance involved
in the control performs a loop search of the algorithm, finally
obtains the opening time and operating time of all electrical
appliances, and calculates the total daily EC. The calculation
formula of the loop algorithm is expressed as (7).

IV. CASE VERIFICATION
This section will analyze the effect of adopting a HEDMS
for single equipment and all household appliances by taking
typical cases. In the case of single equipment, the parameters
obtained by the loop algorithm are taken as a reference, and
the optimization parameters of the GA based on the operating
power are compared with the parameters obtained by the GA
based on the rated power to verify that the algorithm can
realize the power load transfer and have higher accuracy.
At the same time, comparing the algorithm optimization time
of single equipment with the algorithm optimization time
of all equipment shows that setting the equipment control
interface can effectively improve the running speed. In the
case of all appliances, by selecting all equipment for control,
the power curves before and after the strategy are obtained,
the daily EC is calculated, also the algorithm can effectively
reduce the EC and realize the power load transfer, as well as
reduce the PAR.

A. GA PARAMETERS AND ELECTRICITY PRICE
INFORMATION
The GA used in this paper is as follows: the generation
gap is 1.2; the individual selection method is the roulette
selection based on the fitness of the individual; the chro-
mosome intersection method is the two-point intersection
method, the probability is 0.95; the chromosome variation
method is the basic position variation, the probability is
0.025.The number of individual and iterations are 300 and
200. The RTP data information λ(t) (unit: $/kWh) are
{0.02411, 0.02165, 0.02059, 0.02039, 0.02079, 0.02228,
0.0270, 0.03138, 0.02938, 0.03219, 0.03374, 0.03655,
0.03683, 0.04087, 0.04316, 0.04629, 0.04913, 0.04839,
0.04248, 0.04949, 0.04504, 0.03721, 0.03032, 0.02591} [23].
The data come from RTP information published by the US
Ameren Power Company website. Fig. 7 shows the RTP of
Illinois on October 1, 2018.

FIGURE 7. The RTP of Illinois on October 1, 2018.

TABLE 3. Equipment initialization example.

The household equipment participating in the control
selection interface is shown in Fig. 8, the intelligent platform
provides the user with an interface for the equipment partic-
ipation management strategy, and the user can select accord-
ing to his actual situation, thereby enhancing the degree of
user participation. The initiating of response gives the user
autonomous choice, and can avoid the calculation of the
equipment that does not participate in the HEDMS, reduce
the amount of calculations, and improve the operation speed.

B. SCHEDULING RESULTS FOR SINGLE EQUIPMENT
When the user only selects single equipment to participate
in the HEDMS, the strategy proposed in this paper improves
in running speed and calculation accuracy. Taking the opti-
mization of the operating parameters of the induction cooker
as an example, the results obtained by the GA based on
the operating power are compared with the results of the
loop algorithm to verify the correctness of the algorithm, and
the comparison with the results based on the rated power
proves that it can effectively improve the calculation accu-
racy. In addition, calculate the running time of the algorithm
to verify the improvement in speed.

The parameter setting interface of the induction cooker is
shown in Fig. 5. The user can set the power, use time, the
earliest and latest time by the actual situation and daily habits.
The optimization calculation is performed after the setting.
The optimized operation parameters are shown in Table 4.

In Table 4, tfinal,1 is the opening time obtained by the loop
search algorithm; tfinal,2 is the opening time obtained by the
GA at rated power; tfinal,3 is the opening time obtained by the
GA at operating power.

The daily power curve of the induction cooker before and
after the HEDMS is shown in Figure 9. Combined with
Table 3, it can be found that the opening time of the induction
cooker in the morning, noon and night are optimized from
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FIGURE 8. The equipment control selection interface.

TABLE 4. Cooker before and after using the strategy.

FIGURE 9. The daily power curve of the induction cooker equipment
before and after using the strategy.

6:00, 11:30 and 18:00 to 5:39, 11:32 and 18:57. In this paper,
the algorithmwith the lowest EC as the objective function can
effectively optimize the operating parameters.

From the power curve comparison of the cooker before
and after adopting the HEDMS, it can be deduced that: (1)
The results obtained by the GA based on the operating power
data and the loop algorithm are similar, and are better than
the results based on the rated power data. It shows that the
GA can effectively manage the equipment participating in the
strategy, realize load transfer, and reduce EC. (2) The running
time of the strategy is also calculated in this paper. Com-
pared with the calculation based on the overall calculation
and the distribution according to the results, this paper only
optimizes the selected equipment. The results show that the
time required for all equipment to be calculated is 85.60 s,

TABLE 5. Household electricity cost comparison.

the time required to calculate only the cooker is 13.20 s. The
strategy can effectively improve the running speed.

C. SCHEDULING RESULTS OF OVERALL
HOUSEHOLD APPLIANCES
The following is a comparison of daily EC before and
after using the three households participate in the HEDMS,
as shown in Table 5. The power setting of household appli-
ances is outlined in [24] regarding the power consumption
of most common appliances. Table 5 provides data on the
EC without the management strategy, the EC using the loop
algorithm strategy, and the EC using the GA strategy. It can
be seen that the EC using the two algorithms is significantly
reduced compared to the EC without the control strategy, and
can be used to manage the household equipment to reduce
the EC.

The total EC of the household appliance that the user
selects to adopt the HEDMS changes with the number of
iterations is shown in Fig. 10. A power curve diagram before
and after the strategy is shown in Fig. 11. Combining with
Table 5, it can be seen that:

(1) By adopting the strategy, some of the equipment during
the peak hours of power consumption will be deferred, that
is, the effect of weakening the peak can be achieved by load
transfer. When the strategy is not adopted, the peak value
is 13.0 kW, and PAR is 8.75. After adopting the strategy,
the peak value is 8.29 kW, the PAR is 5.58, and the PAR
is reduced by 36.2%, which indicates that the HEDMS can
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FIGURE 10. The cost of the appliance that the user selects to adopt the
strategy changes with the number of iterations.

FIGURE 11. The power curve diagram before and after the GA control
strategy.

effectively reduce the PAR, making the power curve more
stable. It plays an important role in improving the stability
of the power-supply network.

(2) In the three households, after adopting the HEDMS,
the EC was reduced from 1.35 dollars to 0.99 dollars;
1.44 dollars to 1.06 dollars; 1.54 dollars to 1.02 dollars,
the percentage reduction was 26.7%, 26.4% and 33.8%.
It shows that the GA can effectively reduce the daily EC, and
the loop algorithm is used to verify that GA can reduce the
EC and maximize the user’s comfort.

V. CONCLUSION
This paper presents a household energy demand management
strategy based on the operating power by genetic algorithms,
aiming to minimize daily electricity cost on the prerequi-
site of guaranteed user-comfort. Through typical case ver-
ifications by simulations, the following conclusions can be
obtained:

(1) The household energy demand management strategy
proposed in this paper can effectively reduce the daily elec-
tricity cost. The average daily electricity cost of the user is
reduced by 29.0%. Compared with the algorithm based on
the rated power, the results are more accurate. The household
energy demand management strategy can also improve the
running speed and allow the user to choose. In addition, after
applying the household energy demandmanagement strategy,
the peak-to-average ratio is reduced by 36.2%. It is a win-win
strategy for users and sales companies.

(2) The household energy demand management strategy
proposed in this paper can incorporate comfort values into
the optimization calculation to meet higher demand, if there

is a standard for comfort value calculation. The users can
assign the weight of comfort value and daily electricity cost in
the fitness value calculation to meet their needs. This shows
that the genetic algorithms can meet more requirements when
scheduling electrical equipment, which is not available in the
loop algorithm.

(3) The household energy demand management strategy
proposed in this paper can set the power threshold to avoid
the power surge caused by the concentration of the power
equipment in a certain period of time. The genetic algorithm
analyzes the power curve from a global perspective. In the
future research, if the smart grid requires the user to have a
power value that cannot be higher than the household power
threshold at some time, the loop algorithm cannot satisfy
this requirement because of its simple step-by-step iteration,
which is easy to make the equipment run in a centralized
time period, resulting in a high peak. The household energy
demand management strategy can meet the higher require-
ments of smart control by setting the power threshold as a
constraint and applying the constraint as a penalty function
in the genetic algorithm.

(4) The accuracy of the household energy demandmanage-
ment strategy proposed in this paper will be greatly improved,
when the operating power data of each user’s electrical equip-
ment is collected. Data closer to the actual situation makes
the strategy practical. This paper does not currently study
the impact of distributed energy, price incentives and other
factors on demand response plans. In the future work, these
factors will be analyzed and discussed. In addition, the man-
agement and scheduling of household electrical equipment
will be more comprehensively realized.
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