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ABSTRACT Robots must be able to recognize human emotions to improve the human-robot interaction
(HRI). This study proposes an emotion recognition system for a humanoid robot. The robot is equipped
with a camera to capture users’ facial images, and it uses this system to recognize users’ emotions and
responds appropriately. The emotion recognition system, based on a deep neural network, learns six basic
emotions: happiness, anger, disgust, fear, sadness, and surprise. First, a convolutional neural network (CNN)
is used to extract visual features by learning on a large number of static images. Second, a long short-term
memory (LSTM) recurrent neural network is used to determine the relationship between the transformation
of facial expressions in image sequences and the six basic emotions. Third, CNN and LSTM are combined to
exploit their advantages in the proposed model. Finally, the performance of the emotion recognition system
is improved by using transfer learning, that is, by transferring knowledge of related but different problems.
The performance of the proposed system is verified through leave-one-out cross-validation and compared
with that of other models. The system is applied to a humanoid robot to demonstrate its practicability for
improving the HRI.

INDEX TERMS Convolutional neural network, long short-term memory, transfer learning, facial expression

analysis.

I. INTRODUCTION

With developments in robots, studies are increasingly focus-
ing on applications such as home service robots, health care
robots, manufacturing robots, and humanoid robots. To make
robots more convenient, efficient, and intelligent and to inte-
grate them into the human society, the human—robot interac-
tion (HRI) must be improved [1]-[2]. Emotion recognition
can enable robots, machines, and computers to determine
proper reactions during human interactions.

Emotions play an important role in human interactions
as they let people articulate themselves without words.
Emotions include cognitive appraisal, bodily language, action
tendencies, expressions, and feelings [3]. People would not
be able to get along with each other without emotions.
Therefore, emotion recognition will certainly improve
the HRI.

The associate editor coordinating the review of this manuscript and
approving it for publication was Mu-Yen Chen.
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Emotion recognition involves considerable information
including facial expressions, body language, pitch and tone of
voice, and semantics. Facial expressions are crucial because
they convey considerable information that can be widely used
in various applications in different fields. Furthermore, facial
expressions can convey the same information across different
cultures and countries.

It remains challenging for computers and robots to classify
facial expressions under different light conditions, poses, and
backgrounds and across people of different ages, genders, and
ethnicities. In one study [4], the Facial Action Coding System
(FACS) was proposed for quantifying human facial move-
ment. This system is a practical solution for detecting facial
movement within the field of behavioral science. Essentially,
facial expressions are identified according to several mus-
cle movements. On the basis of the movements of these
facial muscles, the FACS decomposes the facial expressions
into their component actions. Moreover, the decomposed
component actions can be used for further applications [5].
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The FACS is based on the simulation of facial muscle move-
ment. An action unit (AU) is comprised of segments of the
muscles involved in facial expression [6]. Seventeen major
AUs are involved in basic facial expression, and all facial
expressions are determined by the FACS through identifica-
tion of these AUs.

Experts and scholars have developed various definitions
of the basic human emotions at different points in time [7].
These definitions have been based on various considerations
but are all relatively reasonable and have certain theoreti-
cal bases. In this paper, we employ the six basic emotions
proposed by Ekman et al.: happiness, anger, disgust, fear,
sadness, and surprise, as defined in [8]. These six emotions
are also the most common definitions and are used in several
relevant academic studies [9]-[13].

Facial expression recognition can be effectively achieved
by analyzing static images [14], [15] or dynamic image
sequences [16]-[18]. Static images can be used to extract the
precise attributes of the geometric and appearance features of
facial expressions; however, these features cannot describe
emotions completely because static images lack dynamic
factors related to facial expressions. Facial expressions can
be considered a combination of contraction and relaxation
of one or more facial muscles. One study [19] manually
selected the most expressive frames in an image sequence for
experiments. This afforded high accuracy; however, it is not
a reasonable way to verify the feasibility of the method.

This study proposes an emotion recognition system based
on a deep neural network to improve the HRI. To extract
the geometric and appearance features of facial expressions,
a convolutional neural network (CNN) [20]-[23] is trained to
classify a large number of static images from a dataset.

Facial expressions are dynamic. Therefore, long short-term
memory (LSTM) [24]-[28], an enhanced recurrent neural
network (RNN), is used to capture the temporal and contex-
tual information of facial expressions. Furthermore, transfer
learning is used to improve the performance of the emotion
recognition system [29].

Traditional machine learning has some problems and limi-
tations. For example, when we do not have sufficient labeled
training data for a given task, it is very difficult to train
a model well and to achieve good performance. Another
limitation of machine learning is that each model is trained
for particular training data and a particular task. Therefore,
the model has to be rebuilt for newly collected training
data. Compared with traditional machine learning, transfer
learning can improve the performance by transferring known
knowledge learned from other related data.

This study (1) proposes a CNN and LSTM based model for
facial emotion recognition; (2) uses the concept of transfer
learning to improve the model performance; (3) develops a
humanoid robot for an experiment; and (4) verifies the feasi-
bility of the proposed model for facial emotion recognition.

The remainder of this paper is organized as follows.
Section II describes related works. Section III introduces the
proposed model that combines CNN and LSTM. Section IV
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presents experimental results demonstrating the feasibility
and performance of the proposed model. Section V presents
the discussions. Finally, Section VI presents the conclusions
of this study.

Il. RELATED WORKS

There are several works related to emotion recognition, facial
expression recognition, deep neural network and transfer
learning. And we can discuss them below.

A. FACIAL EXPRESSION RECOGNITION

Some studies have analyzed static images for facial expres-
sion recognition. However, facial expressions are produced
by the contraction and relaxation of some facial muscles.
Therefore, it is better to consider both dynamic and tempo-
ral factors in facial expressions, although some studies can
extract geometric and appearance factors well.

One study [19] manually selected the most expressive
frames in an image sequence for experiments. This afforded
high accuracy; however, it is not a reasonable way to verify
the feasibility of the method.

B. DEEP NEURAL NETWORK

Many deep learning methods have been used to solve some
difficult tasks and improve performance, such as CNN,
RNN [30], improved deep neural networks [31]-[33], and
enhanced models such as LSTM.

CNN is known to have great ability to analyze images
and to handle computer vision tasks such as classifica-
tion, recognition, and identification. Long ef al. [34] and
Chen et al. [35] have performed semantic segmentation using
deep CNN; Yu and Zhang [36] performed static-image-based
facial expression recognition using deep CNNSs; and one
study investigated the effect of CNN depth on large-scale
image recognition [37]. Therefore, many studies have effec-
tively used CNN in facial expression recognition to extract
features. To enhance the capabilities of HRI and robot-robot
interaction, one study [38] proposed a CNN architecture that
gives robots the ability to recognize emotions. The network
has three convolution layers and one fully connected layer
as the output, and information from speech, gestures, and
facial recognition is employed as the CNN input. Although
the CNN architecture has only four layers, it has an acceptable
emotion recognition ability and performed well in exper-
iments. However, the method can only be applied to still
images because of the limitations of the CNN architecture;
the method cannot be applied to continuous dynamic images.

RNN has been proposed to cope with dynamic data in
a time sequence. RNN is widely used for contextual appli-
cations such as speech because it has an internal mem-
ory to process temporal input sequences. One study [39]
showed that RNN is a powerful model for sequential data and
that LSTM has good performance for phoneme recognition.
Sundermeyer et al. [40] showed that an LSTM network pro-
vided better performance than a standard RNN for an English
and a large French language modeling task.
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Xu et al. proposed an LSTM-CNN architecture for face
antispoofing [41]. This LSTM-CNN model can learn tempo-
ral features by using a face antispoofing database with diverse
attacks [42]. This architecture benefits from the combination
of the CNN and the LSTM, and experimental results show
that it works well for face antispoofing. However, this model
focuses on face antispoofing applications. It can only be
trained and used on one type of dataset.

In literature [43], a multimodal emotion recognition with
evolutionary computation is proposed for human-robot inter-
action. This method consists of several intelligent algorithms,
and the maximal recognition rate is 97%. The emotion-based
communication system on the small-sized humanoid robot is
practical, and this work can also be adopted in many human-
robot interaction applications in the future.

In this study, the proposed method can be pretrained on a
specific dataset. Previous knowledge can also be transferred
and reused for the next training step by the transfer learning
technique.

C. TRANSFER LEARNING

Transfer learning is a very important technology in the field
of artificial intelligence (AI). With technological develop-
ments in transfer learning, the training dilemma that was
originally caused by insufficient data or uneven distribution
can be greatly improved. Therefore, in recent years, transfer
learning has become one of the key issues in Al technology
development. In this study, transfer learning technology is
applied to transfer the knowledge originally learned from a
large number of static images to a smaller number of dynamic
images, thereby improving the Al recognition success rate.
This study is practical, and experimental results demonstrate
that the problem of insufficient data is solved successfully.

The transfer learning method [29] transfers knowledge
of known related source data to target data. It is aimed at
improving the effectiveness of the training procedure and
the model performance. This learning technique also helps
researchers expend lesser effort in collecting training data and
takes a shorter time to train the model.

For achieving better learning performance, the basic con-
cept of the transfer learning method is to transfer knowl-
edge from the source domain to the target domain. However,
in transfer learning, the source domain must have a strong
correlation with the target domain. If two unrelated domains
are transferred forcibly, the expected good results may not be
obtained and the learning performance may also be reduced.
With developments in Al technology, researchers hope to
apply the concept of transfer learning to machine learning.
Traditional machine learning, especially supervised learning,
has strict requirements on the quantity of data samples, uni-
formity of data distribution, and complete labeling. Trans-
fer learning solves the problem of insufficient samples and
incomplete labeling in machine learning tasks by promoting
efficient learning through the use of external distributed data.

Researchers have applied transfer learning to many tasks.
Girshick et al. [44] reported that it significantly boosted
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the performance of object detection and segmentation.
Girshick et al. [44] predicted poverty in the developing world
by using transfer learning due to the scarce labeled data.

Ill. PROPOSED MODEL COMBINING CNN AND LSTM

The proposed model is aimed at learning the relation between
the image sequences of human expressions and their corre-
sponding labels. As mentioned above, facial expressions are
produced by a combination of the contraction and relaxation
of one or more facial muscles; therefore, they possess both
appearance and temporal features.

A. CNN MODEL

First, CNN is used to capture appearance features because it
provides state-of-the-art performance for several vision tasks.
Fig. 1 shows the network structure. The inputs are the cropped
region of interest of the image, which is also the region of the
detected face. The cropped region is converted to gray scale
and resized to 128 x 128 pixels. Color information is con-
sidered less relevant in facial expressions; therefore, it is not
necessary to use RGB images. To reduce the memory usage,
grayscale images are used in this study. The width and length
of the input are 128 pixels, which is large enough for facial
expressions because the face region in a 640 x 480 frame is
approximately 128 x 128 pixels.

FIGURE 1. Structure of CNN.

In convolutional layer 1, the number of kernel maps is 16;
size of the kernel map is 7 x 7 with the same padding method;
stride length is 1; and size of feature maps is 128 x 128 x 16,
that is, the width and length are the same as those of the
input shape. After 2 x 2 pooling operation with 2 x 2 stride
and the same padding method, the size of the feature maps
becomes 64 x 64 x 16. Then, the subsequent convolutional
layers contain 16, 32, 64, 64, and 128 filters with size of 7x 7,
5x5,5x%5,3x3,and 3 x 3, respectively.

After the convolutional part, feature maps with size of
4 x 4 x 128 are obtained. Finally, the feature maps are
vectorized to a size of 2048 x 1 and fed to a fully con-
nected layer. To produce features with appropriate length,
we have to design the stride length of convolutional layers and
pooling layers, number of kernel maps, and feasible network
structure.

B. COMBINATION OF CNN AND LSTM

It is difficult for LSTMs to learn such high-dimensional
data. The input image has size of 128 x 128 pixels, and it
is vectorized to a size of 16384 x 1, as shown in Fig. 2.
The vector is fed directly to the two-layer LSTM network
with 256 cells. Then, the number of parameters in the first
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LSTM layer is 17,049,600 this is too large to train the LSTM

model well and efficiently.

Therefore, the solution is to take advantage of the CNN
because it can subsample a high-dimensional image without
losing important information. We use a few previous layers
of the CNN as the feature extractor, as shown in Fig. 3. The
extracted feature maps are flattened to create a feature vector.

FIGURE 2. Structure of LSTMs.

FIGURE 3. lllustration of CNN feature extractor.

The convolution layers in front of the fully connected
layers of the CNN are cut and concatenated to two LSTM
layers with 256 cells. Therefore, the 128 x 128 pixel input
image is scaled down to a 2048 x 1 feature vector after the
convolutional part. The vector is fed to the LSTM layers as
the input. Then, the number of parameters in the first LSTM
layer is 2,360,320; this is dramatically lower than in the case
of the LSTM network without a feature extractor.

C. TRANSFERRING PARAMETERS OF CNN

To improve the model performance, we attempt to transfer
the knowledge of parameters from the source domain data,
as shown in Fig. 4. However, we cannot use the source data
directly in the target model. First, the CNN is trained on the
source task with a large number of labeled static images to
enable it to extract visual information. Next, the last layer
of the CNN is removed and flattened into a one-dimensional

C1~C6
Transfer
ONN bl Feature
vector
Input CNN ppfFeature LSTM 1{—+{LSTM 2 @
sequence vector
ONN Ll Feature
vector

FIGURE 4. Proposed model with knowledge transfer.
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feature map. This one-dimensional feature map that is output
through a model trained by source domain data is impor-
tant for conducting transfer learning. This one-dimensional
feature map is also imported into LSTM as time sequence
information. The last layer of the CNN is removed to connect
with the LSTM for target domain data training. In this way,
the CNN model trained in advance with source domain data
can transfer knowledge to the new model and improve the
performance of the model. In this study, the source domain
data is a series of static images, and the target domain data
is a series of dynamic continuous images. Through transfer
learning, we can transfer the knowledge of human facial
emotion recognition of the static picture to the new model
without having to relearn all the information. This is also
a major contribution of transfer learning technology to the
knowledge transfer process. Compared with the trained CNN,
the untrained model with random initial weights does not
have enough ability to extract useful and meaningful features.

With regard to facial emotion prediction, if the input uses
an image from a time series, it is easy to face the problem in
which the expression of the previous time point is different
from that of the next time point. Because the two images
are of the same subject and the time points are very close,
the differences between the two images will be very small;
this may cause a prediction error. In addition, if the amount of
training data is seriously insufficient, it may make the model
completely unable to identify images. In another situation, the
expressions of the two image sequences may be significantly
different; however, they are both from the same subject and
the background environment is similar. In this case, when
the amount of training data is insufficient, it is easy to cause
misjudgment in the model. To solve these problems, the pro-
posed model architecture adopts transfer learning technology.
The proposed architecture can perform the first stage of CNN
training with more source domain data. Because there is more
training data, at this stage, the recognition success rate using
static images as the input will be higher. Accordingly, we use
the CNN with the higher recognition success rate as the
feature extractor. The extracted features will be significant
because the feature extractor has been trained sufficiently.
In dynamic time-sensitive images, the most important image
information can be inputted into the LSTM through the CNN
feature extractor. This can enhance the recognition success
rate and fully solve the abovementioned problems even when
the target domain data is insufficient.

D. ENHANCED MODEL

After ensuring that combining the CNN and LSTM is feasible
for analyzing the relations between image sequences and
facial expressions, the next step is to further improve the
model performance by making the neural network deeper.
However, blindly increasing the number of layers is not a fea-
sible way to enhance the performance. Thus, the residual net-
work [46] is used to replace the convolutional part mentioned
in Section IILLA. A residual network is constructed using
residual blocks as shown in Fig. 5(a) or using the residual
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FIGURE 5. Residual block: (a) original residual block and (b) residual
block with convolutional shortcut.

block with a convolutional shortcut as shown in Fig. 5(b). The
convolutional shortcut makes the output shape of each path
the same so that addition can be performed. The convolutional
shortcut is necessary when the input and output shapes are
different. Table 1 lists the model settings, and Fig. 6 shows
the structure of the residual network model. In this study,
the residual network was selected because the residual blocks
in this architecture solve the gradient vanishing problem that
often occurs during neural network training. Greater depth of
the neural network increases its recognition rate, but too great
a depth may cause vanishing gradient problems. Therefore,
using shortcuts to connect various layers can ensure that
originally distant layers have a degree of influence on each
other and also maintain the gradient during the backpropaga-
tion process. Because of the special structure in the residual
network, the feature extraction ability of this networ k is
superior to that of the general neural network; the residual
network is thus more suitable for application in this study.
An LSTM unit is composed of an input gate, forget gate,
cell, and output gate so that LSTM can store the important
information in the cell, and this information can be written
and read similarly to computer memory. The gate is designed
to control the amount of information that passes through and
is composed of a sigmoid layer and multiplication operation.
The output of a sigmoid function is between 0 and 1 and
is multiplied by the received information. The percentage
of the amount of information that passes through the gate
is decided. The purpose of the input gate is to decide the
amount of input data to be written to the memory, which
is dependent on whether the current incoming input data
are important. The purpose of the forget gate is to make a
decision regarding whether to keep or eliminate the previous
cell state. The output gate decides whether the memory can
be read. Finally, the cell updates according to the input gate
and forget gate. LSTM favorably handles the time sequence
problem. Therefore, the combination of favorable feature
extraction by the residual network and the LSTM network is
the key feature of the transfer learning method. In this study,
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TABLE 1. Settings of proposed model.

Type Settings Parameters
Input layer 128x128x10 N/A
Conv. 32,7, 11 ReLU 1600
Max pooling
Conv. 32,7, 1,
ReLU Conv. 50208
Conv. 32,7, 1, 32,7,1,ReLU 50208 50208
ReLU
Max pooling
Conv. 64,3, 1,
ReLU Conv. 18496 18496
Conv. 64,3, 1, 64,3,1,ReLU 36928
ReLU
Max pooling
Conv. 64,3, 1,
ReLU 36928
Conv. 64,3, 1, shorteut 36008 VA
ReLU
Max pooling
Conv. 64,3, 1,
ReLU 36928
CNNPart  Conv. 643, 1, shorteut 3608 VA
ReLU
Max pooling
Conv. 64,3, 1,
ReLU 36928
Conv. 64,3, 1, shorteut 36008 VA
ReLU
Conv. 128,3, 1,
ReLU Conv. 128,3, 1, 73856 73856
Conv. 128,3, 1, ReLU 147584
ReLU
Conv. 128,3, 1,
ReLU 73856
Conv. 1283, 1, shorteut 73856 VA
ReLU
Conv. 128, 3,
1, ReLU 73856
Conv. 128, 3, shorteut 73856 VA
1, ReLU
Flatten
Output shape: 256x10
LSTM Number of cells: 256 2360320
Output shape: 256
LST™M Number of cells: 256 323312
Dense 6 1542

all the mentioned models are implemented using the Keras
framework [47].

IV. EXPERIMENTAL RESULTS

The model performance is demonstrated through the results
of leave-one-out cross-validation between different models.
Experiments are performed using the humanoid robot Harley,
and the results demonstrate the performance of the proposed
real-time emotion recognition system.

A. DATABASE

1) AFFECTNET DATABASE [48]

As shown in Fig. 7, the AffectNet Database contains approx-
imately 450,000 manually annotated and approximately
500,000 automatically annotated color images of various
sizes. They are labeled as neutral, happy, sad, surprise,
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FIGURE 6. Structure of residual network.

fear, disgust, anger, and contempt. However, the dataset is
highly imbalanced; there are more than 1 00,000 images
with happy expressions but less than 5,000 images with dis-
gust expressions. Therefore, we randomly selected approxi-
mately 50,000 images with six basic emotions. This includes
10,000 images each with happy, angry, surprise, and sad
expressions, approximately 6000 images with disgust expres-
sion, and 3500 images with fear expression; the number of
images for the last two expressions is considered insufficient.
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FIGURE 7. Example of AffectNet Database [48].

2) CK+ DATABASE [49]

The extended Cohn-Kanade (CK+) dataset includes
123 subjects and 593 image sequences. Image sequences
are captured using a camera located in front of the sub-
ject. All images are 640 x 480 grayscale images. The
subjects are mostly Euro-American females. Among the
593 image sequences, 327 are labeled with seven expressions:
happy, sad, surprise, fear, disgust, anger, and contempt. The
sequences have different lengths, and most contain at least
10 images. We select 232 sequences containing more than
ten images each and with six basic emotions. The last ten
images of the 232 sequences are adopted in the experiments.
Fig. 8 shows an example of the CK+ database. Each sequence
shows the transformation in facial expressions from a neutral
expression to another expression.

‘OE:40:59:03 O=:4n:59:04

o2:4n:s9:02

h=:up:-s9:00 I=:MDesSOn

FIGURE 8. Example of the CK+ database. In this sequence, the subject
changes expression from neutral to happy across 10 frames [49].

B. DATA PREPROCESSING

Before training the emotion recognition model, we detect
the face in all static images and image sequences. The face
is detected using Haar-cascade frontal face detection. Then,
the detected face region is resized to 128 x 128 pixels and
converted to a grayscale image. Finally, for normalization,
every pixel value is divided by 255.
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C. LEAVE-ONE-OUT CROSS-VALIDATION

To verify the feasibility and generalization of our proposed
model, we use leave-one-out cross-validation to evaluate
our proposed model and compare it with other models,
such as Multilayer Perceptron (MLP), CNN, LSTM, and
CNN-LSTM, that have the same structure as our proposed
model but without knowledge transfer. For fairness, the set-
tings, structures, and numbers of parameters should be as
similar as possible. Tables 2-5 show the model settings.

TABLE 2. Settings of MLP.

Type Settings Parameters
Input layer 128x128x10 N/A
Batch input shape:
Dense 1 163840 20971648

Number of nodes: 128
Act.: sigmoid

Dense 2 Number of_node_s: 128 16512
Act.: sigmoid
Number of nodes: 128

Dense 3 Act.: sigmoid 16512

Number of nodes: 6
Dense 4 Act.: Softmax 774

TABLE 3. Settings of CNN.

Type Settings Parameters
Batch input shape: 128
x 128 x 10
Number of filters:16
Filter size: 7
Conv3D Stride: 1 5504
Act.: ReLU
Output shape: 128 x
128 x 10 x 16
Size:2 x 2
. Stride:2 x 2
Max pooling Output shape: 64 x 64 x N/A
5% 16
Conv3D 16,5,1,ReLU 32016
Max pooling 2,2,32x32x3x16 N/A
Conv3D 32,5,1,ReLU 64032
Max pooling 2,2,16 x 16 x 2 x 32 N/A
Conv3D 64,3,1,ReLU 55360
Max pooling 2,28 x8x 1 x64 N/A
Conv3D 64,3,1,ReLU 110656
Max pooling 224 x4 x1x64 N/A
Conv3D 1283 LReLD A XA 21312
FC Number of nodes: 100 204900
Dense Number of nodes: 6 606

Act.: Softmax

Table 6 shows the training settings of each model. The
learning rate, loss function, and optimizer are the same for all
models; these three settings are the main factors influencing
the learning process. CNN-LSTM uses the same structure
as the proposed model but without transfer learning. The
loss function and optimizer greatly influence the gradient
calculation. The learning rate determines the extent to which
parameters are updated with respect to the gradient.

Table 7 shows the leave-one-out cross-validation results.
The second column shows the number of success in
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TABLE 4. Settings of LSTM.

Type Settings Parameters
Input layer 128 x 128 x 10 N/A
Flatten Output s)l(‘lal%ez 16384 N/A
Output shape: 256 x
LSTM 10 17040384
Number of cells: 256
Output shape: 256
LSTM Number of cells: 256 323312
Dense 6 1542
TABLE 5. Settings of CNN-LSTM.
Type Settings Parameters
Input layer 128 x 128 x 10 N/A
Conv.
Max
pooling 16,7, 1, ReLU
Conv. 2,2
Max 16,5, 1, ReLU
pooling 2,2
Conv. 32,5, 1, ReLU
Convolutio Ma.x 22
pooling 64,3, 1, ReLU 149328
n Part
Conv. 22
Max 64,3, 1, ReLU
pooling 2,2
Conv. 128,3,1
Max Output shape: 2048 x
pooling 10
Conv.
Flatten
Output shape: 256 x 10
LSTM Number of cells: 256 2360320
Output shape: 256
LSTM Number of cells: 256 323312
Dense 6 1542

TABLE 6. Comparison between training settings of each model.

Methods Learning Epoch Los.s Optimize  Paramet
rate function r -ers
MLP 0.0001 100 Cross Adam 21M
entropy [50]
CNN 0.0001 100 Cross Adam 690K
entropy
LSTM 0.0001 100 Cross Adam 17M
entropy
CNN- Cross
LSTM 0.0001 100 entropy Adam 3M
Proposed ) 59 100 Cross Adam aM
model entropy

TABLE 7. Comparisons between different models on CK+ database with
leave-one-out cross-validation.

Methods Number of successes Accuracy (%)
MLP 94 40.5
CNN 158 68.1

LSTM 148 63.79
CNN-LSTM 136 58.62
Proposed model 210 90.51

232 validations. The model performance is clearly boosted
from 58.62% (CNN-LSTM) to 90.51%, indicating the suc-
cess of transfer learning. The results presented in Table 7
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also indicate that the traditional MLP architecture has poor
recognition ability (only 40.5% accuracy) with time sequence
information, whereas the general CNN (68.1% accuracy)
and LSTM (63.79% accuracy) have slightly superior ability.
However, if transfer learning and pretraining are not imple-
mented in the first half of the same architecture, the accuracy
is only 58.62%. After transfer learning and CNN architec-
ture pretraining, the recognition ability improved to 90.51%
accuracy. Although a deep neural network architecture is crit-
ical, recognition performance improvement through transfer
learning is even more vital.

The confusion matrix of the leave-one-out cross-validation
experiment is displayed in Fig. 9. The numbers in Fig. 9(a)
are the actual tested data of the experiment. However, because
the data distribution is not uniform for various emotions, the
normalized confusion matrix is presented in Fig. 9(b).
The diagonal line of the confusion matrix is the ratio of the
predicted result to the actual result. Fig. 9(b) reveals that
the darker color is concentrated along the diagonal, which
confirms that the accuracy of the model proposed in this paper
is high. The recognition rates for happiness, fear, and anger
were 0.82, 0.79, and 0.79, respectively; in addition, the scores
for sadness and surprise were relatively high (0.92 and 0.98).
A 100% accuracy rate was achieved for surprise. In the
actual data for happiness, seven instances were misjudged
as surprise and one was misjudged as fear. In the actual
data for fear, two instances are misjudged as happiness and
two are misjudged as disgust. In the actual data for anger,
five instances were misjudged as happiness and one was
misjudged as fear. When these numbers are examined in
detail, part of the reason for the generally low accuracy rate is
clearly that the number of samples was low for the emotions
with lower accuracy rate, resulting in insufficient training and
testing data. Nonetheless, the numbers of misjudgments were
within an acceptable range. The performance was relatively
high for the other emotion categories in which more samples
were used.

Confusion Matrix Normalized Confusion Matrix

Ground Truth
Ground Truth

Prediction Prediction

(a) (b)

FIGURE 9. Confusion matrix in terms of (a) the test number and (b) the
normalized value.

Furthermore, the contingency table of six emotions are
illustrated in Table 8-13. All occurred numbers in true posi-
tive, false negative, false positive, and true negative are com-
pletely addressed in these tables. For all emotions, the true
positive and true negative values denote the numbers of the
correct prediction results. Obviously, the obtained values
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TABLE 8. Contingency table of happy.

Prediction
= 37 8
g g (True Positive) (False Negative)
=]
SE 7 180
(False Positive) (True Negative)
TABLE 9. Contingency table of sad.
Prediction
= 11 1
g g (True Positive) (False Negative)
=]
SE 0 220
(False Positive) (True Negative)
TABLE 10. Contingency table of surprise.
Prediction
= 53 1
£ g (True Positive) (False Negative)
=]
SE 7 168
(False Positive) (True Negative)
TABLE 11. Contingency table of fear.
Prediction
= 19 5
g g (True Positive) (False Negative)
=]
SE 2 206
(False Positive) (True Negative)
TABLE 12. Contingency table of disgust.
Prediction
= 69 0
g g (True Positive) (False Negative)
=]
= 4 159
(False Positive) (True Negative)
TABLE 13. Contingency table of anger.
Prediction
= 22 6
£ g (True Positive) (False Negative)
=]
SE 1 203
(False Positive) (True Negative)

of true positive and true negative in each table are much
higher than the numbers of false positive and false negative.
It also demonstrates the performance and the stability of the
proposed approach. On the other hand, the false positive
and false negative values represent the incorrect prediction
results. As shown in Table 8-13, all the false positive and false
negative values are extremely small in all the experiments.
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In spite of the fact that the obtained false positive and false
negative values are slightly higher in Table 8, the true positive
and the true negative values are still much higher than the
false positive and false negative values. It also shows the
prediction errors are acceptable for recognizing the facial
emotions.

After transferring the layer and parameters, the different
training conditions are compared to determine how to
train the model well. Fig. 10 shows the different training
conditions. Square and circle symbols represent the con-
volutional layer and the residual block, respectively. Green
squares and circles are trainable and blue ones are fixed,
nontrainable, or frozen, indicating that the parameters in the
residual block or convolutional layer will not be updated.
The first one on the left in Fig. 10 is to fine-tune the whole
model after transferring. The last one is to freeze the whole
transferred part so that it can be treated as a fixed feature
extractor. The number of parameters decreases from left to
right.

D Convolutional layer

Residual block

00000000N
00000000 N
00000000 H
0000000 H
QOOOOOO{C%D

FIGURE 10. Illustration of training condition.

The comparison results in Fig. 11. show the training loss,
training accuracy, validation loss, and validation accuracy of
the nine conditions including fine-tune training (FTT, first
one on left in Fig. 10) and FIT-F8T (FnT means that the
first n residual block are frozen and the rest of the network
is trained). In this simulation, the CK+ database is used
as training and validation data, and the ratio of validation
data to training data is set to 0.1. In other words, 10% of
the 232 sequences are randomly selected as validation data.
Furthermore, 50 training epochs are used and the training
process is repeated 10 times.

In Fig. 11(a) and 11(b), the training process of FTT is
significantly better than that of freeze training but is similar
to that of the model with only a few frozen residual blocks.
However, whether th e training process of the model is good
is not the only evaluation indicator. Therefore, the validation
is a helpful way to verify the performance and generalization
ability of the model. In Fig. 11(c) and 11(d), FTT clearly has
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FIGURE 11. Comparison between freeze and fine-tune: (a) training loss,
(b) training accuracy, (c) validation loss, and (d) validation accuracy.

the lowest validation loss and the highest validation accuracy
compared with other approaches.
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In the transfer learning process, knowledge of the source
domain data is stored in the CNN architecture, and the
one-dimensional feature map generated by the CNN model
serves as the input of the LSTM. Therefore, at this moment,
the internal parameters of the CNN have already been trained
but the LSTM is still in the initial state that has not been
trained. For this reason, when the CNN and the LSTM are
linked together for training, whether or not the CNN param-
eters need to be retrained or be kept unchanged will be a
very important issue. This experiment mainly explores the
impact of whether CNN undergoes partial training on the
transfer learning results. It is also a type of neural network
hyperparameter that determines whether it is necessary to
retrain all or only a few layers of the CNN. This hyperparam-
eter has an extremely significant impact on transfer learning.
However, the parameter adjustments in the CNN and LSTM
have less impact. The experiment results suggest that apply-
ing transfer learning in facial expression recognition, per-
forming feature extraction with a pretrained CNN, inputting
the extracted feature to the LSTM, and finally optimizing the
CNN’s internal parameters is a better approach.

D. EXPERIMENTAL SETUP

An emotion recognition experiment is conducted using the
humanoid robot Harley (Fig. 12), which is inspired by child-
hood developmental milestones. We apply the emotion recog-
nition system to Harley to enable it to perform basic emotion
re cognition and interact with humans.

(a) (b)

FIGURE 12. Harley humanoid robot: (a) mechanism design and

(b) photograph.

E. EXPERIMENT I

In this experiment, the emotion recognition model is trained
on the CK+ database. First, the camera is used to cap-
ture images of users. Then, data preprocessing is performed
on these images. The resized cropped grayscale image is
stored in a buffer until the buffer is filled with 10 frames.
Then, image sequences stored in the buffer are predicted by
the trained emotion recognition model. Finally, the results
of the predicted emotion and the corresponding probabil-
ity are shown. Fig. 13 shows the experimental results for
six subjects.
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FIGURE 13. Experimental result of emotion recognition.

F. EXPERIMENT Il

The proposed emotion recognition system is aimed at
improving the HRI. In this experiment, the Harley robot is
used to evaluate subjects’ emotion states from their facial
expressions. Fig. 14 shows the environment setup, and
Fig. 15 depicts the interaction between Harley and user.

FIGURE 14. Experimental environment.

First, the user and Harley sit face-to-face, and Harley greets
the user upon detecting their face. The user can articulate,
express feelings, or say something. Harley evaluates the
user’s emotions by collecting their facial images and predict
the emotion from these images using the proposed model.
Harley then provides an appropriate response to the user.
It should be noted that Harley does not possess a dialogue
system and that the proposed emotion recognition system is
based on facial expression analysis rather than semantic anal-
ysis. To clearly demonstrate the feasibility and practicality of
the emotion recognition application, the whole experimental
video is uploaded; it can be accessed in [51].

V. DISCUSSIONS
In recent years, many related papers on facial emotion recog-
nition have been published. One study [52] used an extreme
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(e) ®

FIGURE 15. Interaction between Harley and user: (a) disgust, (b) angry,
(c) surprised, (d) fear, (e) happy, and (f) sad.

learning machine (ELM) with optical flow to achieve this goal
and reported good performance in experiments. However,
because of the different characteristics of the various data
sets, the recognition rate was also widely distributed (from
29.81% to 61.8% to 92.74%). Therefore, the characteris-
tic of the data set has a very large impact on the model
performance. Another study [53] used the constrained local
model (CLM) and key emotion (KE) points for facial emotion
prediction. The experiment results suggest that this method
provides good performance for different datasets as indicated
by the true positive rate (TPR) parameter used in this study.
However, this method must successfully capture two neural
frames to build the model. If these two neural frames are
captured improperly, it will affect the method’s subsequent
performance. A study [54] applied hybrid deep neural net-
works for continuous facial recognition. This method com-
bined a CNN comprising six simple convolutional layers
and a general-type RNN. The experiment results indicate
that under the Japanese Female Facial Expression (JAFFE)
database [55] test, the highest accuracy of 94.91% can be
achieved. The accuracy of this method is good but is still
limited by the dataset. The highest recognition of facial emo-
tions can only be so effective in the expression of Japanese
women. Another study [56] applied the optical flow method
to acquire the feature vector and input the feature vectors
into a neural network for facial emotion recognition. This
method combined traditional image processing methods with
machine learning techniques and achieved good validation
in experiments. Two different datasets were used in the
experiments for performance verification, and accuracy rates
of 75.25% and 70.93% were achieved, respectively.

The abovementioned technologies are the research results
of facial emotion recognition in recent years. The datasets
used by these methods are not the same, and each of these
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models have their own advantages and disadvantages. This
study focuses on how to use transfer learning to further
improve the recognition success rate from 58.62% to 90.51%,
and it provides a detailed discussion of the training process
for knowledge transfer. In the future, this technology can
be extended to various fields to enhance the recognition
rate of datasets with a limited amount of data. In addition,
in the analysis of computing time, the above methods all have
the ability to detect emotions in real-time. This study also
fully demonstrates the performance of real-time computing,
as shown in the video of Experiment II [51]. Therefore,
in terms of computing time, the proposed method has superior
performance.

With regard to human facial emotion recognition, many
related studies have integrated audio and image data for
analysis. One study [57] applied the hybrid deep model
that first inputs image and audio signals into the audio
network and visual network, both of which use the CNN
architecture. Finally, the emotion predictions are output
through Restricted Boltzmann machines (RBMs) and support
vector machines (SVM). Among the results of the various
dataset tests, the highest accuracy rate achieved was 85.97%.
The approach used in [58] was to preprocess images and
sounds. The images first underwent grayscale conversion,
and the audio underwent framing windowing and Fourier
transform. Emotion recognition is performed through ELM
and SVM. Accuracy rate of 86. 4% was achieved for the
eNTERFACE database [59]. One study [60] considered both
images and audio for facial emotion recognition. This method
combines principal component analysis (PCA) with other
commonly used machine learning algorithms for emotion
prediction. In addition, the article also lists the effects of
various different algorithms on experimental results. The
experimental results show that the method combining random
forest (RF) with PCA achieves the best performance for
the eNTERFACE database. Other studies, [57] and [61]
also used the CNN architecture to separately extract fea-
tures for audios and images and finally output the emotion
prediction results through RBMs and SVM. Both methods
provided good verification results in the experiments. How-
ever, because the dimension of the image data is very large,
dimensionality reduction must be performed. Therefore, one
study [62] adopted bi-directional principal component anal-
ysis (BDPCA) and least-squares linear discriminant analysis
(LSLDA) for solving this issue. Further, the extracted features
were inputted into the optimized kernel-Laplacian radial basis
function (OKL-RBF) neural classifier. Audio data is analyzed
with prosodic features and Mel-scale frequency cepstral
coefficients. One study [62] combined the abovementioned
processes to achieve average recognition rate of 86.67%. The
above research results for audio-visual emotion recognition
were obtained in recent years. According to one of these
studies [58], the size of the eNTERFACE database is still
insufficient. Therefore, this database can achieve limited
improvement in recognition accuracy. This further confirms
the importance of transfer learning as described in this paper.
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In the future, this concept can be extended to various machine
learning applications, and the performance of Al can be
improved further.

In addition, facial expression recognition methods that
involve machine learning include SVM, as described in the
literature [63]. This method combines geometric deformation
features with SVM and applies it to recognize expressions
in image sequences. Its performance has been well validated
in experiments. Regarding speech emotion recognition, one
study [64] proposed an anchor model to solve this prob-
lem, and the Mel frequency cepstral coefficient (MFCC) and
Gaussian mixture model (GMM) techniques have also been
employed. One study [65] applied the MFCC technique and
added the Fourier parameters as a consideration factor for
speech emotion recognition. Another study [66] employed
SVM for speech emotion recognition, and the performance
of the method was verified using the Geneva Whispered
Emotion Corpus database. The aforementioned speech emo-
tion recognition methods have not been tested using the
same database, but the experimental results confirm that these
methods achieve favorable performance.

Facial AUs, geometric features, and graph-based mod-
elling techniques are generally applied separately in facial
expression analysis. However, Ghayoumi and Bansal [67]
united geometric features with facial AUs by employing PCA
and SVM. The AUs are mapped to the geometric features in
the procedure. In experiments, the six basic emotions were
used in the approach. The performance improved by 70%.

Because vision-based facial expression analysis has lim-
ited accuracy, the difficulty of its recognition process is high.
However, in the real environment, all the required information
in any situation cannot be obtained. Furthermore, if only
a small amount of the vision information can be acquired,
the recognition difficulty is considerably higher. Attempting
to collect all the useful information to use in the multimodal
approach is one favorable solution to this problem. However,
this article aimed to solve the problem of having limited train-
ing data, and the transfer learning concept was employed in
the training process of the proposed model. The experiments
detailed herein reveal that the transfer learning method is
feasible and practical to use for solving this problem.

This study proposed a transfer learning approach for solv-
ing the lack of large amount data problem. The experimental
results show that the transfer learning concept can help the
learning system to obtain higher performance. The solution
is expectedly sub-optimal, and it could be also possibly out-
performed by other approaches in a data abundance scenario.

VI. CONCLUSION

This study proposes an emotion recognition system based on
a deep neural network for improving the HRI. This system
is applied to a humanoid robot. Users’ facial images are
captured using a camera mounted on the head of a humanoid
robot. The robot then provides appropriate responses to the
user according to their emotions as recognized using the
proposed model. The proposed model combines CNN and
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LSTM and exploits the advantages of both CNN and RNN.
Leave-one-out cross-validation indicates that the model per-
formance is improved significantly. The feasibility and prac-
ticability of this model are validated.

APPENDIX
See Table 14.

TABLE 14. Table of acronyms.

Acronym Explanation
AU Action Unit
Al Artificial Intelligence
BDPCA Bi-Directional Principal Component Analysis
CLM Constrained Local Model
CNN Convolutional Neural Network
FACS Facial Action Coding System
GMM Gaussian Mixture Model
HRI Human-Robot Interaction
JAFFE Japanese Female Facial Expression
KE Key Emotion
LSLDA Least-Squares Linear Discriminant Analysis
LSTM Long Short-Term Memory
MFCC Mel Frequency Cepstral Coefficient
MLP Multilayer Perceptron
OKL-RBF Optimized Kernel-Laplacian Radial Basis Function
PCA Principal Component Analysis
RBMs Restricted Boltzmann Machines
RF Random Forest
RNN Recurrent Neural Network
SVM Support Vector Machines
TPR True Positive Rate
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