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ABSTRACT Active contour model (ACM) has widely used for segmenting two-phase images. However,
its performance may not be satisfactory for some color texture images when their features cannot be
effectively extracted. To alleviate this problem, in this paper, a novel neutrosophic set transformation matrix
factorization-based active contour (NSTMF-AC) approach is proposed for color texture segmentation. The
proposed NSTMF-AC is an effective and robust color texture segmentation method. Particularly, to effec-
tively capture a wide range of texture information, the proposed method extracts the features from the triple
domains, including spatial, wavelet, and spectral domains, and then uses neutrosophic set (NS) transform and
the corresponding operations to reduce the indeterminacy contained in the image. Furthermore, the method
obtains the resulting NS transformation matrix and utilizes a factorization-based ACM to perform image
segmentation. Finally, the proposed method is compared with the state-of-the-art segmentation algorithms
on a variety of natural images. The experimental results demonstrate that the proposed NSTMF-AC method
is more robust for two-phase image segmentation than other methods.

INDEX TERMS Texture segmentation, neutrosophic set, matrix factorization, active contour model.

I. INTRODUCTION
Image segmentation is a frequently occurring and signif-
icant problem in image processing and computer vision.
The purpose of texture image segmentation is to divide
a provided image into multiple regions with similar tex-
ture appearance [1]. In the past decades, a number of tex-
ture image segmentation methods have been introduced,
which could be generally divided into three groups: region
based [2], graph based [3], and active contour model (ACM)
based methods [4]– [8].

Most of segmentation methods of texture images, such
as many histological images [9], natural images [10],
or synthetic structures [4], generally consists of two steps,
extracting features and building a model for segmenta-
tion. In the feature extraction step, a variety of features
have been proposed to capture local statistical properties
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from the original texture image. They include filters-based
descriptors [11], e.g. Gabor transform [12] and wavelet
transform [13]–[14], and local texture descriptors, such as
binary patterns [15] and local spectral histograms [16]. In the
modeling step, An image model or a strategy needs to be
constructed for capturing region homogeneity [17] for seg-
mentation by using extracted texture features. The two stages
are complementary, they can not be treated separately. People
usually choose effective features and meaningful models
when designing segmentation algorithms.

As an classic segmentation model, ACM has been widely
used because it achieves pixel-level accuracy compared to
existing methods and provides closed and smooth curves to
characterize segmentation results. Up to now, the existing
ACM methods can be classified into two types: edge based
ACM models [18] and region based ACM models [19].

After the work of Osher and Sethian [20], many variants
of the level set model have been proposed. Yuan et al. [21]
presented a new segmentation method based on factorization
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theory (FBM). In order to solve the problem of segmen-
tation of complex images, Zhang et al. [22] proposed
an ACM method named locally statistical active contour
model (LSACM) method. Although the ACM methods
have achieved good results, the previous methods still have
some drawbacks. For example, the ACM methods require
an energy function that controls the motion of the curve,
so there are certain difficulties in function selection. Neu-
trosophic set (NS) was introduced in the literature [23],
which originated in the field of philosophy. NS mainly
provides a powerful tool to deal with the indeterminacy.
In recent years, NS has been applied to the field of
image segmentation [24]–[30]. Koundal [27] presented an
integrated texture based neutrosophic clustering segmenta-
tion method. Guo ei al. transformed the image into NS
domain to image segmentation [28].

For natural color images, color and texture are two impor-
tant properties. However, existingmethods are either based on
texture or based on color segmentation, and few documents
combine the two. To alleviate the problem that the texture
features and color features in the existing segmentation meth-
ods have not been integrated, in this paper, a novel neutro-
sophic set transformation matrix factorization-based active
contour (NSTMF-AC) approach is proposed for color texture
segmentation. Particularly, the method first extracts the color
values in the color channels, wavelet features and local spec-
tral histogram (LSH) respectively from the spatial domain,
wavelet domain and spectral domain. Then the method fur-
ther transforms the resulting features obtained from the
above triple domains into the NS domain. The entropy of
NS is defined and employed to evaluate the indetermi-
nacy, then the NS feature is obtained. Next, a factorization
based ACM is applied to the image segmentation. Finally,
the experimental results reveal that the proposed NSTMF-AC
method is more robust for two-phase image segmenta-
tion, and outperforms some representative segmentation
methods.

The contributions of this paper are as follow:
1) An NS feature is extracted from the triple domains. The

triple domains include the spatial domain, the wavelet
domain, and the spectral domain, and aremain informa-
tion channels of a given color texture. So the proposed
NS feature can effectively represent the color texture
information.

2) A novel neutrosophic set transformation matrix factor-
ization based active contour method is proposed for
color texture segmentation. It can segment natural color
texture images automatically. To our knowledge, it is
the first time to perform color texture segmentation
by using the neutrosophic set transformation matrix
factorization based ACM.

3) The experimental results demonstrate that the proposed
NSTMF-AC is more robust for two-phase image seg-
mentation than the other strategies, and can achieve
satisfactory segmentation performance compared with
state-of-the-art methods.

The remained paper is organized as follows: the general
definition of neutrosophic set and non-negative matrix fac-
torization theory are introduced In Section II. Section III
presents the proposed neutrosophic set transformation
matrix factorization-based active contour (NSTMF-AC)
approach. The experimental results of NSTMF-AC, as well
as the comparisons with other methods, are presented in
Section IV. Finally, a brief conclusion is given in Section V.

II. RELATED WORK
A. NEUTROSPHIC SET
As a useful tool, neutrosphic set (NS) has been used for image
processing and analysis [28]. NS considers an entity with its
opposite and the neutrality. Noted that the neutrality is neither
entity nor its opposite. The neutrality and the opposite of the
entity are defined as non-entity. From the NS theory, every
eventA is adjusted and balanced by the neutrality and the non-
entity. Every entity, its neutrality, and its opposite are defined
as T , I , and F . An event in NS is represented as A(t, i, f ),
where t varies in T , i varies in I and f varies in F .
By using NS transform, an image can be transformed into

a neutrosphic domain, and get a neutrosophic image that con-
sists of three parts T , I , and F . In the neutrosophic domain,
every pixel P(t, i, f ) has t% true, i% indeterminate, and f%
false. Similarly, an image in the NS domain is also composed
of three parts: T (i, j), I (i, j) and F(i, j). They are defined as
follows:

T (i, j) =
ḡ(i, j)− ḡmin

ḡmax − ḡmin
(1)

I (i, j) =
δ(i, j)− δmin

δmax − δmin
(2)

F(i, j) = 1− T (i, j) (3)

where g(i, j) is the intensity value of the pixel (i, j), ḡ(i, j)
is the local average value, δ(i, j) is the absolute value of the
difference between intensity g(i, j).
Given a gray image, an entropy is defined to evaluate

the distribution of the intensities. The larger the entropy
value, the closer the intensities. While if the entropy is small,
the intensities have different probabilities and their distri-
butions are non-uniform. Hence, three entropies EnT , EnI ,
EnF was respectively defined for T , I and F parts. These
entropies are used to estimate the distribution of NS images.
And then α−mean operation and β−enhancement operation
was employed to improve the NS transformation [23]. The
entropies are defined as follows:

EnNS = EnT + EnI + EnF (4)

EnT = −
max{T }∑
i=min{T }

pT (i) ln pT (i) (5)

EnI = −
max{I }∑
i=min{I }

pI (i) ln pI (i) (6)
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FIGURE 1. The flowchart of the neutrosophic set transformation matrix factorization-based active contour (NSTMF-AC) image
segmentation algorithm. (For clarity, we abbreviate the average energy features of the wavelet subbands LH and HL as MELH and MEHL
respectively, and local spectral histogram as LSH.).

EnF = −
max{F}∑
i=min{F}

pF (i) ln pF (i) (7)

where pT (i), pI (i) and pF (i) represent the probability of
element i in T , I and F , respectively. When EnI (i + 1) −
EnI (i)/EnI (i) < ε, the true subset of the original image is
obtained.

B. FACTORIZATION BASED SEGMENTATION FRAMEWORK
In order to build an effective segmentation model,
Yuan et al. [21] proposed a significant factorization based
approach for texture images segmentation, in which they
distribute a pixel into the class that has the greatest weight.
In [21], they extract texture information to construct aM×N
feature matrix Y from an input image with N pixels. By per-
forming matrix factorization, the resulting feature matrix can
be considered as a combination of the features and their
corresponding weights. That is, the feature matrix can be
represented as:

Y = Rβ + η (8)

where R is the representative feature matrix with sizeM ×L,
a L × N matrix β is to represent the weight information.
Matrix η denotes the model of noise. Each pixel is distributed
to a segment whose representative feature has the greatest
weight.

Based on the above ideas, in order to calculate the number
of segments L (that is, the number of features), Yuan et al.
use the singular value decomposition (SVD) [31] technique.
The constraint is that L must satisfy the approximate matrix
and the matrix Y is infinitely close. Using the SVD technique,
the decomposition approximation matrix is as follows:

Y ′ = U ′6′V ′T (9)

whereU ′ and V ′ form the first L columns of YY T and Y TY in
the SVDofmatrix Y , respectively.6′ is an L×L matrix, some
value of matrix is the singular value and the other elements
are equivalent to zero. If we define R1 and β1 to solve the
problem, then R1 = U ′ and β1 = 6′V ′T . Based on the
Eckart-Young theorem, this solution obtains the smallest least
square error. However, it is not distinct because of a fact that

Y ′ is defined:

Y ′ = R1β1 = R1QQ−1β1 (10)

where Q means an invertible square matrix, this formula
shows that representative features R and combination weight
matrix β in formula (10) are linear transformations of R1 and
β1, respectively.
After solving the representative features R, the matrix of

R and the corresponding weights can be computed by the
Alternating Least Squares (ALS) algorithm [32]. In addition,
the clustering idea is also utilized. However, due to that
a cluster model was used for segmentation, the resulting
segmentation boundary was not smooth [32]. To alleviate
this problem, in this work, a neutrosophic set transformation
matrix factorization-based active contour model is proposed
for segmentation, which will be described in the following
section.

III. PROPOSED METHOD
In this section, a neutrosophic set transformation matrix
factorization-based active contour (NSTMF-AC) method is
proposed, which can achieve segmentation with high accu-
racy. There are two main steps: 1) obtaining description of
image structures and 2) constructing an factorization based
image model for segmentation. The pipeline of the proposed
NS and factorization based ACM is shown in Fig. 1. The
method first extracts neutrosophic set (NS) features in the
triple domain. The NS feature is extracted by NS transforma-
tion in the triple domains (spatial, wavelet, and spectral). The
NS feature can represent the color information and texture
information including information of the wavelet domain and
local spectrum, and can be formulated as a feature matrix.
The performance of those features are obvious in images
corresponding to natural scenes.When the construction of the
feature matrix representing the image is completed, the pro-
posed method will establish an matrix factorization based
active contour model for image segmentation.

A. NS FEATURE EXTRACTION IN THE
SPATIAL-WAVELET-SPECTRAL DOMAIN
Due to the diversity of texture images and implicit sep-
arability in feature maps, texture features can not be
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effectively extracted, and thus traditional active contour
methods may not achieve the satisfactory segmentation per-
formance. To alleviate this issue, in the feature extraction
step, the features are extracted from the triple domains includ-
ing spatial, wavelets, and spectral domains to effectively cap-
ture a wide range of texture information. Then the proposed
method uses neutrosophic set (NS) transformation to reduce
the indeterminacy contained in the image, and further the
resulting neutrosophic set transformation matrix is obtained.
In the spatial domain, the L ∗ u∗ v color space is used instead
of other color spaces for color images due to the perceptual
unity of L ∗ u ∗ v color space.
Considering that any texture has directional and multireso-

lution characteristics, the method extracts directional features
from a wavelet domain. Specifically, in this paper, the pro-
posed method performs a one-scale wavelet transform to the
corresponding gray image of a given color image, and then it
can obtain the fourwavelet subbands (for simplicity, the paper
denotes them as LL, LH, HL and HH respectively.) Due to the
LH andHL subbands containmost of directional information,
the mean energy features from the two subbands are extracted
to represent the directional texture information. They are
defined respectively as:

MELH (i, j) =
1

τ × τ

bτ/2c∑
k=−bτ/2c

bτ/2c∑
l=−bτ/2c

cLH (i+ k, j+ l)

(11)

MELH (i, j) =
1

τ × τ

bτ/2c∑
k=−bτ/2c

bτ/2c∑
l=−bτ/2c

cHL (i+ k, j+ l)

(12)

where τ represents the value of the sliding window, cLH
and cHL denote the wavelet coefficients of the LH and HL
wavelet subbands respectively [13]– [14], [33]. The value of
τ is selected as 5 as in [14].

The spectral domain is an important channel of a texture
image, and thus constructing an effective spectral feature
can improve the texture representation and segmentation per-
formance. To this end, the proposed method employs local
spectral histogram (LSH) to extract features from the spectral
domain. The method firstly selects a fixed window W for
input image I, and then chooses a filterbank {F{α}, α =
1, 2, . . . ,K }. These filters perform a convolution operation to
obtain the response results. Based on the selected filterbank,
the local spectral histogram (LSH) can be defined as:

HW =
1
|W |

(H (1)
W ,H (2)

W , . . . ,H (k)
W ) (13)

where H (1)
W represents the histogram corresponding to a

sub-band image W {α}, |·| denotes cardinality and the size of
windowW is called the integration scale. It has been verified
by experiments that the local spectral histogram can effec-
tively represent the texture appearance in the selected spectral
domain [34]. In this work, local spectral histogram (LSH)
should be computed via two LoG filters and an intensity

filter. Note that the integration scale should be large enough
in order to get more effective texture information. However,
the larger the integration scale, the higher the computational
complexity. In this work, experimental results reveal that the
boundaries can be accurately localized when the integration
scale is chosen as 10. More detailed description of LSH can
be found in [34].

Due to that the above features are extracted from the three
different domains of color textures, it may not be able to
obtain an effective color texture presentation by directly con-
catenating them. On the other hand, for the two-phase texture
segmentation task, each pixel should be classified into the
foreground or background region. There should not be inde-
terminacy in the process of segmentation. In NS, indetermi-
nacy is quantified explicitly, and thus the indeterminacy can
be reduced by using NS transformation and its sequent oper-
ations including α−mean operation and β−enhancement
operation [23]. Particularly, the process of NS feature extrac-
tion is summarized as below:
Step1: Transform triple features into NS domain indepen-

dently using formulas (1) − (3), which are represented as
L_NS , u_NS , v_NS , MELH_NS , MEHL_NS and LSH_NS .
Step2: Compute α and β parameters, and perform the

α−mean and β−enhancement operations on the true subsets
of L_NS , u_NS , v_NS , MELH_NS , MEHL_NS and LSH_NS .
Step3: Compute the entropy EnI (l) of the indeterminate

subsets of L_NS , u_NS , v_NS , MELH_NS , MEHL_NS and
LSH_NS .
Step4: If EnI (i + 1) − EnI (i)/EnI (i) < ε, go to step (5),

else go to step (2).
Step5: Obtain the true subsets of L_NS , u_NS , v_NS ,

MELH_NS , MEHL_NS and LSH_NS , and those true subsets
form feature matrix H =

[
T L_NS ,T u_NS ,T v_NS , TMELH_NS ,

T MEHL_NS ,T LSH_NS
]
.

Note that the NS features extracted from the spatial-
wavelet-spectral domain are rational. Specifically, the pixel
values in L ∗ u ∗ v color space in the spatial domain are
extracted to represent the color information of the image.
Directional and multiresolution characteristics are extracted
from the wavelet domain due to that the wavelet transform
can capture the directional and multiresolution information.
While spectral characteristics are extracted from the spectral
domain. Furthermore, NS transformation is utilized to trans-
form the above triple-domain features into the NS feature
matrix. Finally, matrix factorization and an active contour
model is employed for segmentation, which will be intro-
duced in the following subsection.

B. NEUTROSOPHIC SET TRANSFORMATION MATRIX
FACTORIZATION BASED ACTIVE CONTOUR MODEL
Once the neutrosophic set transformation matrix of an given
texture image is computed, the proposed method plans
to employ an active contour model (ACM) for two-phase
segmentation. That is, for an input image, an active contour
model is utilized to segment it into two parts: the foreground
area and the background area. To construct an adaptive
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Algorithm 1 Neutrosophic Set Transformation Matrix Fac-
torization Based Active Contours
1: Initialize the level set function φ0;
2: Extract color values in the L ∗ u ∗ v color channels,
MELH andMEHL according to (11) and (12), local spec-
tral histogram by (13) from the Spatial-Wavelet-Spectral
domain.

3: Transform the resulting features obtained from the above
step by the NS transformation respectively by using (1)-
(3), and obtain the NS feature matrix H .

4: Calculate the weighted vector w1 and w2 [21].
5: Evolve the level set function by formula (20);
6: If φt + 1 satisfies the stationary condition, stop; other-

wise, t = t + 1 and go to step 4.

ACM, a matrix factorization theory is used to compute the
weights of the two parts as in [21]. Now the method briefly
describes the neutrosophic set transformation matrix factor-
ization based active contour model. The method defines an
image domain �, and then use �1, �2 represent the object
region and background region respectively. On the basis of
the theory in the literature [21], H is the feature matrix that
can be factorized as follows:

H = Rβ (14)

where R = [r1, r2], β = [w1,w2]T . r1 and r2 are rep-
resentative features of the object area and the background
area, respectively. Similarly, w1 and w2 are the corresponding
combination weights, that is, thew1 andw2 in fig. 1. Note that
the range of w1 and w2 is [0, 1].
By using the above weights, a fitting energy function of

ACM is constructed. The evolving active contour can be
defined as C = {x |φ(x) = 0 }, which is the level set function
φ(x). Considering the two-phase segmentation, the proposed
matrix factorization based active contour model can be writ-
ten as:

E = λEF + ER (15)

where λ is a fixed parameter, EF is the energy term, and ER
is the regularization term.

The energy term EF denotes the non-negative matrix fac-
torization based energy term, that can be defined as:

EF =
∫
�

[(1− w1(x))Hε(φ)+ (1− w2(x))(1− Hε(φ))]dx

(16)

where Hε(x) is the smoothed Heaviside function, further-
more, δ(x) is the smoothed Dirac function. w1 and w2 on
behalf of the weights of two sub-regions �1, �2, that is,
the representative of the two regions. Considering the fact
that the representative feature is a linear transformation of R1,
the values of w1 and w2 can be obtained through [21].
The regularization termER is a regularization term that acts

to smooth the curve and avoid initialization operations, which

is proposed by Li et al. [35]. And the Euclidean length term
is also incorporated into the formulation. Finally, the total
regularization formulation is as follows:

ER = µ · L(C)+ ν · R(φ)

= µ

∫
�

(∇H (φ(x)))dx + ν
∫
�

(|∇φ(x)| − 1)2dx (17)

where µ and ν are constant parameters.
So, the resulting energy functional can be expressed as:

E = λ
∫
�

[(1− w1)Hε(φ)+ (1− w2)(1− Hε(φ))]dx

+µ

∫
�

(∇H (φ(x)))dx + ν
∫
�

(|∇φ(x)| − 1)2dx (18)

By minimizing the above energy function, the segmenta-
tion result of a given texture image can be obtained. The
gradient of E with respective to φ can be computed as [5]:

∂φ

∂t
= λδ(φ)(w2 − w1)+ µδ(φ)div

(
∇φ

|∇φ|

)
+ ν

(
∇φ2 − div

(
∇φ

|∇φ|

))
(19)

where δ(φ) is the Dirac functional.
In order to keep the numerical implementation stationary,

the proposed method should regularize the level set method
during the iteration of formula (19). Li et al. [36] proposed
a signed distance regularization. However, there are some
unnecessary valleys and peaks. Based on the calculation
of the above level set gradient, in this paper, the proposed
method uses the following formula to conduct the level set
evolution:

φt+1 = φt +1t ·
∂φ

∂t
(20)

where1t is the time-step. φt is the level set function obtained
from the tth iteration.

Fig. 1 shows the flowchart of the neutrosophic set
transformation matrix factorization-based active contour
(NSTMF-AC) image segmentation. The whole method first
obtains the feature matrix H through the feature extrac-
tion process, and then use the formula (14) to decompose
the feature matrix. Finally, the two weight coefficients w1
and w2 corresponding to the object and the background are
obtained. Next, the method brings w1 and w2 into the factor-
ization based energy function term, and then uses the gradient
descent algorithm to obtain the segmentation result. Further-
more, Algorithm 1 describes the entire algorithm flow. The
whole algorithm is mainly classified into two steps: firstly,
obtain the NS feature matrix H , and then use the active
contour model based on matrix factorization to perform the
segmentation.

Note that most of the redundant information and indetermi-
nacy in the image can be reduced due to NS transformation.
In order to prove the significance of the NS transformation,
this paper conducts some comparative experiments between
NS features and no NS transform features. In fig. 3, the first
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row is the A, B, and C images from Fig. 2. The second row is
the segmentation results of our NSTMF-ACmodel, while the
last row is the segmentation results of no NS transform fea-
tures based factorization ACM method. The only difference
between the two methods is the NS transformation operation
after extracting the features of the triple domains. According
to the different experimental results of the natural images
in Fig. 3, in general, the proposed NSTMF-AC method can
achieve relatively good segmentation results. This is because
NSTMF-ACmethod considers neutrosophic set (NS) features
in the triple domains, the constructed texture descriptors use
NS theory to decrease the indeterminacy of the image. In the
next section, the paper will demonstrate the effectiveness of
our algorithm through specific experimental results.

FIGURE 2. Some simple texture images.

FIGURE 3. Comparative experiments between NS features and no NS
transform features.

IV. EXPERIMENTAL RESULTS
To demonstrate the performance of the proposed neutro-
sophic set transformation matrix factorization-based active
contour (NSTMF-AC) approach for color texture segmen-
tation, in this section the method will test NSTMF-AC on
some color texture images and compare it with state-of-
the-art representative texture segmentation. The other meth-
ods are as follow: NS segmentation model [28], Chan-Vese
(C-V) model [37], the signs of the pressure forces (SPF)
model [38], factorization-basedmodel (FBM) [21],Modified
neutrosophic approach (MNS) [24], texture-based neutro-
sophic clustering (TNS) [27], level set approach of active
contour model (LSACM) [22] and fast robust fuzzy C-means
(FRFCM) [39]. In the following subsections, first demon-
strate performance evaluation of proposed NSTMF-AC on

color textured images and parameter investigation, and then
perform further comparisons with othermethods, followed by
quantitative evaluation.

A. PERFORMANCE EVALUATION ON COLOR TEXTURED
IMAGES AND PARAMETER INVESTIGATION
To demonstrate the segmentation performance of the pro-
posed NSTMF-AC, first it is tested on two texture images
included in Berkeley dataset [40]. Then compared with some
NS based methods and traditional C-V method. Fig. 4 (a)-(f)
show the original images, ground truth segmentations,
the segmentation results of the four methods, NSTMF-AC,
C-V [36], MNS [24] and TNS [27], respectively. It can be
seen that Fig. 4 displays the comparison results on image with
simple and complex textures, respectively. It can be clearly
seen that the proposed NSTMF-AC performs better than
the other methods on both two texture images, although the
results of the NSmethods are not too bad on the first relatively
simple image. This is because proposedNSTMF-AC consider
both the local spectral information and the wavelet domain
information of the image. Moreover, the constructed texture
descriptors of proposed method use NS theory to decrease the
indeterminacy of the image.

There are multiple scale parameters for local spectral his-
tograms, such as filter scales, integration scales. However,
considering that the proposed method just uses filters to
extract fundamental and small structures, so the fixed values
are chosen for the filters. The parameters in ACM are set as
λ = 1, µ = 1, ν = 1 and time step 1t = 1 due to they
has been used in many methods [5], [22], [37]. Therefore,
the integration scales significantly affect our experimental
results. The choice of the integral scales will affect the seg-
mentation performance. In order to select a suitable integral
scale, experimental results of three color images at different
integral scales are shown. The used images are image C,
image D and image E in Fig. 2, respectively. Depending on
the size of the image, the choice of the integral scale should
not be too large or too small. So the range of integral scale
we choose is between 2 and 20. Experiments are carried out
with a growth rate of size 2 respectively. Fig. 5 illustrates the
segmentation accuracy for three images, in which the red,
blue, and green lines represent the experimental results of
image C, image D and image E, respectively. Fig. 6 is an
example of image C. It can observe that the segmentation
accuracy is the highest when the value of integral scale
is 10. At the same time, the experiments have the best visual
effect according to Fig. 6. Therefore, the integral scale of
the proposed NSTMF-AC model is 10. In the next section,
the proposed method will be compared with other existing
methods in more detail.

B. COMPARISONS WITH OTHER METHODS
In this subsection, the proposed NSTMF-AC is compared
with six representative methods on some more complicated
textured images.
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FIGURE 4. Segmentation results on natural images; (a) original images, (b) Ground-truth segmentation results, (c) NSTMF-AC,
(d) C-V [37], (e) MNS [24], (f) TNS [27].

FIGURE 5. Illustration of the segmentation accuracy at different integral
scales for images C, D, E.

FIGURE 6. Segmentation results of image C at different integral scales.

Fig. 7 shows various color texture images and the cor-
responding segmentation results of proposed NSTMF-AC,
C-V [37], SPF [38], FBM [21], LSACM [22] and
FRFCM [39]. The experimental results show that the pro-
posed NSTMF-AC clearly segments the main regions and
well localize the boundaries because it takes into account the
NS features in the triple domains in which the indeterminacy
of the image is greatly reduced. Particularly, it can be also
observed from the first row of Fig. 7, that all the six methods
can segment the foreground on the texture image A with
simple background is segmented. However, in addition to the
proposedNSTMF-AC and the FBMmodel, the othermethods
will produce over segmentation results. From the second
row of Fig. 7, it can see that for the nature image B whose
image background and object have big texture difference,

NSTMF-AC can obtain desirable segmentation results. How-
ever, The other five methods can not accurately segment
nature images with different features.Moreover, the proposed
NSTMF-AC performs better than the other five methods on
the rest images, and the segmentation results of SPF and FBM
methods are the closest to the proposed NSTMF-AC.

To show the robustness of proposed NSTMF-AC, experi-
ments are conducted on a set of images, which are corrupted
by different levels of Gaussian noise. These noisy images are
used to test the accuracy and noise robustness of proposed
NSTMF-AC method. The four images K, L, M and N used in
the experiment corrupted by Gaussian noises with variance
of 0.03, 0.05, 0.1, and 0.15, respectively. The segmentation
results of NSTMF-AC, C-V, NS, SPF, FBM, and LSACM are
shown in (b), (c), (d), (e), (f) and (g) of Fig. 8, respectively.

It can be obviously observed that proposed NSTMFAC
obtains better segmentation results than five other methods.
Moreover, with the increase of noise, the segmentation result
of NSTMFAC is better than the other methods. In a word, for
images with Gaussian noise, NSTMFAC performs better than
the other methods.

C. QUANTITATIVE EVALUATION AND COMPARISONS
To further verify the superiority of NSTMF-AC, in this
subsection, two objective criterias are used to evaluate its
effectiveness. The first one is the corresponding segmentation
accuracy (SA) used by [41]– [42]. SA is defined as follows:

SA =
c∑

k=1

Ak ∩ Ck∑c
j=1 Cj

(21)

where c is the general number of regions, Ak are pixels in
kth region segmented by proposed method and Ck represent
the pixels in kth region of Ground Truth.

∑c
j=1 Cj is the total

pixels of an image.
The second criterion is F-measure, which is defined as:

F − measure = 2 ·
P · R
P+ R

(22)

where P and R denote the precision and recall rate of segmen-
tation.

Table 1 reports the corresponding SA of the experimental
results in Fig. 7. Table 1 clearly shows that the experimen-
tal SA of the proposed method is significantly higher than
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FIGURE 7. Segmentation results on natural images; (a) original images, (b) NSTMF-AC, (c) C-V [37], (d) SPF [38], (e) FBM [21], (f) LSACM [22],
(g) FRFCM [39].

other algorithms for these images. In several other ways,
both FBM and LSACM have close performance according to
Table 1. Similarly, the quantitative comparisons of F-measure

is reported in Table 2. It can see fromTable 2 that the proposed
method can get more accurate results than other methods in
almost all images.
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FIGURE 8. Segmentation results on noisy images; (a) noisy images, (b) NSTMF-AC, (c) C-V [37], (d) NS [28], (e) SPF [38], (f) FBM [21],
(g) LSACM [22].

FIGURE 9. Segmentation results of image D under different cost
functions. (a) original image D, (b) the result of the proposed NSTMF-AC,
(c) the result of the proposed method to remove the Euclidean length
cost function term.

TABLE 1. Comparison segmentation accuracy (SA) with different
algorithms on natural images.

Table 3 and Table 4 are the SA and F-measure values
of Fig. 8, respectively. According to Tables III and IV,
the segmentation accuracy and F-measure of the proposed
NSTMF-AC are consistently higher than other methods for
these textured images with different level Gaussian noise.
It is obvious that C-V is sensitive to Gaussian noise when the
noise level is high. On the contrary, LSACM segmentation is
less affected by noise. However, compared with the proposed
NSTMF-AC, its segmentation result is still not satisfactory.

TABLE 2. Comparison F-measure with different algorithms on natural
images.

TABLE 3. Comparison segmentation accuracy (SA) with different
algorithms on noisy images.

TABLE 4. Comparison F-measure with different algorithms on noisy
images.

To demonstrate the effectiveness of the proposed method,
we delete the Euclidean length cost function term R(φ) in
Formula (17) and obtain a new cost function. The visual
results are shown in Fig. 9. The corresponding values of SA
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TABLE 5. Comparison SA and F-measure with different cost functions on
image D.

and F-measure are shown in Table 5. It can be found from
Fig. 9 and Table 5 that the proposed method performs better
than the resulting method by deleting Euclidean length cost
function term.

V. CONCLUSION
In the paper, a significative neutrosophic set transforma-
tion matrix factorization-based active contour (NSTMF-AC)
method is introduced for color texture segmentation. This
NSTMF-AC method first extracts neutrosophic set (NS) fea-
tures in the triple domain (spatial, wavelet, and spectral).
Furthermore, the method establishes a novel active contour
model based on the theory of the matrix factorization. This
NSTMF-ACmethod can reduce the influence of image noise,
especially Gaussian noise, and improve the segmentation
accuracy. Experimental results on some typical color texture
images demonstrate that the proposed NSTMF-AC method
can achieve satisfactory segmentation performance when
compared with six representative methods.
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