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ABSTRACT In-air gesture interaction enables a natural communication between a man and a machine with
its clear semantics and humane mode of operation. In this paper, we propose a real-time recognition system
on multiple gestures in the air. It uses the commodity off-the-shelf (COTS) reader with three antennas to
detect the radio frequency (RF) signals of the passive radio frequency identification (RFID) Tags attached
to the fingers. The idea derives from the crucial insight that the sequential phase profile of the backscatter
RF signals is a reliable and well-regulated indicator insinuating space-time situation of the tagged object,
which presents a close interdependency with tag’s movements and positions. The KL divergence is utilized
to extract the dynamic gesture segment by confirming the endpoints of the data flow. To achieve the template
matching and classification, we bring in the dynamic time warping (DTW) and k-nearest neighbors (KNN)
for similarity scores calculation and appropriate gesture recognition. The experiment results show that the
recognition rates for static and dynamic gestures can reach 85% and 90%, respectively. Moreover, it can
maintain satisfying performance under different situations, such as diverse antenna-to-user distances and
being hidden from view by nonconducting obstacles.

INDEX TERMS Gesture recognition, radio frequency identification (RFID), phase.

I. INTRODUCTION
Aswireless sensor technology develops, the human-computer
interactions (HCI) have transformed from traditional ways
of keyboards and touchscreen to in-air gesture interaction.
Gesture is a natural and intuitive way to express human
ideas, and the user can interact with the smart devices around
using pre-defined air gestures. Therefore, the research on
precise and flexible gesture recognition has shown a broad
and beautiful application prospect. It can be used in smart
home to control appliances at home [1], which reduces the
dependence on remote controllers and mobile terminals. And
for sign language recognition, gestures can help deaf people
or other inconvenient crowds improve their standard of liv-
ing [2]. Another common application is the Remote Control
Robot [3], in which robots can be controlled by gestures to
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perform the tasks in dangerous scenes such as fire scene,
flood rescue front line, underground operations and other
situations not conducive to personal safety.

All existing gesture recognition systems can be generally
divided into several major categories. The first category is
based on the wearable sensors, which achieves the recogni-
tion effect by utilizing the specific information returned from
the sensor [4]–[7]. Especially, in [8], sensors are deployed
to capture arm gesture for implicit authentication. Compared
to sensor-based gesture recognition mechanism, the com-
puter vision-based systems such as Kinect [9], PlayStation
Eye [10] and application [11] are well developed after several
years of trials. The fundamental techniques of vision-based
multi-touch technique is the high performance image pro-
cessing and template matching. Otherwise, with the increase
of wireless technology and the expansion of wireless net-
work coverage area, the RF-based gesture recognition devel-
oped gradually [12]–[14]. However, in the above mentioned
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FIGURE 1. Example gestures used for the experiments in our system.

systems, there are some internal defects listed as follows:
1) Poor portability: in order to maintain reliable system
performance, battery-based sensors are lack of space for
portability improvement; 2) Low robustness: for vision-based
recognition systems, high dependence on light conditions
limits general use of them in certain environments. Because
the illumination changes, mutual occlusion will bring low
system stability; 3) High cost: specialized or modified hard-
ware for wireless signal processing, which is unfavorable for
our daily usage.

As the core support technology of Internet of things (IOT),
RFID provides a low-cost means of information exchange to
achieve effective communication between nodes.Meanwhile,
the passive RFID tag which is a battery-free node that can
send data to the UHF reader autonomously. RFID has been
achieved success in many case, such as the application on
Warehouse Management System (WMS) [15], the tracking
of target object [16]–[18] and indoor location [19]–[23].
Specifically, research on RFID-based gesture recognition is
also on the rise during recent years and obtains positive
breakthroughs in [1], [24], [25]. However, they have not
taken both static and dynamic gestures into consideration and
the system performance is limited by the complexity of the
environment. To make up for the deficiencies, we combine
static and dynamic gesture features to establish a relational
model of phase trend and relative position of tags.

In this paper, we propose a real time static and dynamic
gesture recognition system for in-air interaction, which using
the backscatter communication between the battery-free pas-
sive tags and the COTS RFID reader. We summarize the
advantages of this system over other existing systems as
follows:1) Non-line of sight (NLOS) identification, since
the backscatter signal is capable of high penetration; 2)
Energy-free sensing, since passive RFID tags have no inde-
pendent power source and must be activated by RFID reader;
3) low cost and lightly carrying, since the passive RFID tags
are light and cheap while the COTS RFID reader release the
user from any hardware modifications.

The main idea is based on the observation that the move-
ment of a tag will cause remarkable and special variations
of the reflected phase trend and the tag’s stationary position
has a strong correlation with the real-time phase values.

Thus, by analyzing and measuring the phase trend of the
backscatter signals, both static and dynamic gesture recog-
nition can be achieved naturally.

However, developing such a system is not so straight-
forward. The design of our system involves the following
challenges:
(1) How to eliminate the influence of phase wrapping?

The raw phase is a periodic function and will jump at each
adjoining propagation cycle. Specially, when the phase value
decreases to 0, it will jump to 2π , and then increase as usual.
we term this as a phase wrapping, which may be mistakenly
considered as the fluctuation of the phase, thus degrading the
system performance.

We address this problem by using phase unwrapping
method. The general idea is to add or subtract 2π on the phase
value when the phase jump occurs.
(2) How to extract the feature template of each gesture?

Since static gestures appear in the time range of stable data
while dynamic gestures take place in period of data fluctua-
tion. For static case, the key to the problem is to make use of
the relative position measure between tags. And for dynamic
gesture extraction, the major task is to determine the start and
end times of each gesture from the continuous phase stream.

In our system, we screen out three remarkable features
properly for distinguishing static gestures. Simultaneously,
based on KL divergence, we comparing the discrete proba-
bility distribution function (PDF) of phase values within two
adjacent sliding windows to extract dynamic gestures.
(3) How to recognize the predefined gestures? Traditional

recognition system takes advantages of wearable sensors
e.g. accelerators and gyroscopes to detect changes in gesture
posture. However, this simple data collection method has
relatively high false detection rate.

We deal with this problem by measuring the matching
degree between the current gesture sequences and the feature
template. Based on this, the k-nearest algorithm is used to
achieve gesture classification and recognition.

We accomplish our system by using the COTS Impinj
RFID reader for collecting the phase trend reflected from
the passive RFID tags. And after the collected data pre-
processing, we come to the gesture feature extraction and
sample training. The recognition mechanism is based on
the matching methods for gesture classification. We deploy
the evaluation experiments upon six gestures (vary in state)
shown in Figure 1, namely ‘‘Scissors,’’ ‘‘Paper,’’ ‘‘Rock,’’
‘‘Push,’’ ‘‘Turn Right’’ and ‘‘Pull.’’

We summarize the contributions of this paper as follows:
• To the best of our knowledge, this is the first attempt
to design a gesture recognition system which utilizes
available phase fromCOTs devices to support both static
and dynamic gesture recognition.

• We discover unique features differentiating each gesture
type. And for the feature extraction, we leverage the
observation that static gestures tend to appear within the
time period of phase data stabilization while dynamic
gestures occur during the periods of fluctuation.
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• For superior recognition, we carry out different normal-
ization and classification schemes on static and dynamic
gestures.

• We design and implement our system with COTS RFID
devices. Experiments demonstrate the system feasibility
under varying deployments such as visual field occlu-
sion and different antenna-to-user distances.

This paper is organized as follows. In section 2 the related
work is presented. After that, we introduce the background
and empirical studies in section 3. Themain design of our sys-
tem is explained in section 4.We conduct our implementation
and evaluation in section 5. Section 6 gives the limitations of
our system and a foreword on future work. Finally, our work
is concluded.

II. RELATED WORK
The related work we focus on can be broadly divided into a
few categories.

A. RFID INDOOR LOCATION
RFID-based
solutions for location has relatively large number of research
results. There are several well-known systems work well in
performance, such as TagOram [16], LANDMARC [19] and
RF-IDraw [23]. LANDMARC introduces reference tags at
a known location to correct the uncertainty of the tracking
tag. The system improves the positioning accuracy of the
system with fewer readers and greatly reduces the system
cost. Otherwise, both RF-IDraw and TagOram utilize the
phase characteristics in RFID signals to improve the robust-
ness and accuracy of location, which is the basis of our work
that the phase characteristic is a periodic function that is
closely related to the communication distance and often has
a strong anti-interference ability against complicated indoor
environments. However, instead of obtaining the tag’s track or
accurate position, we focus on the detection and recognition
of gestures.

B. ACTIVITY RECOGNITION
There are plenty of research on the human activity recog-
nition. Based on its implementation, it can be divided into
two categories: device-free and device-carried. Most of these
research on object behaviors are using RFID or sensors.
The examples of RFID-based behavior recognition such as
GRfid [24] and FEMO [26], having achieved a convincing
success in distinguishing different human behaviors. The
GRifd system utilizes the phase changes of RFID signal
to detect dynamic gestures, which is a device-free system
and brings great convenience to users. However, Non-contact
recognition using the RFID tags will also sacrifice the signal
stability and lead to unwilling diversity of phase waveforms,
which will increase tasks of gesture segmentation and match-
ing. FEMO proposes a platform for bodybuilder to assess
their performance after free-weight exercise. It works by
analyzing the Doppler shifts extracted from the backscatter
signals between the tags attached on the dumbbells and the

RFID reader equipped with antennas, and it also use the
UI module to illustrate the results of detection, recognition
and exercise performance. To meet the real-time performance
of HCI, unlike the FEMO triggering results after activity
finished, the recognition mechanism of our design is adaptive
and suitable for most interactive applications.

III. PRELIMINARIES
In this section, we introduce the backscatter communication
in RFID systems and RF phase. We then take two sets of
empirical experiments on the reflected backscatter signals
and finally confirmed that phase is a favorable feature for
real-time gesture recognition.

A. BACKSCATTER COMMUNICATION IN RFID SYSTEMS
Passive RFID systems use tags with no internal power source
and instead are powered by the electromagnetic energy trans-
mitted from an RFID reader [27]. Figure 2 provides a concep-
tual diagram of the radio wave propagation between an RFID
reader and a passive RFID tag. The reader sends energy to an
antenna which converts that energy into an RF wave that is
sent into the read zone. Once the tag is read within the read
zone, the RFID tag’s internal antenna draws in energy from
the RFwaves. The energymoves from the tag’s antenna to the
Integrated Circuit (IC) and powers the chip which generates
a signal back to the RF system. This is called backscatter.
The backscatter, or change in the electromagnetic or RFwave,
is detected by the reader (via the antenna), which interprets
the information.

FIGURE 2. Backscatter communication.

B. RF PHASE
For an RF carrier wave at frequency f (Hz), the relation
between frequency and wavelength is given by λ = c/f ,
where c is the speed of the EM wave in the communication
mediumwhich, in air, is equal to the speed of light(≈ 3×108).
As shown in Figure 2, the total distance traversed by the signal
will be 2R. In addition to the RF phase rotation over distance,
the reader’s transmit circuits, the tag’s reflection characteris-
tic, and the reader’s receiver circuits will all introduce some
additional phase rotation θT , θTAG and θR respectively [28].
The total phase rotation can be expressed as:

ϕ + 2kπ = 2π
2R
λ
+ θT + θTAG + θR (1)
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FIGURE 3. The parameter value of Phase, RSSI and Doppler shifts in both
the static and dynamic cases.

where ϕ, an output parameter from the RFID reader, is the
measured phase within [0, 2π ]. The unknown parameter k is
an integer guaranteeing the phase periodicity.

C. EMPIRICAL EXPERIMENTS
In this subsection, we conduct a serial of empirical experi-
ments on the reflected backscatter signals using COTS ImpinJ
reader and a passive tag. These experiments are deployed to
verify the following three observations before our design.
Observation 1: The phase is more reliable and well-

regulated than other output parameters from the reader, such
as RSSI and Doppler shift.

In the first experiment, we focus on the three outputs from
COTS Impinj reader, namely Phase, RSSI and Doppler shift.
In order to select the most suitable indicator for our design,
we compare the value of the three parameters in the static and
dynamic condition of the tag. The result is shown in Figure 3,
we can see that RSSI and Doppler shifts tend to be easily
influenced and irregular while the phase is stable in static and
well-regulated in dynamic.
Observation 2: Once the tag position is fixed, the raw

phase obeys the Gaussian distribution and is barely influ-
enced by the tag orientation.

As positions of wearable devices tend to be multivariate,
it is crucial to consider the phase noise. Since its fixed posi-
tion with respect to the antenna, we rotate the tag around
its long axis with a step of 15◦. Figure 4(a) shows the raw
phase collected by UHF reader under different tag orienta-
tion. We can see that owing to the inherent channel noise,

the raw phase values seem to be steady around same level.
Then we use Q-Q plot method to examine whether the values
obey the Gaussian distribution (shown in Figure 4(b)). The
corresponding points in theQ-Q plot approximately lie on the
line y = x, which means that the phase values are normally
distributed.
Observation 3: The phase has a linear relation to the

distance within an intra-wave and a stable periodicity at
inter-wave.

This observation is the main basis for the identification
model establishment. We conduct this experiment using a toy
car attached by the target tag, and we control the car to move
away from the antenna at a constant speed. The results is plot-
ted in Figure 4(c).We can see that the measured cycle is about
161.8mm and the periodicity presented by phase waveform
well matches the theory according to Equation (1), that is the
phase will clearly repeat from 0 to 2π at distances separated
by integer multiples of half wavelength (λ2 ≈ 162.9mm).

Obviously, all of the above experiments verify our obser-
vations. Which indicates that backscatter communication is
appropriate for gesture detection and recognition.

IV. SYSTEM DESIGN
In this section, we give details on specific approaches to our
design, based on three major modules: Preprocess, Gesture
Feature Extraction and Training, and Gesture Recognition,
as shown in Figure 5. For each module, we give an introduc-
tion to its methods and procedures in next few subsections.

A. PREPROCESSING
As mentioned before, the raw phase date we collected by
the reader is a periodic function and obeys the Gaussian
distribution. In order to obtain accurate phase values, both
phase unwrapping and smoothing are required.

1) PHASE UNWRAPPING
Since the raw phase is a periodic function, the phase will jump
at each adjoining propagation cycle, we term it as a phase
jump. i.e., when the phase value decreases to 0, it will jump
to 2π (shown in Figure 6). In addition, we observed that the
read speed of the RFID reader is extremely fast, resulting in a

FIGURE 4. (a) Phase vs. Orientation (b) Q-Q Plot of Sample Data versus Standard Normal (c) Phase vs. Distance.
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FIGURE 5. An overview of system work-flow.

FIGURE 6. Phase trend before /after the de-periodicity algorithm is
executed.

very small displacement d between two consecutive readings
of a single tag. We utilize this observation and assume d ≤
λ/4 (≈ 8.1cm). Based on the triangle constraint, we have
0 < |1R| < d ≤ λ/4, where 1R is the difference of
antenna-to-tag distance by two consecutive readings. Further,
the constraints of the two consecutive phase values can be
obtained using Equation (1):∣∣∣∣4πλ 1R

∣∣∣∣ = |1ϕi,i−1 + 2π ·1ki,i−1| < π (2)

Since k is an integer, we can calculate 1ki,i−1 based on the
constraints, i.e.,

1ki,i−1 =


0 |1ϕi,i−1| < π

−1 π ≤ 1ϕi,i−1 ≤ 2π
1 −2π ≤ 1ϕi,i−1 ≤ −π

(3)

Therefore, similar to the de-periodicity method described
in TagBooth system [29], we set the first reading ϕ0 as
a reference and start the accumulating compensation from
the second sample of the phase streams, i.e., ϕ′0 = ϕ0;ϕ

′
i =

ϕi + 2π ·
∑i

i=11ki,i−1, i ≥ 1, where1ki,i−1 is derived from
Equation (3) using 1ϕi,i−1 = ϕi − ϕi−1. Figure 6 gives the
phase trend before/after measurement, which illustrates that
the algorithm we adopted is well performed.

2) SMOOTHING
Based on Observation 2, we find that the raw phase obeys
the Gaussian distribution and is barely influenced by the
tag orientation when the distance from antenna to tag is
unchanged. It is prerequisite, therefore, to smooth the primary

phase noises. In our design, we use the moving average(MA)
filter with its window size set as 10. Figure 7 shows the
filtering effect in both the static and movement cases. We can
see the fluctuation of filtered phase tends to fade down in the
static case. In the dynamic casdase, however, the features of
distribution such asmaxima andminima seems to be flattened
by MA filter.

FIGURE 7. Phase measurements before/after filtering under
static/dynamic cases.

B. STATIC FEATURE EXTRACTION
1) RELATIVE POSITION CALCULATION
For a single tag, phase unwrapping is an effective way to
eliminate periodic disturbance so that the tag’s displacement
of two adjacent samples for antenna can be computed accord-
ingly. However, static gesture feature extraction utilizes mul-
tiple tags whose positions are fixed within a short period. As a
result, we can assume that these positions are on the move-
ment trajectory of a single tag and keep the distance between
two tags less than or equal to quarter-wave (i.e., dtagi,j ≤
λ/4). Further, Based on the idea of Phase unwrapping in
subsection A, the absolute value of the distance difference
from any two tags to antenna |1Rtagi,j | can be approximated
using Equation (2) and (3):

|1Rtagi,j | =


|1ϕi,j|

4π
× λ |1ϕi,j| < π

2π − |1ϕi,j|
4π

× λ other
(4)

where 1ϕi,j is the phase difference between the reflected
signals from tagi and tag− j, and λ is the wavelength.
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2) FEATURE SELECTION AND EXTRACTION
To determine the gesture recognition model, appropriate
selection and extraction of static gesture features are con-
sistently required. We test various relative positions of tags
properly on the static gestures available in our implementa-
tion, ending up with three remarkable features denoted as x,
y and z. There are some insights here:
• Antenna array in our system is placed in three dimen-
sions (i.e., A1 → X-axis, A2 → Y-axis, A3 → Z-axis),
guaranteeing full range of gesture reading.

• Selecting a feature set is contingent on the predefined
static gestures for reason of the diversity of tag locations.

• The sub-feature x is extracted based on the observation
that gesture ‘‘Scissors’’ causes obvious differences in
RF phase between forefinger (tag2) and middle finger
(tag3). Similarly, gesture ‘‘Paper’’ gives the exclusive-
ness of sub-feature y.

• With regard to the sub-feature z, we conducted several
sets of data tests on gesture ‘‘Rock.’’ The results showed
subtle data difference. Considering that the positional
relationship between tag1 and tag5, which is read by
antenna A1 and A3, appears to outstanding in gesture

‘‘Rock.’’ We set

∣∣∣∣∣1R
A1
tag1,5

1R
A3
tag1,5

∣∣∣∣∣ as the weight and multiply

by the sum of relative position data of each tag detected
from A2 to obtain a significant distinction sign.

As a result, the definition of x, y and z is as follows,
respectively:

x =
∣∣∣1RA2tag2,3 ∣∣∣ (5)

y =
∣∣∣1RA3tag1,2 ∣∣∣ (6)

z =

∣∣∣∣∣1R
A1
tag1,5

1RA3tag1,5

∣∣∣∣∣ ·
5∑

k=2

∣∣∣1RA2tagk,k−1 ∣∣∣ (7)

where
∣∣∣1RAitagk,k−1 ∣∣∣ represents the difference between the two

distances from antenna i to tag k and k − 1 respectively.
It should be noted that the values of x, y and z fluctu-

ate around the specific threshold identified by each gesture
accordingly. Thus, our basic idea is to infer the distinctions
between multiple gestures using the features calculated by
above equations.

C. DYNAMIC FEATURE EXTRACTION
Unlike the static case, dynamic gesture recognition in our
system only utilizes the phase values from tag3 read by A1.
Because dynamic gestures can incur significant phase wave-
form changes, which is sufficient for recognition. How-
ever, multi-tag readings will increase matching complexity
and reduce recognition accuracy accordingly. Once prepro-
cessed phase sequences are obtained, we need to extract
useful dynamic features to promote our design. The chal-
lenge comes mainly from two aspects. First, the data streams
update constantly and quickly, which brings biggish diffi-
culty to determine the start and end points of each gesture.

Otherwise, the patterns of gestures are not stable due to inap-
propriate device deployment. Therefore, there is a pressing
need for accurate and efficient segmentation method.

1) SEGMENTATION-BASED EXTRACTION
In our implementation, the phase streams segmentation
scheme is based on the fact that the dynamic gestures usu-
ally take place in the period of continuous phase changing,
we denote the period as waking gap. The remaining time
period that be denoted as sleeping gap naturally separates
the dynamic gestures and is used for static gestures detec-
tion and recognition. As a result, the actual deployment of
segmentation scheme to detect whether a dynamic gesture
occurs is based on the KL divergence. Denote the phase
stream as S = (si) ∈ R1×N , where N represents the sampling
point. For each ω consecutive phases, we group them into a
window. We categorize phase values into multiple bins, and
get the PDF of phase values within each window. Give two
consecutive windows ωi and ωj, let I and J be their PDFs.
Thus, the KL divergence from J to I is defined as follows:

DKL(I ||J ) =
∑
i

I (i)log
I (i)
J (i)

(8)

The KL divergence measures the distance between the
distributions within two consecutive windows to determine
the similarity of them. Based on this, we can conclude that
DKL(I ||J ) should be small (close to zero) when ωi and ωj
are both within the sleeping gap. Conversely, if one or two
of the two consecutive windows are both within the waking
gap, there will be significant differences between their PDFs
which will lead to a large value of DKL(I ||J ). Hence, we can
compare DKL(I ||J ) with a threshold ρ to determine whether
the current window is within the sleeping gap. The dynamic
features can be extracted accordingly by determining the
boundaries of segments after finding all the available win-
dows within the sleeping gap.

The segmentation result over the phase streams is shown
in Figure 8, in which each subgraph corresponds to a dynamic
gesture that is defined before and the blue curve represents
preprocessed phase streams while the red rectangle marks
the boundaries of the segments. We can see that all of these
gestures are correctly identified.

D. GESTURE PROFILES TRAINING
Due to individual differences, the gestures performed by users
are diverse. As a result, we add gesture profiles training
module to reduce the impact of individual differences in our
implementation.

1) STATIC GESTURES PROFILES TRAINING
As mentioned above, each static gesture can be distinguished
by its corresponding feature set. To ensure the system func-
tions are realized and errors minimized, we recruit M vol-
unteers (vary in type of figure) to perform each predefined
gesture for n times per person. Further, we define the feature
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FIGURE 8. Segmentation result of the three dynamic gestures.

set obtained each time as ti = {x
(w)
i , y(w)i , z(w)i }, where w

(w = 1, . . . ,W ) represents the corresponding gesture and i is
the index of training set (i.e., i = 1, . . . ,M ×W × n and i ≥
w). Therefore, after collecting all the sample data, the train-
ing set can be expressed as: T = {t1, t2, . . . , tM×W×n} ∈
R(M×W×n)×3.

2) DYNAMIC GESTURES PROFILES TRAINING
Since the recognition of static gestures is equipped with bulk
of sample data, similarly, in our system, dynamic gestures
recognition also requires users to input feature data for n
times by performing each predefined gesture. Once the ges-
ture performs, the system start carrying on data preprocessing
and feature extraction over the phase streams to achieve the
corresponding segments set.

To make sure each gesture profile is exclusive and reliable,
we then select some representative samples from obtained
segments set using the conception of an outlier detection
method [30]. The main idea is based on the notion of object’s
(a point or vector) proximity and this notion reflects the close-
ness of a vector to other considered vectors. That is, the higher
the proximity’s degree of a vector, the greater the likelihood
that it is outlier. Suppose there are n segments, i.e., n vectors
L1,L2,. . . ,Ln of each gesture available, and for each segment
Li, its proximity’s degree is acquired by calculating the sum-
mation of the normalized DTWdistance between Li and other
n − 1 segments. The top δ segments with lowest proxim-
ity’s degree, therefore, can be determined by comparing the
proximity’s degree of each segment. Denote the selected top
δ segments of each gesture as pw = {L1min,L

2
min, . . . ,L

δ
min},

where w (w = 1, . . . ,W ) is the index of dynamic gestures
to be recognized. Finally, after picking up all the represen-
tative segments of available gestures, the training set can be
expressed as: P = {p1, p2, . . . , pw} ∈ RW×δ .

E. RANGE NORMALIZATION
Since the feature sequence we acquire every time is a vec-
tor and our recognition system utilizes the distance-based
matching method, both the individual feature whose value
is far larger than others in the relevant sequence and the
amplitude diversity of the time series templates (segment set)
performed by different users may entail ambiguous experi-
mental results. Therefore, it is imperative for us to normalize

these vectors to the same range of values before gesture
recognition. In our application, range normalization is divide
into global and local, and is respectively applied to feature set
for static recognition and time series segment set for dynamic
recognition.

1) GLOBAL NORMALIZATION
The global normalization requires considering all the alterna-
tives of the training set. As the feature set of static gestures is
defined above as ti = {x

(w)
i , y(w)i , z(w)i }, where w = 1, . . . ,W ;

i = 1, . . . ,M × W × n; i ≥ w, we have to normalize M ×
W × n+ 1 sequences after adding the operational feature set
to be recognized. To do this, we create three one-dimensional
arrays according to the three notable features x(w)i , y(w)i and
z(w)i respectively. i.e., we have X = {x1, . . . , xM×W×n+1},
Y = {y1, . . . , yM×W×n+1} and Z = {z1, . . . , zM×W×n+1}.
Thus, in our experimental deployment, the three arrays are
normalized basically via:

newValue =
oldValue− min
max − min

(9)

to the [0, 1] range. In the normalization procedure, the vari-
ables min and max are the smallest and largest values in the
array.

2) LOCAL NORMALIZATION
In the local normalization, contrarily, each sequence template
is normalized separately. Given a time series template L =
(l1, . . . , lM ), the local normalization is defined as follows
using Equation 9:

L̂ =
L − min(L)

max(L)− min(L)
(10)

3) SHORTCOMINGS DEALING
It should be noted that linear normalization does have a draw-
back. The normalized results are influenced by the stability
of max and min, which making the subsequent recognition
ineffective. In actual implement, we handle this problem by
boundary detection and replace max and min by empirical
constants, i.e., each phase value crossing the boundary will
be re-assigned.
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F. STATIC GESTURE RECOGNITION BASED ON K-NN
As the feature set of each static gestures constitutes a feature
space, which is the premise of pattern recognition. For the
sake of classifying the real-time samples to be recognized
diametrically, in our application, we adopt the k-Nearest
Neighbors (k-NN) algorithm [31]. k-NN is a simple algorithm
that stores all available cases and classifies new cases based
on a similaritymeasure (e.g., distance functions) and has been
used in statistical estimation and pattern recognition already
in the beginning of 1970’s as a non-parametric technique.

It works like this: we have an existing set of example data
(i.e., the training set T = {t1, t2, . . . , tM×W×n}) and labels
w for all of this data (i.e., we know what class each piece
of the data should fall into). And we first perform the global
normalization for each piece of data to be utilized when given
a new piece of data t = x, y, z without a label. Otherwise,
we compare that new piece of data to the existing data, every
piece of existing data, using the Euclidean distance, that is:

di =
√
(x̂ − x̂(w)i )2 + (ŷ− ŷ(w)i )2 + (ẑ− ẑ(w)i )2 (11)

where di is the Euclidean distance between normalized
t and ti. Note that w is actually a label used to mark different
gestures, and can be calculated by combining i and the storage
structure of the feature space. We then take the top k most
similar pieces of data (the nearest neighbors) from our known
dataset and look at their labels. Finally, the static gesture with
feature set t can be recognized naturally by a majority vote
of these k neighbors. In our implementation, k is empirically
set as 3.

G. DYNAMIC GESTURE RECOGNITION BASED ON DTW
In designing the metric for dynamic gesture recognition,
we have a challenge here: the phase trend of each segment
is inconsistent, which means that segments are with different
length due to the individual differences of the same ges-
tures, fragile backscatter links and multi-path effect (shown
in Figure 9). To address this, we bring in DTW [32], to mea-
sure the distance of different segments.

FIGURE 9. Normalized segment of ‘‘Turn Right’’ from different volunteers.

DTW is a time series alignment algorithm developed
originally for speech recognition. It aims at aligning two
sequences of feature vectors by warping the time axis iter-
atively until an optimal match (according to a suitable
metrics) between the two sequences is found. Consider
two segments of discrete time series, whose length are

M and N , respectively: A = a1, a2, . . . , aM , B =

b1, b2, . . . , bN , and let d(A,B) ∈ RM×N be the pairwise
distance matrix, where d(m, n) is the Euclidean distance
between points am and bn, i.e., d(m, n) =

√
(am − bm)2.

To align these two sequences, an (N ,M )-warping path v =
(v1, v2, . . . , vk , . . . , vK ) defining an alignment betweenA and
B is obtained by assigning the element amk of A to the element
bnk of B, i.e., vk = (mk , nk ). The total cost cv(A,B) of a
warping path v between A and B is defined as:

cv(A,B) =
K∑
k=1

d(vk ) (12)

Furthermore, the optimal alignment path v∗ having minimal
total cost among all possible warping paths can be solved
by use of dynamic programming algorithm and additional
constraints. The DTW distance DTW (A,B) between A and B
is then defined as the total cost of v∗:

DTW (A,B) = cv∗ (A,B)

= min{cv(A,B)|v is an (N, M)-warping path}

(13)

In our implementation, we use the similarity metric (DTW
distance) mentioned above to ensure the attainment of
dynamic gesture recognition. Given the normalized training
set matrix P̂with labelsw and the operational segment Q̂ to be
classified, the predefined class that minimize the DTW score
between P̂ and Q̂ can be found using Equation 13, that is:

w = argmin
w∈{1,...,W }

δ∑
τ=1

DTW (̂Pwτ , Q̂) (14)

where τ = 1, . . . , δ indexes the training segments of related
gesture class w.

V. IMPLEMENTATION AND EVALUATION
In this section, we present the details of system implementa-
tion, and conduct extensive experiments to evaluate its per-
formance of accuracy and effectiveness.

A. IMPLEMENTATION
1) HARDWARE
We implement our gesture recognition system using UHF
COTS RFID products, including an Impinj R420 reader
which is configured as the fastest RFmode (Max Throughput,
Dualtarget and Session 0) for high read rate, three 8dBi
directional antennas with the size of 280mm×280mm×40mm
and Impinj E42 RFID tags. The connection between reader
and PC is utilizing an Ethernet cable with the most common
interface RJ 45. The whole system’s operating frequency is
set as 920.625 MHz, while in China, UHF RFID operating
frequency band is 920.625 ∼ 924.375 MHz. The scope of
tag’s activity is 1 ∼ 2m from the antenna.
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2) SOFTWARE
We create a C#Windows FormsApplication with the guide of
Low Level Reader Protocol (LLRP) [33]. The reader opera-
tion and data collection in our implementation is based on the
Octane SDK,which is the extension of LLRP protocol.Mean-
while, the system performance is evaluated in MATLAB
R2017a. we runs the software on a Lenovo Thinkpad E450c
PC equipped with a dual-core i5-4210U 1.7GHz CPU and
4GB RAM.

B. EXPERIMENT SETUPS
Figure 10 gives the experimental scene and information of
COTS RFID devices. We set the antenna arrays to fit in the
three-dimensional coordinate space and perform gestures in
a certain area where is about 1.5m away from the antennas.
The tag placement is shown in Figure 11, we attach five
E42 RFID tags on the glove and make the tag IDs specify five
fingers.

FIGURE 10. The experimental scene of our system.

FIGURE 11. The tag placement in our system.

Note that the E42 passive tag can also work well when
embedded in the glove, but it is a non-metal mount tag
and gives poor performance when attached on metal sur-
faces. In order to achieve a comprehensive evaluation on the
accuracy and influencing factors of our system, we recruit
20 volunteers to perform the predefined gestures for 5 times
per person and label the segmented data for further database
storage.

C. THE EVALUATION OF DYNAMIC
GESTURE SEGMENTATION
In terms of dynamic gesture recognition, we need to evaluate
the accuracy of feature segmentation for each gesture. We use
theOffset (from the theoretical value) of each boundary as the
evaluation indicator, i.e. we have Offset = idiff + jdiff , where
i and j are the start sampling point and end sampling point
of each segment, respectively. We first assess the impact of
two parameter configurations on theOffset, and then compare
the segmentation effect of the three dynamic gestures on the
whole. Finally we give a comparison of the segmentation
performance between our system and GRifd.

1) OFFSET WITH REGARD TO THE DIVERSITY OF
WINDOW SIZE ω AND THRESHOLD ρ

The window size and threshold are both the pivotal param-
eters in boundaries detection, and they need to be com-
prehensively considered according to the settings of UHF
reader (reading rate) and the operating characteristics of ges-
ture (speed and magnitude). Therefore, appropriate parame-
ter configuration is required for better segmentation effect.
We vary ω from 6 to 10, and calculate the different Offset of
the same phase trend respectively. TheOffset represents error
distance between real split points and theoretical split points,
and we plot the calculated Offset under various threshold
settings in Figure 12(a). We can see that the segmentation
method reaches the lowest Offset value when ρ = 0.2 and
ω = 8, we thus use them as our parameter settings in the
following experiments. It should be noted that the Offset val-
ues shown in Figure 12(a) is within [10, 30], and it is afford-
able considering the rapid reading speed and calculation
errors.

2) OFFSET WITH REGARD TO THE DIVERSITY OF GESTURES
To examine the performance of segmentation, we repeat each
gesture for 10 times and get the overall Offset distribution.
Figure 12(b) gives the result of total segmentation effect with
respect to different gestures. The operation on gesture ‘‘Turn
Right’’ tends to have more offset points than that on gesture
‘‘Push’’ and ‘‘Pull.’’ In line with the theory, the median
Offset calculated by the segments extracted from the gesture
‘‘Push’’ and ‘‘Pull’’ is almost the same. The result shows that,
despite the existing offset points, the phase segment caused by
dynamic gestures can also be differentiated properly.

3) OFFSET COMPARED WITH GRFID
We use the Offset to measure the performance of dynamic
gesture segmentation algorithm between our system and
GRfid. In GRfid, they apply the Modified Varri Method [34]
for gesture segmentation. This method is based on the combi-
nation of a frequency measure and an amplitude measure of
the signal in the relevant windows. Changes of the amplitude
or frequency of the signal is calculated by Modified Varri
method which is an acceptable algorithm for segmenting a
signal. We perform each dynamic gesture for 10 times and
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FIGURE 12. (a) Offset over different window sizes and threshold (b) Offset over three gestures (c) Offset over three
gestures compared with Modified Varri Method in GRfid.

employ these two algorithms to obtain data segments. In order
to ensure the reliability of the experiment, we use the same
data stream to implement data segmentation concurrently.
Thewindow size is set as 8. Figure 12(c) gives the comparison
of the average Offset between KL divergence and Modified
Varri Method. We can see that the Modified Varri Method has
the average Offset of 23, 24 and 23 while the KL divergence
based segmentation method has the average Offset of 20,
18.5 and 17.5. Moreover, the phase stream in our system is
more accurate due to the direct manipulation of tags, and in
GRfid, they utilize the effect of external factors on fixed tag
which results in visible data noise. So the KL divergence can
significantly improve the accuracy of signal segmentation.

D. THE EVALUATION OF OVERALL
GESTURE RECOGNITION
1) OVERALL ACCURACY OF RECOGNITION
Based on the adequate experiments that each gesture is per-
formed 10 times by 20 volunteers, we conduct some analysis
on the collected result data items to calculate the overall
accuracy. Figure 13 plots the confusion matrix of gesture
recognition, which shows the recognition accuracy on each
gesture. As we can see, this result clearly states that our
system is able to maintain satisfying performance with the
average accuracy 89%. In other words, it also shows that
our matching algorithms work well under the multi-mode
recognition mechanism.

FIGURE 13. Confusion matrix of gesture recognition.

2) IMPACT OF DISTANCE BETWEEN THE
USER AND ANTENNA
As is mentioned above, the scope of tag’s activity is 1 ∼ 2m
from the antenna A1, which means the user need to perform
their gesture in the specific area. In this set of experiments,
we vary the distance between the user and the antenna from
1m to 2m (i.e. the centers of operating areas are deployed
1m, 1.5m and 2m away from the antennas), and explore
the impact of this distance on the recognition accuracy. For
each distance, we dispose different gestures and calculate
the corresponding accuracy respectively. Figure 14 gives the
result, indicating that the accuracy of gesture recognition
in our design shows a downward trend but still maintain a
high rate when the distance increases. Specifically, when the
distance is 1.5m, the accuracy tends to be relatively stable
and insensitive to different gestures. However, due to the
impact of fragile backscatter links and read range of the
tag, recognition of long distance will show the unsatisfactory
effects.

FIGURE 14. Accuracy over different antenna-to-user distance.

3) IMPACT OF THE TRAINING SET SIZE
Unlike the deep learning, which requires a large data set to
improve its performance. Considering the matching method
in our system is similar to machine learning based classifi-
cation, the size of training set may have substantial impact
on the accuracy. To examine the actual recognition effect
under different training set, we carry out the corresponding
experiments and select six sizes of data sets from 50 to 300.
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FIGURE 15. Accuracy of static&dynamic gesture recognition under
different sizes of training set.

Figure 15 shows the average accuracy of gesture recognition
under different sizes of training set. The results indicate that
the accuracy of dynamic gesture recognition is approximately
proportional to the size of the training set and tends to be
steady when the scale is large enough. In contrast, the result
of static gesture recognition manifests a poor performance
under the big data set (> 100), which means that the lack
of characteristics corresponding to static gestures and the
interference between multiple tags may reduce the average
accuracy.

4) IMPACT OF THE STATIC OBSTRUCTIONS
Electromagnetic interference destroys the wireless channel
transmission, which becomes the main reasons that affect
the performance of RFID applications. However, in order
to study the effect of ordinary insulators on our system,
we deploy cardboard (thickness of 2mm) covering the
antenna and complete the overall accuracy experiments. Due
to the recognition in our system is based on the relative phase
values, the overall numerical change on phase streams is
allowed to a certain extent. Figure 16 gives the confusion
matrix for gesture recognition when antenna is occluded.
It is obviously that our system can also work well when the
wireless propagation path is blocked by static insulators. The
average accuracy of recognition is 89%, which is weakly
affected.

FIGURE 16. Accuracy of static&dynamic gesture recognition under
different sizes of training set.

5) RECOGNITION LATENCY
It is critical for our system to achieve the real time interaction
such that the user gestures can be displayed promptly. In order
to evaluate this performance indicator, we measured the
recognition latency, which is the duration from the time point
that volunteer finishes this gesture to the time point the recog-
nition result is shown in the Windows Forms Application.
For each gesture, we randomly choose 10 repetitions from
20 volunteers and record their recognition latency. It should
be noted that the size of static training set is 100 while the
dynamic training set is 150. The distribution of the recogni-
tion latency for each kind of gestures is shown in Figure 17.
It shows that we achieve a recognition latency of 0.27s on
average for these 6 gestures. Therefore, we can conclude that
our system can provide a real time gesture recognition.

FIGURE 17. Computational latency.

VI. LIMITATIONS AND FUTURE WORK
Despite the relatively positive results we have got in previous
experiments, there are still some limitations in our system.
Limitations: 1) Limited recognition distance. As is men-

tioned in section V that the distance between the user and
antenna plays an important role in gesture recognition. Con-
sidering the tag diversity, the recognition distance is gener-
ally limited less than 4m. Therefore, our system can hardly
achieve reliable recognition effect in long-distanceHCI appli-
cations; 2) Accuracy is positively correlated with complexity.
Precise dynamic gesture recognition require more training
sets, and increases the number of template matching calcu-
lation, thus affecting the computational efficiency of classi-
fication. 3) Lack of corresponding applications. Applications
of HCI are the most direct way to show the effectiveness of a
system, which will be a future work for us. The software we
developed is only a visual interface intending to manifest the
feasibility of our idea.
Future Work: Just as the limitations have described above,

there is still some work acquired to be done in the future. First
of all, we need to improve our accuracy of recognition by
more standardized deployment and deep conflict exclusion
research, e.g., establishing a query table to store part of the
constraint information, avoiding duplication of calculation
and improving the efficiency of matching degree calculation.
Otherwise, we plan to extend our system to more available
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gestures by valid feature modeling. Finally, it must come to
the real application, that something like mechanical arm or
Unmanned Aerial Vehicle (UAV) can be controlled based on
the gesture combination from our system.

VII. CONCLUSION
In this paper, we present the design, implementation and
evaluation of a concurrent gesture recognition system using
passive RFID tags. It uses one COTS RFID reader with
3 antennas and five passive tags attached to the five fingers.
Based on the physical-layer information retrieved from the
backscatter communication, we propose series of methods
for data preprocess, gesture feature extraction and gesture
recognition. Results from our implementation show that it
could achieve high accuracy and efficiency. Our future work
includes modeling of more complicated gestures and design-
ing more robust algorithms.
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