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ABSTRACT Recent technological advancements have led to a deluge of medical data from various domains.
However, the recorded data from divergent sources comes poorly annotated, noisy, and unstructured. Hence,
the data is not fully leveraged to establish actionable insights that can be used in clinical applications. These
data recorded in hospital’s Electronic Health Records (EHR) consists of patient information, clinical notes,
charted events, medications, procedures, laboratory test results, diagnosis codes, and so on. Traditional
machine learning and statistical methods have failed to offer insights that can be used by physicians to
treat patients as they need to obtain an expert opinion assisted features before building a benchmark task
model. With the rise of deep learning methods, there is a need to understand how deep learning can
save lives. The purpose of this study was to offer an intuitive explanation for possible use cases of deep
learning with EHR. We reflect on techniques that can be applied by health informatics professionals by
giving technical intuitions and blue prints on how each clinical task can be approached by a deep learning
algorithm.

INDEX TERMS Electronic health records, convolutional neural networks, recurrent neural networks,
adverse drug events, EHR raw features.

I. INTRODUCTION
The Health Information Technology for Economic and Clini-
cal Health (HITECH) Act of 2009 raised an increase in the
adoption of Electronic Health Records (EHR) [1] by hos-
pitals. Hospitals and other points of care have diversified
their efforts in constructing robust Electronic Health Records
facilities to capture and leverage these data which are usually
ill-understood. Currently there is a high ubiquity of health raw
data mainly caused by the abundance of state-of-the-art clini-
cal testing devices and medical Internet of Things (mIoT) [2].
This opportunity is a milestone to healthcare and there is
undoubted belief that precision and personalized healthcare
will be boosted. EHRs contains highly multidimensional,
heterogeneous, multimodal, irregular, time series data like
laboratory test results, doctor notes, medication prescriptions,
demographic information, diagnoses, epidemiology, behav-
ioral data, etc.With these vast data the clinical tasks can range

The associate editor coordinating the review of this manuscript and
approving it for publication was Ziyan Wu.

from critical care to long term planning. Data in EHR can help
into a choice of treatment, finding patient similarity, integrat-
ing genomics data for personalized treatment, predicting the
hospital Length of Stay (LoS), and predicting patients risks of
readmission. However, due to this high heterogeneity there is
a high probability of missing or erroneous entries resulting
into high reluctance by practitioners in using these usually
expensive technologies, mainly because they still need to use
abductive reasoning in getting clinical insights from them to
perform effective diagnosis.

Though hospitals have effectively used the EHR for
other administrative and corporate tasks like patients log-
ging, assets management, transfers management, and mainly
billing operations, there is a need to find ways to effec-
tively use the EHR for patient’s diagnosis. The only solution
to this is the use of EHR analytic solutions that will sup-
port the physician’s expertise. With the recent achievements
of artificial intelligence, machine learning methods ranging
from simple regression to complex Recurrent Neural Net-
works (RNN) can be used to bridge the inferential gap for
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TABLE 1. Studies that covered deep learning application to HER.

various EHR tasks. However, various complex challenges to
integrate them coupled with the limited availability of labeled
data for training models as well as privacy issues associated
with mistrusts between providers, hinder the effective use
of these learning systems to achieve effective care. Though
deep learning techniques are highly regarded as crosscutting
novelty, there are still tasks in the EHR that can be effi-
ciently be solved by classical machine learning techniques
like regression, random forests and Bayesian techniques.
Machine learning has empowered the newest methods like
computational phenotyping in medical care as well as inte-
grating genomics data into clinical procedures.

A. MOTIVATION FOR THIS WORK
Mining the EHR longitudinal data for clinical insights is a
tiresome aspect of building health analytic solutions. Hospi-
tals use customized EHRs which are comprised of hetero-
geneous mix of elements many of whom are voluminous
and unstructured content. The noisiness and sparsity of the
EHRs requires effective feature extraction and phenotyping
before extracting insights from the data. Though there are
various works done to explore methods used to mine data
from EHR, there is a need to understand the EHR data mining
from an aggregation point of view. For example, adverse
event prediction, a process intended to find impending risk
of a hospitalized patient can be performed by aggregating
insights from doctor’s notes (unstructured text data), MRI
test (image data), ICD-10 nomenclature database (structured
Text data) etc. Hence, this process needs analytic solution to

aggregate insights from these diverging data. In this paper we
intend to help EHR analytic designers to use deep learning
technique for effective analytic techniques to be included in
Clinical Decision Support System (CDSS) by tipping them
with techniques and mechanisms to extract, transform, load,
and leverage disparate EHR data.

B. ORGANIZATION OF THE PAPER
This paper is organized as follows: In Section II, we cover the
related works to review approaches used by various authors
in coming closer to providing a concise insight of using
deep learning methods to EHR. In section III, we cover the
anatomy and structure of EHR data using example from a real
EHR database exploring its various aspect unraveling hidden
patterns. In Section IV, we cover the challenges that an EHR
analytics designer is likely to face. In Section V, we try to tip
developers by give a glance of techniques per clinical task by
covering a successful case study. In Section VI, we conclude
by giving future directions.

C. METHODOLOGY
We considered hospital’s workflow by covering clinical tasks
that can be performed by clinicians. For each task we give
insights about the type of EHR data that can be used.We show
the challenges associated by each task, and we give a blue
print of an appropriate deep learning model by either ana-
lyzing an already made model or proposing how it can be
designed to produce the required insights. Our approach is to
answer the question ‘‘how did they do it?’’ wherever there
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TABLE 2. Anatomy of EHR data (With Intuitions from the MIMICIII data set).

is an existing deep learning solution to an EHR task, and
‘‘how can we do it?’’ from our own perspective. Due to
the high mathematical sophistications behind deep learning
applications to EHR, we try to explain the concepts in sim-
pler terms. However due to complexity of deep learning,
it is impossible to thoroughly explain every concept, hence
a modest understanding of machine learning is required to
understand the content of this work.

II. RELATED WORKS
Using the vastly available EHR data for clinical analytics
has recently gained a big deal of attention. However, few
studies would come up with a complete set of methodolo-
gies and techniques that can be used to mine this unex-
plored big data. More of related researches have focused
on applying data mining methods for an aspect of EHR
data mining. Ching et al. [3] thoroughly discussed opportu-
nities and challenges in using deep learning for biology
and medicine, though this study was much exhaustive it
did not elaborate more on the technical side of the pro-
cesses involved. Reference [4] covered DeepEHR by survey-
ing recent advances in deep learning techniques for EHR.

This study focused on identifying key works done in deep
learning for EHR. The description of theseworks done aswell
as their approaches are detailed in Table 1.

III. ANATOMY OF THE EHR DATA
In this section we cover the structure and anatomy of EHR
data. The EHR is composed of huge longitudinal, time series
data sourced from daily recordings by practitioners and hos-
pital instruments. Each patient record is saved in a table
in EHR warehouse. Though structure of database can vary
depending on specific medical and computing requirements,
examples and cases described in this section are retrieved
from the MIMICIII dataset [109]. A more detailed descrip-
tion of EHR data is found in Table 2 with the following
components being the big constituents.

A. PATIENT INFORMATION
Patient basic information is perhaps the simplest and the
most structured data of the EHR data. It contains basic
information of a patient like his hospital ID, an identifier
which will identify the patients through his stay. It contains
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his gender, date of birth, date of discharge (or death) and
other demographic data. More data related to admission like
admission time, discharge time, admission type (emergency
or elective) insurance information and any other basic infor-
mation of interest. Though the recording of these informa-
tion looks straightforward many workers at hospital do not
consider accurate recordings as one of their critical tasks and
this becomes worse to physicians who are mostly preoccu-
pied by saving lives than proper recording, hence errors in
EHR records can be produced at any point. For instance,
statistics at the English National Health Service (NHS),
showed that about 20,000 adults were recorded in pediatric
outpatient services, similarly 17,000 men were admitted to
obstetrical services, and 8,000 men admitted to gynecology
services [9].

B. CLINICAL NOTES/MANUSCRIPTS
Perhaps the most rich but unstructured, vague and noisy
of all EHR data are the physicians/nurses’ clinical notes.
The 2018 national physician poll [10] showed that though
physicians view the EHR as necessary, they did not view it
as a powerful clinical tool but as a mere data storage tool,
and surprisingly only half of them agreed that using an EHR
detracts from their clinical effectiveness. Moreover, the EHR
does not provide a cognitive support design which is causing
doctor to be reluctant in using the EHR interfaces and the con-
tinuation of relying on their manuscript-based documentation
to reduce clinical burnout. Deep learning methods helps in
transforming these manuscripts into database readable for-
mats. Fig. 1 shows Example of a clinical note as extracted
from the MIMIC III database. Clinical notes can be ana-
lyzed using deep learning models to predict adverse events
like heart attack, death, hospitalization length etc. However,
these notes must be treated by a vectorization and a feature
representation algorithm before being fed to a deep learning
model.

C. LABOLATORY MEASUREMENTS AND MEDICAL IOT
READINGS
EHR has a lab events table that is associated with lab
measurements for each patient. Each laboratory observa-
tion is linked to a lab item which is defined in another
table containing all the definitions for laboratory measure-
ments. The definitions contain the Logical Observation Iden-
tifiers Names and Codes (LOINC) for lab measurements. For
instance, the MIMIC III hospital dataset’s lab items table has
27,854,055 lab events associated to all 60,000 patients.

D. MEDICATION, DIAGNOSIS PROCEDURE AND DRUG
CODES
This EHR sections contain standard codes for diseases and
symptoms described by the International Classification of
Diseases (ICD) [11] and diagnosis related groups codes
DRG (used for identifying billable items that the patient
received) [12]. Drugs are described by their RXnorm drugs

FIGURE 1. Example of a clinical note as extracted from the MIMIC III
database.

classification codes [13], treatment procedures are described
by their Current Procedural Terminology (CPT) codes [14].

E. EHR EVENTS
EHR also contains 21,146,926 rows of input events (ex;
Heart rate, Glucose levels etc...), 330,712,483 charted events,
4,349,218 Output Events, and many other events which
records whatever happens to a patient.

IV. CHALLENGES FOR EHR MINING
EHR Feature engineering is moving away from the usual
expert-driven feature engineering to data-driven paradigms
or the combination of both [28] for sophisticated clinical
tasks like feature construction, risk factors identification and
diseases phenotyping. Hence analytic processes rely on the
capability to find proper machine learning techniques for a
distinct task. For example, while Natural Language Process-
ing (NLP) [29] will help in dissecting clinical insights hidden
in amillion of clinical manuscripts it will be of little to no help
in the understanding of an MRI brain scan. The following
are key challenges that analytical solutions must address to
provide actionable clinical insights.

A. COMPLEXITY OF EHR ANALYTICAL TASKS
Even the NLP which performs better in text-based sentiment
analysis will hardly help in understanding clinical narrative
and terms used in the clinical notes, recorded by medical
expert care staff. The reason is that health care experts
write these notes for individual or co-worker’s reference with
no machine learning applications to sight. Various toolkit
that tailor the NLP for clinical texts have been invented
like CLAMP (Clinical Language Annotation, Modeling, and
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Processing) [30] which is a popular NLP tool that helps clini-
cal applications developers to quickly build customized NLP
pipelines. However, EHR tasks like prediction of clinical
events need amalgamation of structurally diverging data like
lab tests together with charted events and clinical notes. The
more data we incorporate the more predicting accuracy is
achieved. The structure of lab tests come as text flags with
varying unit of measure hence combining them with clinical
notes which are raw texts without a standard becomes a
challenging task. Also, different EHR data do not contribute
equally to illnesses that have to be predicted or detected.
As an example, mental sickness might depend on narratives
in a clinical note than on charted events as there might not
be any events associated with the patient, hence coming up
with a rationalized model that combines these data is a very
complex task.

B. CONTEXTS OF EHR DATA
Even with tools that help people to design customized
pipelines, challenges related to clinical data are hard to sur-
mount. The big challenge comes from the nature of the
data and the kind of insights we want to extract from it.
Clinical experts are human beings who try to find solu-
tions to intervention problems in a causal point of view.
In his study about causality and machine learning, Pearl [31]
argued that intervention questions cannot be answered from
observational statistical information alone. He also argues
that you cannot answer counterfactual question using inter-
vention information. In a clinical example you cannot
re-perform a trial on patients who were treated with a drug
to inspect how they would have behaved had they not
been given the drug. Machine learning algorithms which
are observational algorithms that use statistical data exhibits
these fundamental impediments that make their applications
to clinical questions to require additional extra-statistical
information.

C. SMALL LABELLED DATA
Perhaps, except the clinical notes and the patient’s charted
events used to perform certain deep learning tasks, most of
EHR data lacks labelled ground truth data. Even the model
that is built gets hardly into implementation due to lack of
acceptance. The true outcome of a clinical event is a redun-
dant operation that relies on abductive reasoning of a physi-
cian, hence deep learning gets stranded in this problem. As an
example, you cannot find enough labelled cancer images that
can be used to train a CNN for future predictions. Perhaps the
most appropriate solution to the lack of labelled data seems
to be the use of transfer learning. There are vastly available
labelled data sets that have been trained for other tasks.
these pre-trained models can be used to medical problems
by only tailoring the last layer of the neural network to the
EHR problem in question. Authors in [32] have used transfer
learning on a pre-trained RNN model to establish pheno-
types of various diseases. Another method is to use unsuper-
vised CNNpre-training and perform a supervised fine-tuning.

FIGURE 2. Basic architecture of auto encoders.

Authors in [33] have been able to use this method to classify
lung tissue in high resolution Computed Tomography (CT)
data.

V. POPULAR DEEP EHR ALGORITHMS
Deep learning is a special branch of machine learning that
utilize layered computational nodes with each node in each
layer performing computation on inputs and its respective
weight. A non-linearity function is applied to produce the
node activation. The overall Artificial Neural Network is built
on updating the weights of each node to minimize the final
cost associated with the deviation of output predictions from
the ground truth labels. The neural network first initializes
the parameters (weights and bias) and use the forward prop-
agation to calculate a cost then the chain rule is used to
perform back propagation for weights updates. The process
is referred to as gradient descent due to the process of finding
an optimal path to a minimum cost. Various more advanced
optimization algorithms that solves the basic deep learning
problem have been discovered and used in practice. These
are Stochastic Gradient descent [33], RMS Prop [33], Ada
boost [34], Adam [35] etc. Deep learning is effective than
othermachine learning algorithms as there is no need to spend
more efforts on feature engineering using a domain expert,
rather using raw data as the features can be learned by the
system. However, as we will see in later sections, due to
complexity of EHR data and special intolerance to errors, fea-
ture representation and selection usually assisted by domain
expert might be a key to the success of a deep learning model.
In this section we are going to describe briefly popular deep
learning algorithms used with EHR. A complete reference
of these algorithms and their use with EHR can be found
in Fig. 7.

A. SPARSE AUTO ENCODER
This is an unsupervised representation learning mostly
used for the features engineering stage. They are used for
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FIGURE 3. Basic convolutional neural network.

non-linear dimensionality reduction and comes as a better
alternative to other traditional dimens ionality reduction tech-
niques like principal component analysis (PCA) [36] and
singular value decomposition (SVD) [37]. From Fig. 2, an
auto encoder is used to transform(encode) a much bigger
vector into much smaller data vector by taking the input
x, encoding it to discover latent feature representation then
decoding the latent feature representation to reconstruct the
input. Auto encoders are used in applications that require fea-
tures compression like finding document similarity, feature
reduction etc. Many variations of auto encoders have been
used extensively. Convolutional auto encoders are special
types of autoencoders that do not use fully connected layers
(each node in a layer connected with each node in next layer)
rather using convolutional layers.

B. CONVOLUTIONAL NEURAL NETWORKS(CNN) [38]
Convolutional Neural Networks are special algorithms that
perform extremely well in image classification problems.
In the EHR context CNNs can yield good results in medical
image analysis like mammography, MRI images, CT scans
etc. They can be used to detect and differentiate malignant
cancer cells with the benign cells from medical images.
From Fig. 3, CNN is composed of layers where each layer
is composed of a convolutional layer, a pooling layer and
an activation to produce input to the next layer. CNN are
special architecture where each node from the previous layer
is not connected to each node of the next layer, rather each
layer is composed of a filter(kernel) or several filters that
are applied to the input to produce intermediate values. The
resulting next layer input is a sum of products of each input
feature value with the filter. We say that a filter is convolved
with the input image. Each convolution stage defines certain
attributes of the input such as lines curves and edges. As an
example, if a 256×256 image is input to a CNN the input
layer will be 256×256×3 in size (with 3 representing RGB
channels). the convolutional layer will perform a dot product
between a receptive field and a kernel on all the dimensions
of the input. To minimize the training time and avoiding
overfitting, the pooling layer reduces the dimensionality in
the network by taking a maximum or average of a certain
number of inputs cells. At each layer an output is obtained
by applying a non-linearity function usually Rectified linear
unit(relu). A fully connected layer is added towards the end

of the network followed by a SoftMax layer which produces
the predictions. Various special types of CNNs have been
produced and are being used with EHR like Resnets [39],
VGGNet16 [40], Inception [41] etc.

C. RECURRENT NEURAL NETWORKS (RNN)
With some types of data in EHR like clinical notes, input data
do not have the same length to be used with basic ANN. For
instance, some medical applications can require processing
vast amount of text (like clinical notes, web based medical
queries platforms etc.) to find keywords that are relevant to
standard clinical entities like ICD codes and CPT codes. This
application requires performing a Named Entity Recognition
(NER) [42] as a primordial step to the understanding of the
bulk text. To understand RNN in medical context let’s take
a user who tweets about an Adverse Drug Event (ADE).
Moreover, RNN can be used to identify drug names present
in the tweet in the process of identifying the ADE from the
tweets. With the RNN depicted in Fig. 4 taking the input
tweets as a vector x we want to produce a vector y that
contains 1 in a position that holds a drug name and 0 in a
position that holds any other word. Using an NLP dictionary,
we can build a one hot encoding of each word present in the
document and feed the resulting vectors to the RNN.

D. DEEP TRANSFER LEARNING: SOLVING THE SMALL
LABELLED DATASET ISSUE
One of the greatest impediments of machine learning to EHR
data is to find enough labeled data for training. For instance,
if we are analyzing CT scans to find a malignant tumor,
we may not find enough recorded events that can be used
for training a deep learning model. Transfer learning is a
deep learning technique that takes intuition from the human
learning which uses knowledge gained from one problem
to another problem. In a deep learning world, we can use
the weights learned while modeling one problem to another
problem. As an example, in Fig. 5, we can use a model that
was trained on the cat and dog dataset to MRI images that can
classify if a brain tumor is malignant or benign.

VI. TECHNIQUES FOR HER TASKS
A. CLINICAL ADVERSE EVENT DETECTION
One of the primary tasks of hospitals is to detect a clin-
ical event in real time. All the causes of clinical events
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FIGURE 4. Basic RNN a 1 in the output vector represent a presence of a drug name in the input text.

FIGURE 5. Basic Transfer learning. Weights learned from training a cat classifier are used to predict tumor malignancy from MRI images by only
changing the last layer and introducing weights for the last layer.

including medication, diagnosis, and adverse drug events
etc. can be found buried in longitudinal data in the EHR.
Critical medical events can be conceived as negative changes
in patient’s medical status. Authors in [43] have applied
bi-directional Recurrent Neural Networks (RNN) on EHR
to predict medical events. The experiment used Sequence
labeling techniques for extraction of medical events from
unstructured text in EHR. The study in [44] tried to use
EEC (electroencephalograms) signals from the EHR and
Deep Convolutional Neural Network (DCNN) [45] to detect
Epileptic seizure. First the EEG signal features were extracted
using EMD algorithm [46] to decompose the EEG signals
into oscillation instances with varying frequencies called the
Intrinsic Mode Functions (IMFs). The next step was to feed
the data to a Deep CNN for classifying the seizure into three
classes of epilepsy; ictal (amid seizure), normal, and inter
ictal (amongst seizures).

EHRUse Case: Dermatologist-Level Classification of Skin
Cancer With Deep Neural Networks [47]: One of the big
challenges for health-related detection and classification is
the absence of enough labeled data. In Fig. 6, researchers
combined data from open-access dermatology repositories,
which were annotated by dermatologists as well as data from
the EHR. These skin lesion images were fed to an Incep-
tion V3 [48] Deep CNN which predicted if the subject in
the image is having malignant melanocytic lesion or benign
melanocytic lesion. this work leveraged the power of transfer
learning by using the Inception V3 a special type of deep
CNNwith reduced number of learned parameters. It achieves
this property by performing a factorization into smaller con-
volutions through replacing a 5×5 filter with two 3×3 filers.
This technique helps in reducing the number of parameters
to be learned hence shrinking the computational cost of the
deep network.
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FIGURE 6. Architecture of the skin cancer detection by adapting the Deep CNN inception V3model.

FIGURE 7. Popular deep learning algorithms used with Electronic health
records.

B. CLINICAL ADVERSE EVENT PREDICTION
Clinical adverse Event Prediction sub task by a learning
algorithm is to predict the onset of diseases a process that
predicts the probability that patients might develop certain
diseases given their current clinical status. Specific objec-
tive is to predict future events (hospitalization, suicide risk,
heart failure risk etc...) from longitudinally diverse events.
For intelligent support system to provide patient centered
support each aspect type of data would need a support system.
Choi et al. developed DoctorAI [49] a generic system that
uses Recurrent Neural Networks (RNN) to predict clinical
events via a system that performs multi label prediction using

diagnoses, medication categories and visit time of a patient.
They were able to use each patient visit to predict about diag-
nosis, medication order in the next visit as well as the time to
next visit. Razavian et al. [50] were able to use longitudinal
lab tests to perform early diagnosis of diseases for people who
do not yet have the disease.

Miotto et al. proposed DeepPatient [51] a system that
leverage raw patient data from EHR like medication, diag-
noses, procedures, lab tests by applying them to unsupervised
deep feature learning algorithm to produce patient repre-
sentations that will be applied to perform more advanced
clinical tasks like personalized prescription, drug target-
ing, clinical trial recruitment, detecting patient similarity
etc. Prediction of future clinical events can be achieved
by modeling the EHR record as longitudinal event matrix,
with the horizontal dimension corresponding to the time
stamps and vertical dimension corresponding to the event
values and applying non-standard CNN [52]. Many predic-
tion algorithms leverage various EHR data types to predict
an outcome, however clinical notes contain rich amount of
patient’s data than other sources. Though unstructured they
can be a source of a big number of clinical predictions.
However raw text cannot be applied directly as meaningful
features to deep learning models, hence to acquire vectorized
inputs, before applying deep learning, a word embedding
algorithm like Word2Vec and Doc2Vec must be applied to
produce word vectors that can be understood by the learning
algorithms.
Use Case1 (Using EHR Clinical Notes and Convolutional

Neural networks (CNN) to Predict Death): This sub-section
serves as an intuition and use case of clinical notes generated
at the point of care into predicting adverse future event.
An imminent patient’s death is a result of various time
series events manifested after admission into the hospital.
The unexplored clinical notes produced by physicians or
nurses contain a rich content in a form of text that requires
critical analysis. The process of adverse event prediction is
described in Fig. 8. The task of deep learning is to aggregate
many data with or without known outcome(labels), and to
train a model which can predict an outcome for new sce-
narios. As clinical notes cannot be directly analyzed by the
deep learning model, they are vectorized by a Word2vec
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FIGURE 8. use case scenario clinical notes are vectorized using Word2Vec skip gram model, then using labels obtained from patient history weather he
died or not, train a CNN model which can predict a near future death prediction using patient’s hospital notes.

or Doc2Vec word embedding models that use skip gram
to vectorize textual information. However, clinical notes
contain ambiguous terms as well as important terms that
are related to a certain disease phenotype (as an example
we expect a clinical note written for a patient suffering a
heart attack to contain terms like chest pain, discomfort,
shortness of breath, lightheartedness etc.). Hence, before
vectorization we must dissect the content of the clinical notes
using standard ontologies for medical terminologies like
the (SNOMED CT) [53] or the Unified Medical Language
System (UMLS) [54], [60]. after extracting these words that
are related to patient phenotype the notes can now be fed as
input features to a Word2Vec model for vectorization. These
resulting vectors can now constitute labeled training data for
Convolutional Neural Network which can predict the death
probability (labels are obtained in the end status of a patient
whether he died, or he was discharged).
Use Case2 (Using Charted Clinical Events to Predict Med-

ical Adverse Future Events): Predicting the length of stay and
readmission probability helps in improving quality of care as
well as the potential to decrease unnecessary healthcare costs.
However, being able to aggregate all the patient’s data and
decide on which one that can havemore weight in an intended
prediction is highly an iterative process. Various machine
learning, and statistical models have been deployed to predict
death risks for hospitalized patients. Medical charted events
like ventilator settings, mIoT device’s alarms, laboratory val-
ues, heart rate, MRI readings, code status, mental status, and
so on, can be used to predict patient’s risk of imminent death
or hospitalization period. For instance, a patient in theMIMIC
III database who was admitted with hemorrhagic CVA (Cere-
brovascular accident) hospitalized for 5 days recorded among
others a total of 9172 charted events,68 prescriptions, and
12 microbiology events. These records contain a potential
source of data for prediction. Because all the outcomes are
known (Death or discharge), if we consider each patient and
build a representative vector that accommodates all these
events we can train a deep neural network that can predict
the patient’s outcome. Esteban et al. used Recurrent Neural

Networks (RNNs) and static information like patient gender,
blood type, etc. and dynamic information like clinical charted
events to predict future adverse events [55].

C. EHR DRIVEN PHENOTYPING
Clinical phenotyping is a process of establishing diseases
characteristics. This process is performed by expert opinions
and many years of researches which have already established
phenotypes of each disease. However, with the diversification
and polymorphism of existing diseases coupled with indi-
vidual genetic variations, there is high need to find other
methods to establish disease phenotypes as well as individual
patients’ phenotype using huge data stored in EHRs. Many
studies have used methods that include a mix of clinical
expert opinions and automated methods. A. Neuraz et al. [56]
have developed a method that used the frequency and
TF-IDF [57] to establish the relationship between clinical
phenotype and rare diseases. To access the performance
of deep learning methods to phenotyping tasks, Gehrmann
et al. [58] have thoroughly compared the results of CNNs
with those obtained from concept extraction-based meth-
ods using clinical narratives and those from n-gram based
models. Concept extraction is a popular method utilized
extensively in phenotyping of many diseases. One popular
project is the cTAKES (clinical Text Analysis and Knowl-
edge Extraction System) developed at Mayo [59]. cTAKES
is an openNLP toolkit that can be used to extract clini-
cal meaning from many clinical notes. It produces named
entities from each word in the clinical note and check
its meaning from the UMLS through its concept unique
identifier (CUI).
Use Case 1 (Creating Clinical Phenotypes Using Multi-

Layer Perceptron Deep Neural Network (RNN) on EHR
Data):Arguing with the precision of the International Classi-
fication of Diseases (ICD) codes that establish medical codes
and associated phenotypes, Rashidian et al. [61] used lab
results, patients’ demographics, as well as medication data to
establish a more trustworthy coding scheme using deep learn-
ing for ensuring the credibility of these codes, they partnered
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FIGURE 9. Jointly embedding ICD9 codes with clinical notes in a unified
vector space to establish diseases phenotype and predicting future visits.

with medical experts who verified the trustworthiness of the
model codes vis-a-vis the accepted ICD9 codes. Their model
was found to provide extensive and precise phenotypes than
those described in the ICD9 standard.
Use Case 2 (Embedding Medical Concepts and Words

Into a Unified Vector Space [62]): Most of the studies who
tried to leverage EHR data for patient’s phenotyping used
the embedding of medical codes like the ICD9 and fed the
resulting vectors to a neural network to establish diseases phe-
notypes or to predict a clinical adverse event [63]–[66]. Other
approaches have tried to embed the extracted medical codes
and accompanying words separately. This approach can have
its drawbacks as the words will lose their medical contexts.
Rather than using the normal skip gram where the context
words of the current word are established by calculating the
probability of each neighboring word being a context word,
Bai et al. used a Joint Skip-gram approach to jointly embed
the medical codes and words from clinical notes. it is done
by representing each patient visit by a pair made of diagnosis
codes and words from clinical notes (D, N) where D = {C1,
C2, C3...} and N = {N1, N2, N3.). With the MIMIC III data
set 54,965 such pairs have been obtained. The Joint Skip
gram was used to define the context of the diagnosis code in
question with also other codes in the same visit, as well as all
words in the clinical note. To aggregate data for the model,
for each patient visit, all diagnosis codes and all clinical
notes were extracted. As shown in Fig. 9 Stochastic gradient
algorithmwith negative samplingwas used as an optimization
algorithm to predict ICD-9 codes associated with future visit
as well as establishing diseases phenotypes.

D. PATIENT’S FEATURES REPRESENTATION
To perform an adverse clinical event prediction or any other
EHR task a precise patient representation and stratification
is very paramount. It is highly erroneous to directly feed the
EHR raw data to a deep network to perform clinical tasks
like predictions, clinical trial recruitment or disease detec-
tion because of the high heterogeneity and sparsity. Hence,
before performing these clinical support tasks with deep
networks a feature learning framework which can represent
the patient’s features with less information overlap has to be
constructed from the vastly heterogeneous EHR data. Various
models have represented patients in a form of a 2D vector
with patients on one dimension and amalgamation of each
patient’s records (ICD9 diagnosis, lab tests, clinical notes

content...) in another dimension. A common approach is to
have a clinical domain expert manually annotate the patterns
to look for including the clinical features and the targets of
the learning scheme. However, annotating features using a
domain expert in an ad hoc manner is tiresome and imprecise.
Recently unsupervised deep learning has revolutionized the
process of feature learning and selection. Authors in [67]
have use unsupervised learning for feature selection. First
the EHR raw data was divided into continuous features and
categorical features. Continuous features were first changed
into representational features using stacked auto encoders and
combined with categorical features then SVM was applied
for features selection. The resulting features were fed to a
model which can predict the amount of LVMI (Left Ven-
tricular Mass Index) a common indicator of heart damage
risk.

The most challenging hustle for deep leaning models is
the small size of the input data set. This creates a natural
incompatibility of EHR with deep learning models because
when small data sets are directly fed to a deep network it leads
to overfitting. One approach is to fuse deep features (obtained
by using a deep network) with traditional features like texture
feature, color moment obtained by traditional methods like
Haarlick [68] method. The study in [69] used lung tumor
images and transfer learning techniques using 3 existing CNN
models that were pre-trained on ImageNet public data set [70]
and combined obtained features with traditional features to
predict Survival among Patients with lung adenocarcinoma.
Authors in [71] used a CNN based Coding Network for med-
ical image classification using deep features obtained with
convolutional neural network and some selected traditional
features obtained with a solid background knowledge of med-
ical images like color histogram, color moment and texture
features.

Choi et al. proposedMed2Vec [72] a patient representation
that learns from medical codes associated with a clinical
visit to predicts codes that are likely to characterize the
next visits. The issues addressed in the study are that repre-
sentations obtained from RNN are difficult to interpret and
difficult to scale with high dimensional EHR data. More-
over, these representations fall short of critical information
that is embedded in the patient’s demographic information.
The authors adapted the usual embedding skip-gram model
to medical concepts. The first step of the solution is to
represent a patient’s visit as a unified vector consisting of
codes(diagnosis, subscriptions, etc..).using these codes as
inputs, ReLu activation was applied to obtain an intermedi-
ate vector which was then combined with patient’s demo-
graphic information to produce Vt an intermediate visit vec-
tor and use it to train a SoftMax classifier that is able to
predicts the medical codes of other visits within a context
window.
Use Case 3 (Deep Features Learning From EHR Raw

Data): The most effective method is adopted by authors
in [73], [23]. In these researches, authors argue that super-
vised feature learning lacks an ability to fully grasp novel
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FIGURE 10. Patient’s clinical features representation and selection overview.

FIGURE 11. Potential medical information hidden from social acquaintances and their possible contribution to HER.

patterns and features. They propose a data driven approach
to automatically identify patterns and dependencies in the
data without the need of a domain expert to annotate the
features. Fig. 10 is a blueprint of this novel approach. The first
step is to extract patient data (medication, diagnoses, lab
tests, clinical notes ...). The data is pre-processed including
appropriate embedding of clinical notes, then each patient is
represented as a single vector. The next step is the dimen-
sionality reduction stage which consists of feature represen-
tation and selection using stacked Denoising Autoencoders
(DAE) which are unsupervised learning neural networks that
can generate their own labels from the training data. The
SDAEs are used to transform these patient vectors into more
representative descriptors which can be input of another deep
learning prediction model. The last stage is the use of super-
vised learning to perform various clinical support tasks like
diagnosis proposition, adverse event prediction, clinical trial
recruitment etc. As an example, these features can be used

together with risk factors (like death or ECG readings) to train
a supervised model which can predict adverse events.

E. MEDICATION INFORMATION EXTRACTION
Medication information is an important area of biomedi-
cal research as it contributes greatly to pharmacovigilance,
adverse events’ detection, bio curation assistance, integra-
tive biology etc. Through much of the information can be
extracted from social fabric like social networks, EHR con-
tains also much of the immediate medication information.
However, the process of mining this information from the
EHR can be a lengthy tiresome process as the data is hidden
deep in EHR’s clinical narratives, patient’s encounters, ICU
discharges, and charted events. The task of a computerized
Adverse drug event recognition involves 3 main tasks which
are the Named Entity Recognition (NER) a process of detect-
ing key drug mentions, identifying these named events a pro-
cess of identifying the context of these mentions, and finding
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relationship between them. The medication information
extraction system aims to establish the medications names,
and their signatures like dosages, duration, prescription rea-
sons, complications, frequencies, route of administering, and
any other information deemed necessary by the prescribing
entity. Early use cases include MedEx [74] a system that
automatically extract medication names and their signatures
from clinical narratives using NLP. Authors of MedEx argue
that usual text parsing methods like regular expression can-
not apply in medication information extraction as they fall
short of contextual information out of clinical narratives.
MedEx uses a semantic-based approach with a much finer
granularity.

F. INTEGRATING EHR SOCIAL NETWORK AND WEB DATA
It is most likely that a patient shares clinical insights like
adverse drug event within social acquaintances than with his
physician. With the explosion of social networks, there is
huge, untapped medical insights which can be used together
with hospital’s EHR for clinical support systems. Though
the medical research community agrees that social networks
should be part of the EHR, the modalities of how to go
about it remain a highly debated subject. The concerns of
this reluctance are high noise due to spelling errors, impre-
cise descriptions, and ambiguous or casual use of medical
terms. Some clinical tasks may even depend on social data
than more formal EHR data. For example, recent researches
have shown that these social network services can hold data
related to pharmacovigilance and medication adherence than
EHR because a big number of patients might not return to
hospital to narrate the drug reactions unless there is an acute
condition that resulted into taking the drug. Recently deep
learning models have been applied to SNS data to contribute
to various clinical tasks [75]–[79]. Integration of social media
in the clinical care pipeline helps patients to participate in
self-care, health promotion, and disease prevention efforts
by the public. Ideas on how to integrate the SNS into EHR
argue that these data should be supplemental not overriding
other EHR data like charted events, lab events, lab tests, etc.
Fig. 11 shows a patient message to his acquaintances and
possible EHR tasks that can leverage these types of messages.

VII. CONCLUSION
We have given insights and technical intuitions of how
to leverage the EHR data using deep learning approaches.
We unraveled the technical side of various efforts that have
been invested to apply deep learning models for clinical
knowledge discovery using electronic Health Records vast
data sets. Despite clear success of deep learning for other
hospital’s tasks like billing and patient management there is
still much to do in the application of EHR data with deep
learning methods. Available successes in this domain still
depend on a supervision of a medical domain expert. More
research needs to be done to bring AI and deep leaning on
the patient’s bedside. Unlike other deep learning applica-
tions, the medical field is challenged by the structure of the

data itself and the acceptance of the models by the medical
community. Even if the model might be working from a
computing point of view its adoption will be hindered by the
reluctance by clinicians who still exercise their professions
using abductive reasoning. Though deep learning algorithms
perform better even with little or no feature engineering,
considering high risk factors associated with EHR tasks,
coupled with high longitudinality, sparsity, and noisiness of
EHR data there is a requirement to perform a thorough patient
representation that consists of appropriate patient’s feature
selection and representation before a predictive deep learning
model.
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