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ABSTRACT This paper presents a deep learning-aided iterative detection algorithm for massive overloaded
multiple-input multiple-output (MIMO) systems where the number of transmit antennas n is larger than
that of receive antennas m. Since the proposed algorithm is based on the projected gradient descent
method with trainable parameters, it is named the trainable projected gradient-detector (TPG-detector). The
trainable internal parameters, such as the step-size parameter, can be optimized with standard deep learning
techniques, i.e., the back propagation and stochastic gradient descent algorithms. This approach is referred to
as data-driven tuning and ensures fast convergence during parameter estimation in the proposed scheme. The
TPG-detector mainly consists of matrix-vector product operations whose computational cost is proportional
to mn for each iteration. In addition, the number of trainable parameters in the TPG-detector is independent
of the number of antennas. These features of the TPG-detector result in a fast and stable training process and
reasonable scalability for large systems. The numerical simulations show that the proposed detector achieves
a comparable detection performance to those of the existing algorithms for the massively overloaded MIMO
channels, e.g., the state-of-the-art IW-SOAV detector, with a lower computation cost.

INDEX TERMS Massive MIMO, overloaded MIMO, detection algorithm, deep learning.

I. INTRODUCTION
Multiple-input multiple-output (MIMO) signal processing
is an indispensable wireless communication technology for
achieving increased data transfer rates, enhanced reliability,
and improved energy efficiency. In particular,massiveMIMO
systems have been widely studied because they can provide
the high spectral efficiency required for upcoming communi-
cation technologies such as the 5th generation (5G) wireless
network standard [1], [2]. Since tens or hundreds of antennas
are used in a transmitter and receiver, signal detection for
MIMO channels tends to be a computationally intensive task.

The associate editor coordinating the review of this manuscript and
approving it for publication was Guan Gui.

It is thus worth studying practical massive MIMO detection
algorithms which have both low computational complexity
and reasonable bit error rate (BER) performance.

In a down-link massive MIMO channel with mobile termi-
nals, a transmitter in a base station can have many antennas
but a mobile terminal will have far fewer receive antennas
because of restrictions on the cost, space, and power con-
sumption. Such a system is known as an overloaded MIMO
system, in which the number of transmit antennas n is larger
than that of receive antennas m. Overloaded MIMO commu-
nications naturally arise in Internet of Things (IoT) wireless
networks, i.e., data collection by a base station from a large
number of sensor nodes can also be regarded as an up-link
overloaded MIMO system because the number of sensor
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nodes is typically greater than the number of receive antennas
at the base station.

A practical detector for massive overloaded MIMO sys-
tems should have not only low computational complexity
but also reasonable BER performance. However, achieving
a reasonable balance between the complexity and detection
performance is challenging. In fact, most naive MIMO detec-
tion algorithms have difficulties with either the detection
performance or the computational complexity. For exam-
ple, the zero-forcing detector and minimum mean square
error (MMSE) detector [3] exhibit poor BER performance
for overloaded MIMO channels, while optimal maximum
likelihood (ML) detection is computationally intractable.

Among the detection algorithms for overloaded MIMO
systems, several approximate ML detectors show a reason-
able balance between complexity and performance. Search-
based detection algorithms, such as slab-sphere decoding [4]
and enhanced reactive tabu search (ERTS) [5], have been
proposed for overloaded MIMO channels. Although these
schemes show excellent detection performance, they are still
computationally expensive for massive MIMO systems.

Some MIMO detection algorithms can be classified
into the category of convex optimization-based algorithms.
Fadlallah et al. proposed a MIMO detector based on
`1-regularized minimization [6]. Recently, Hayakawa and
Hayashi proposed an iterative detection algorithm with prac-
tical computational complexity based on iterative weighted
sum-of-absolute value (IW-SOAV) optimization [7], [8]. The
IW-SOAV provides a remarkable BER performance in the
currently available overloaded MIMO detection algorithms
with low computational complexity.

Recently, in the field of sparse signal recovery, deep
learning techniques have attracted great interest because
they can significantly improve the signal recovery perfor-
mances of existing sparse signal recovery algorithms. Briefly,
by unrolling the signal flow of an iterative algorithm, we can
obtain a signal-flow graph similar to a feedforward neural net-
work, where parameters are optimized by back propagation
and stochastic gradient descent methods. Gregor and LeCun
first proposed such an approach, called the learned itera-
tive shrinkage-thresholding algorithm (LISTA) [9], which
exhibits a sparse signal recovery performance far superior to
that of the original ISTA [10]. Ito, Takabe, and Wadayama
proposed the trainable ISTA (TISTA) [11], [12] which pro-
vides significantly faster convergence than ISTA and LISTA.
Several new algorithms inspired by TISTA have also been
developed: the TPG decoder for LDPC codes [13], OAMP-
net for MIMO systems [14], DL-OAMP [15], [16], and
SURE-TISTA [17].

The emergence of deep learning has also made a great
impact on the design of algorithms for wireless communica-
tions. Deep learning-basedMIMO detectors, such as the deep
MIMO detectors (DMDs) in [18], [19], have been proposed
based on the concept of end-to-end modeling of a detector
by a neural network [20]–[22]. Although these algorithms
exhibit a reasonable detection performance, they have poor

scalability because of the large number of tuning parameters,
and their computational cost. It thus may be difficult to apply
them to massive overloaded MIMO systems.

The goal of this paper is to propose a novel detection
algorithm which is suitable for massive overloaded MIMO
systems. Since the proposed algorithm is based on the
trainable projected gradient (TPG) algorithm, it is called
the TPG-detector [23]. The TPG-detector consists of two
iterative steps: the gradient descent step and the soft pro-
jection step. These two steps include several trainable inter-
nal parameters that can be optimized with standard deep
learning techniques, i.e., the back propagation and stochastic
gradient descent algorithms. This approach is referred to as
data-driven tuning and ensures the fast convergence of the
parameter estimation in the proposed scheme.

This paper is organized as follows. In Section II, we intro-
duce the concept of data-driven tuning for iterative algorithms
and demonstrate it with a simple example. In Section III,
we describe the problem setting of massive overloaded
MIMO systems. Section IV is the main part of this paper,
which introduces the proposed TPG-detector for massive
overloaded MIMO systems. In Section V, the proposed algo-
rithm’s detection performance is compared with other algo-
rithms such as the IW-SOAV. The last section is devoted to a
summary of this paper. Appendix presents a brief review of
the IW-SOAV.

II. DATA-DRIVEN TUNING
In this section, we first introduce our key design principle,
called data-driven tuning, for numerical optimization algo-
rithms. A simple example based on a toy problem related to
MIMO detection problems is then presented to illustrate the
basic idea behind data-driven tuning. In the numerical results,
we observe the phenomenon of the data-driven acceleration
of convergence for a projected gradient descent algorithm.
The trainable algorithm shown in the example is then used
as the base of the TPG-detector proposed in Section IV.

A. BASIC CONCEPT
We here introduce the concept of the data-driven tuning of
numerical optimization algorithms, whose origin dates back
to the work by Gregor and LeCun [9]. They unfolded an
iterative optimization algorithm and embedded several train-
able parameters such as matrices in gradient steps to improve
its convergence performance. In general, by unfolding the
iterative processes (Fig. 1 (a)) and by adding some trainable
parameters, we obtain a multilayer signal-flow graph that is
similar to a deep feedforward neural network (Fig. 1 (b)).

It is expected that the behavior of each process is controlled
by the trainable parameters (black circles in Fig. 1(b)). If each
process of the signal-flow graph is differentiable, these train-
able parameters can be adjusted by standard deep learning
techniques. Trainable parameters are tuned byminimizing the
loss function between the supervised signal and the output at
the end of the unfolded signal-flow graph. It is necessary to
prepare sufficient training data to tune trainable parameters.
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FIGURE 1. (a) A signal-flow diagram of an iterative algorithm, (b)
data-driving tuning based on an unfolded signal-flow graph by
supervised learning.

Fortunately, in problems involving wireless communications,
the training data can be randomly generated according to a
channel model.

In the training process, a randomly generated input is fed
into the signal-flow graph and the corresponding supervised
signal is also fed to the loss function (Fig. 1(b)). We apply
back propagation and an SGD type parameter update (SGD,
RMSprop, Adam, etc.) to optimize the parameters.

B. EXAMPLE OF DATA-DRIVEN TUNING
The aim of this subsection is to outline the use of data-driven
tuning with a toy problem similar to the MIMO detection
problem.

1) PROBLEM SETTING
Let us consider a simple quadratic optimization problem

minimizex∈{−1,+1}n
1
2
‖Ax− y‖22, (1)

where A ∈ Rn×n is a real-valued matrix and ‖ · ‖2 represents
the Euclidean norm. We assume that y is randomly generated
based on a linear observation y = Ax̃+ w ∈ Rn where x̃ is a
random vector uniformly distributed over {−1,+1}n and w ∈
Rn is an i.i.d. Gaussian random vector with zero mean and
variance σ 2. The optimization problem is regarded as an ML
estimation problem for the Gaussian linear vector channel,
which belongs to NP-hard problems.

In order to approximately solve the problem efficiently,
we consider a variant of the projected gradient (PG) algo-
rithm. The PG algorithm considered here is given by

rt = st + γAT(y− Ast ), (2)

st+1 = tanh (ξrt) , (3)

where t = 1, . . . ,T and tanh(·) is calculated element-wise.
In this paper, HT represents the transpose of matrix H . The
initial value is set to s1 = 0.
There are two processes in the PG algorithm: In the

gradient descent step (2), the vector rt is updated along
with the steepest descent direction of the objective function,
i.e., −∇ 1

2‖Ax − y‖22 = AT(y − Ax). The parameter γ

corresponds to the step-size parameter which controls the
convergence behavior such as the convergence to a fixed
point and the convergence speed. In the projection step (3),
we apply a soft projection function tanh(·) to rt in order to
obtain the estimate st+1 of the tth iteration. The soft pro-
jection ensures that the estimate takes a real value close to
±1. Although we can use a hard projection function onto the
binary symbols {−1,+1} instead of the soft projection, the
PG algorithm fails to converge to a true signal as indicated in
Section II-B.4. In this projection step, we have the parameter
ξ which adjusts the softness of the soft projection. Note that
this type of nonlinear projection has been commonly used in
several iterative multiuser detection algorithms such as the
soft parallel interference canceller [24].

2) TRAINABLE PG ALGORITHM
As described in the last subsection, the trainable algorithm
can be constructed based on the PG algorithm by unfolding its
iterative processes. We have the architecture of the trainable
PG (TPG) algorithm given by

rt = st + γtAT(y− Ast ), (4)

st+1 = tanh (ξrt) , (5)

with initial condition s1 = 0. In the TPG algorithm, we have
trainable parameters {γt }Tt=1 in the gradient descent step.1

Tuning these parameters also adjusts the step-size at each
iteration. In the following discussion, the parameter ξ is
treated as a fixed hyperparameter in Section II-B.3 and it is
treated as a trainable parameter in Section II-B.4.

The trainable parameters are optimized by the standard
mini-batch training. The ith training data point d i , (xi, yi)
is randomly generated. The ith input signal xi ∈ {−1,+1}n is
chosen from the uniform distribution and the corresponding
yi is generated according to yi = Axi + wi for a given A.
The training dataset of size D, D , {d1, d2, . . . , dD}, can be
regarded as a mini-batch and is fed into the TPG algorithm
simultaneously. In the following experiment, a matrix A is
randomly generated for eachmini-batch to simulate a realistic
situation in which a channel matrix changes frequently. Here,
each element of A follows the zero-mean Gaussian distribu-
tion with unit variance.

For the tth round of the training process, we feed a
mini-batch with D training data points to the TPG algorithm
to minimize the squared loss function

L(2t ) , D−1
∑
d i∈D

‖xi − x̂t (yi)‖22, (6)

where x̂t (y) , st+1 is the output of the TPG algorithm after t
iterations and 2t , (γ1, . . . , γt ) (or 2t , (γ1, . . . , γt , ξ ))
is a vector containing trainable parameters up to the tth
iteration. A back propagation process evaluates the gradient
∇L(2t ), which is used for updating trainable parameters2t

1In the implementation, an alternative trainable parameter γ̃ 2t is tuned
instead of γt to satisfy γt = γ̃ 2t ≥ 0. This is also true for the TPG-detector
in Section IV-A.
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FIGURE 2. Absolute value of gradient of {γt }
T
t=1 in the TPG algorithm with

single-shot training. The results obtained after the 10th mini-batch
training by the Adam optimizer with learning rate 2.0× 10−3 are
n = 1000, σ2 = 4.0, D = 200, and ξ = 8.0.

as2t := 2t+1where1 is given by an SGD type algorithm
such as the Adam optimizer [25].

It should be remarked that a simple single-shot training
using t = T often fails to tune the training parameters
accurately because of the vanishing gradient phenomenon.
In the TPG algorithm, the phenomenon is caused by the fact
that the derivative of the soft projection function (5) becomes
close to zero almost everywhere. Figure 2 shows the absolute
values of the gradient of the trainable parameters {γt }Tt=1 in
the TPG algorithm. We find that the gradient vanishes as the
iteration index t becomes small. The parameter estimators fail
to converge in the single-shot training (see Fig. 3). In order
to improve the accuracy of the training process, we use the
incremental training, which is effective in TISTA [11]. In the
incremental training, the parameters {γt }Tt=1 are sequentially
trained from21 to2T in an incremental manner.

The details of the incremental training are as follows. First,
21 is tuned byminimizing L(21). After finishing the training
of 21, the values of the trainable parameters in 21 are
copied to the corresponding parameters in22. In other words,
the results of the training for 21 are carried over to 22 as
the initial values. For each round of the incremental training,
which is called a generation, K mini-batches are processed.

3) EFFECT OF STEP-SIZE PARAMETER
We show the effects of the data-driven tuning in the TPG
algorithm. Here, we treat the step size {γt }Tt=1 as a trainable
parameter, while ξ is treated as a hyperparameter. In the
experiment, the dimension of matrix A is set to n = 1000
and we set σ 2

= 4.0. The number of iterations of the TPG
algorithm is T = 20. We performed two types of training
processes for the TPG algorithm to measure the effect of the
incremental training. In the training process with incremental
training, we used K = 100 mini-batches per generation.
The mini-batch size was set to D = 200 and an Adam
optimizer learning rate of 2.0×10−4 was used. In the training
process without incremental training (named ‘‘TPG-noINC’’

FIGURE 3. MSE as a function of the number of iterations. The curve (PG)
represents the MSE of the plain PG algorithm with γ = 6.5× 10−4 and
ξ = 6.0. The curve (TPG) corresponds to the MSE of the TPG algorithm and
the curve (TPG-noINC) corresponds to that of the TPG algorithm without
incremental training. The parameter ξ is fixed at 8.0 for the TPG
algorithm.

in Fig. 3), we used K = 2000 and D = 200, and the Adam
optimizer learning rate was set to 2.0 × 10−3. The initial
values of the trainable parameters were γt = 1.0 × 10−4

(t = 1, . . . ,T ). In this experiment, the softness parameter
ξ was set as 8.0 for the TPG algorithm.
Figure 3 shows the mean squared error (MSE) as a function

of the number of iterations of the plain PG algorithm when
ξ = 6.0 and γ = 6.5 × 10−4 for the TPG algorithms
with/without incremental training. The MSE after t iterations
is defined by 10 log10(E[||x− x̂t (y)||22]/n) (dB) and estimated
from 104 random samples. In the plain PG algorithm, we set
γ = 6.5× 10−4, which is the optimal value for T = 20 (see
also Fig. 4).

From Fig. 3, it is found that the MSE of the TPG algorithm
is remarkably lower than that of the plain PG algorithm. The
MSE of the TPG algorithm is below −80 dB at t = 8, while
the plain PG yields a smaller MSE after t = 19. In particular,
the TPG algorithm shows a much faster convergence at t = 9,
indicating that tuning the trainable parameters leads to fast
convergence. This is an example of the data-driven accel-
eration of convergence from introducing data-driven tuning.
Comparing the TPG algorithm with ‘‘TPG-noINC’’ in Fig. 3
without incremental training, we find that one-shot training
fails to tune the trainable parameters accurately as predicted
by Fig. 2. This indicates the importance of the incremental
training in the data-driven tuning approach.

In Fig. 4, we show the relation between the step-size
parameter γ and the MSE performance of the plain PG algo-
rithm with ξ = 6.0. It can be observed that the parameter γ
must be selected carefully to obtain appropriate convergence.
In other words, the appropriate γ region for fast conver-
gence is relatively narrow; specifically, we need to choose
an initial estimate within the neighborhood of 6.5 × 10−4

to achieve −100 dB at T = 200. This means that opti-
mization of the step size is critical even for the plain PG
algorithm. In addition, the TPG algorithm achieves a lower
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FIGURE 4. Relationship between the step-size parameter γ and the MSE
performance of the plain PG algorithm with ξ = 6.0. The horizontal solid
line represents the MSE of the TPG algorithm with T = 20 and ξ = 8.0.

MSE (around −130 dB), which cannot be achieved by the
plain PG algorithm with 200 iteration steps. This fact implies
that embedding a step-size parameter into each iteration step
provides a substantial improvement in the speed of conver-
gence and the accuracy of the solution.

4) EFFECT OF SOFTNESS PARAMETER
We further discuss the effect of the softness parameter ξ in (5)
on the MSE performance. Figure 5 shows the MSE curves of
the TPG algorithm with different values of ξ and the TPG
algorithm with trainable ξ . The setting of the experiment is
the same as above. As described above, the projection of the
TPG algorithm uses the soft projection function instead of
the hard-projection function corresponding to the ξ → ∞
limit. The results show that a large fixed ξ is not appropriate in
terms of theMSE. On the other hand, the TPG algorithmwith
small fixed ξ also shows a high MSE. It is thus crucial to tune
not only the step-size parameter {γt }Tt=1 but also the softness
parameter ξ to fully utilize the benefits of the TPG algorithm.
The curve with the label ‘‘TPG (ξ trained)’’ represents the
MSE of the TPG with trainable ξ . In the experiment, we used
K = 10000 due to the slow convergence of ξ . In Fig. 5,
we can see that it outperforms other TPG algorithms with
fixed ξ .

5) DISCUSSION
From the experimental results shown above, it is found that
the TPG algorithm shows remarkable acceleration of the con-
vergence speed, which we call data-driven acceleration. It is
emphasized that the optimization problem considered here is
randomized because its optimal solution and channel matrix
are random variables. The randomized optimization problem
thus has statistical properties in, e.g., gradient information
and landscape of the cost function. Data-driven acceleration
of convergence is a consequence of data-driven tuning that
aims to learn the stochastic variations on the landscape of
the objective functions. During the training process, trainable
parameters are tuned to match the typical objective function.

FIGURE 5. MSE as a function of the number of iterations. The curves
represent the MSE of the TPG algorithm with different fixed ξ or trainable
ξ . The trained value is ξ ' 8.560.

Most of the known acceleration techniques for gradient
descent algorithms, such as the momentum methods, do not
consider the statistical properties of the problems. On the
other hand, data-driven acceleration does learn the statistical
nature of the problem. The internal parameters controlling
the behavior of the algorithm are adjusted to match the typ-
ical objective function via training processes. Data-driven
acceleration is especially advantageous when implemented in
detection algorithms because it reduces the number of itera-
tions required without sacrificing the detection performance.
This makes the algorithm faster and more computationally
efficient.

III. OVERLOADED MIMO CHANNELS
In this section, we introduce the MIMO channel model used
throughout the rest of the paper. The numbers of transmit and
receive antennas are denoted by n and m, respectively. Our
main interest lies in the overloaded MIMO scenario in which
m < n holds. It is also assumed that the transmitter does
not use precoding and that the receiver perfectly knows the
channel state information, i.e., the channel matrix.

Let x̃ , [x̃1, x̃2, . . . , x̃n]T ∈ S̃n be a vector which consists
of transmitted symbols x̃j (j = 1, . . . , n) from the jth antenna.
The symbol S̃ ⊂ C represents a signal constellation. We
define ỹ , [ỹ1, ỹ2, . . . , ỹm]T ∈ Cm as a vector with received
symbols ỹi (i = 1, . . . ,m) by the ith antenna. Assuming a
flat Rayleigh fading channel, the received symbol vector ỹ is
given by

ỹ = H̃x̃+ w̃, (7)

where w̃ ∈ Cm consists of zero-mean complex Gaussian
random variables with covariance matrix σ 2

wI . The matrix
H̃ = (h̃i,j) ∈ Cm×n is a channel matrix where h̃i,j is the path
gain from the jth transmit antenna to the ith receive antenna.
Each entry of H̃ independently follows a complex circular
Gaussian distribution with zero mean and unit variance. It is
convenient to derive an equivalent real-valued channel model
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defined by

y = Hx+ w, (8)

where

y ,

[
Re(ỹ)
Im(ỹ)

]
∈ RM , H ,

[
Re(H̃) −Im(H̃)
Im(H̃) Re(H̃)

]
,

x ,

[
Re(x̃)
Im(x̃)

]
∈ SN , w ,

[
Re(w̃)
Im(w̃)

]
∈ RM , (9)

and (N ,M ) , (2n, 2m). For z ∈ C, Re(z) and Im(z) represent
the real and imaginary part of z, respectively. The signal set
S is the real counterpart of S̃. The matrix H ∈ RM×N is con-
verted from H̃ . Similarly, the noise vector w consists of i.i.d.
random variables following a Gaussian distribution with zero
mean and variance σ 2

w/2. The signal-to-noise ratio (SNR) per
receive antenna is then represented by

SNR ,
Es
N0
=

2n
σ 2
w
, (10)

where Es , E[||H̃x̃||22]/m is the signal power per receive
antenna and N0 , σ 2

w is the noise power per receive antenna.
Throughout this paper, we assume the QPSK modulation
format, i.e., S̃ , {1 + j,−1 + j,−1 − j, 1 − j}, which is
equivalent to the BPSK modulation S , {−1,+1} in the
corresponding real-valued channel model (8).

IV. TRAINABLE PROJECTED GRADIENT (TPG)-DETECTOR
The proposed algorithm, called the TPG-detector, is based
on the TPG algorithm introduced in Section II-B. We first
describe the details of the TPG-algorithm and discuss its time
complexity. The key difference between the previously pro-
posed trainable detector [23] and the TPG-detector described
below is the improvement in the gradient step which leads
to a significant performance improvement when the ratio
m/n(< 1) is sufficiently large. The TPG-detector has a lower
computational cost than the OAMP-net [14] and requires a
smaller number of trainable parameters than the DMD [18],
[19]. These features lead to the low training and execution
costs of the TPG-detector.

A. DETAILS OF TPG-DETECTOR
The ML estimation rule for the MIMO channel is given by

x̂ , argminx∈{−1,+1}N ‖Hx− y‖
2
2. (11)

An exhaustive search for the optimal solution is intractable
when the system size is large because (11) is a non-convex
optimization problem. Similar to Section II-B, we instead
approximate the solution by using the TPG algorithm. The
recursive formula of the TPG-detector is given by

rt = st + γtW (y−Hst ), (12)

st+1 = tanh
(
rt
|θt |

)
, (13)

where t(= 1, . . . ,T ) represents the index of an iteration step
(or layer) and we use s1 = 0 as the initial value. The estimate
of the algorithm after T iterations is given by x̂ = sT+1.

FIGURE 6. The tth layer of the TPG-detector. The trainable parameters
are γt and θt .

The processes (12) and (13) correspond to the gradient
descent step and the soft projection step, respectively, with
soft projection function tanh(·). The matrix W in the gra-
dient step (12) is the linear MMSE (LMMSE)-like matrix
defined by

W , HT(HHT
+ αI)−1, (14)

where α ∈ R is a trainable parameter. The matrix (14)
also appears in the solution of the linear regression prob-
lem with a quadratic regularization term. We note that the
OAMP-net [14] uses LMMSE-like matrices as well. The key
difference from the TPG-detector is that the LMMSE-like
matrix needs to be computed at each iteration in the OAMP-
net. In fact, in the tth iteration step of the OAMP-net, the
matrix is given asW t by substituting the error variance with
α in (14).

In our previous work [23], the Moore-Penrose pseudo-
inverse matrix HT(HHT)−1 was applied to the matrix W
as in the orthogonal approximate message passing (OAMP)
algorithm [26] and TISTA [11], [12], although a naive gradi-
ent descent method for (11) sets HT to W as in (4). How-
ever, as we will see in Fig. 8, the TPG-detector with the
Moore-Penrose pseudo-inverse matrix has a poor detection
performance when the ratio m/n is relatively large. Here,
we instead use the LMMSE-like matrix (14) forW .

Since it is critical to tune α to obtain a reasonable detection
performance, the parameter α is also optimized in the training
process. To reduce the number of trainable parameters and
the computational cost, we assume that the same value of α
is used at each iteration.

B. TRAINABLE PARAMETERS
The trainable parameters of the TPG-detector are 2T + 1
real scalar variables α, {γt }Tt=1, and {θt }

T
t=1. The parameters

{γt }
T
t=1 in the gradient step control the step size of the update.

It should be remarked that similar trainable parameters are
also introduced in the structure of TISTA [11], [12]. The
parameters {θt }Tt=1 control the softness of the soft projection
in (13). Different from the TPG algorithm, the trainable
parameters depend on the iteration index t to increase the
degree of freedom of the trainable parameters in the soft
projection functions. The parameter α adjusts the degree of
compensation for an ill-conditioned matrix H . Apart from
{γt }

T
t=1 and {θt }

T
t=1, the TPG-detector uses the same parame-

ter α for all iterations.
One of the advantages of the TPG-detector is that the

number of trainable parameters is small, i.e., O(T ), and this
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leads to a fast and stable training process. The number of
trainable parameters in the TPG-detector does not depend
on the number of antennas n and m although the DMD [18]
contains O(n2T ) parameters in T layers. Since the compu-
tational cost for the training process is roughly proportional
to the number of trainable parameters, the TPG-detector
results in a remarkably fast training process, similarly
to TISTA [12].

C. TIME COMPLEXITY
The computational complexity of the TPG-detector per itera-
tion is O(mn) because calculating the vector-matrix products
Hst and W (y − Hst ) takes O(mn) computational steps. We
need to calculate the LMMSE-like matrix W with O(m3)
computational steps because the calculation involves an
matrix inversion. However, the calculation of W is required
only whenH changes; i.e., the matrix inversion is not needed
for each iteration of a TPG-detector ifH is constant during the
process. The total computational cost for the TPG-detector
(for T iterations) without the initialization process for W is
thus O(mnT ).

Another TISTA-based MIMO detection algorithm named
OAMP-net [14] also uses the LMMSE matrix as a linear
estimator. However, its computational cost is higher than that
of the TPG-detector because the OAMP-net needs to compute
a matrix inversion at each iteration [14]. The total compu-
tational complexity of the OAMP-net with T iteration steps
is O(m3T ), which is larger than that of the TPG-detector. It
should be emphasized that the computational cost affects not
only the detection processes but also to the training processes.

D. TRAINING PROCESS
The TPG-detector is trained based on the incremental training
described in Section II-B.2. The training data are generated
randomly according to the channel model (8) with fixed
variance σ 2

w corresponding to a given SNR. As described in
Section III, we assume a practical situation in which a channel
matrixH is a random variable. According to this assumption,
a matrix H is randomly generated for each mini-batch in the
training process of the TPG-detector.

V. NUMERICAL RESULTS
In this section, we present the detection performance of the
TPG-detector and compare it to that of other algorithms such
as the IW-SOAV, which is known as one of the most efficient
iterative algorithms for massive overloaded MIMO systems.

A. EXPERIMENTAL SETUP
In numerical experiments, we uniformly sample a transmitted
vector x and generate random channel matrices for BER
estimation. The BER is evaluated for a given SNR.

The TPG-detector was implemented with PyTorch 0.4.0
[27]. In this paper, a training process is executed with T = 50
rounds using the Adam optimizer [25]. To calculate the BER
of the TPG-detector, a sign function sgn(z) which takes a

value of −1 if z ≤ 0 and 1 otherwise is applied to the output
sT+1 in an element-wise manner.
For comparison, we use the ERTS [5], IW-SOAV [8],

and the standard MMSE detector. The ERTS is a heuristic
algorithm based on a tabu search for overloaded MIMO
systems. The parameters of ERTS are based on those given
in the original work [5]. The computational complexity for
executing the main loop of the ERTS algorithm is O(NRTSn2)
where NRTS is the maximum number of RTSs which is set to
500 in this paper.

The IW-SOAV is a double loop algorithm for massive over-
loaded MIMO systems (see the Appendix for a brief review).
Its inner loop is the W-SOAV optimization, which recovers a
signal using a proximal operator. Each round of the W-SOAV
takesO(mn) computational steps, which is comparable to that
of the TPG-detector. After finishing an execution of the inner
loop with Kitr iterations, several parameters are then updated
in a re-weighting process based on a tentative recovered
signal. This procedure is repeated L times in the outer loop.
The total number of steps of the IW-SOAV is thus KitrL
and the total computational cost is O(KitrLmn) without pre-
computation. In the following, we use the simulation results
in [8] with Kitr = 50. In this case, the computational cost of
the TPG-detector is roughly equal to that of the IW-SOAV
with L = 1 if m/n is a constant. If L ≥ 2, i.e., the outer
re-weighting process is executed, and the TPG-detector has
lower computational complexity than the IW-SOAV.

B. MAIN RESULTS
1) SELECTION OF MATRIX W IN THE GRADIENT STEP
As described above, we choose the matrixW in the gradient
step (12). The selection of the matrix will affect the detection
performance of the algorithms as shown in the OAMP [26].
Before we compare the BER performance of the proposed
TPG-detector with other detection algorithms, we numeri-
cally test the effect of the choice of W . Figure 7 shows the
detection performance of the TPG-detector with a different
choice of W when (n,m) = (150, 96). We examined three
types ofmatrices: thematched filtermatrix (MF)HT, pseudo-
inverse matrix (PINV) HT(HHT)−1, and LMMSE-like
matrix (LMMSE) (14). From Fig. 7, we find that the
LMMSE-like matrix outperforms other choices of W in a
wide range of SNR.

Figure 8 shows the BER performances of PINV and
LMMSE as a function of the ratio m/n when n = 50 and
SNR= 20 dB. Although the BER performance of LMMSE is
close to that of PINVwhenm/n ≤ 0.7, LMMSE shows lower
BERvalueswhen the ratiom/n is close to one. This is because
the random matrix H tends to be ill-conditioned, i.e., the
condition number ofH increases as m/n(< 1) increases. The
LMMSE-like matrix successfully compensates the effect of
the condition number. In fact, as shown in Fig. 9, the learned
value of α becomes large in the high m/n region. Otherwise,
the learned α is close to zero, which suggests that LMMSE
corresponds to PINV without α. From these observations,
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FIGURE 7. BER performances for (n,m) = (150,96) for different choices
of W ; SNR= 20 dB. The label ‘‘MF’’ stands for the matched filter which
corresponds to the gradient of the original problem (11), i.e., W , HT,
‘‘PINV’’ represents the pseudo-inverse matrix W , HT(HHT)−1, and
‘‘LMMSE’’ is the LMMSE-like matrix (14).

FIGURE 8. BER performances of the TPG-detector with different choices
of W as a function of m/n; n = 50, SNR= 20 dB, T = 50. The label ‘‘PINV’’
represents the pseudo-inverse matrix W , HT(HHT)−1 and ‘‘LMMSE’’ is
the LMMSE-like matrix (14).

FIGURE 9. The learned values of α in the TPG-detector with the
LMMSE-like matrix (14); n = 50, SNR= 20 dB, T = 50.

we set the LMMSE-like matrix to W in the proposed TPG-
detector to treat the ill-conditioned matrix H .

2) SIGNAL DETECTION PROCESS
We next demonstrate the detection process of the TPG-
detector. Figure 10 shows the output st+1 of the TPG-detector

FIGURE 10. Output st+1 of the TPG-detector (blue bars) after (a) t = 1,
(b) t = 5, (c) t = 10 iterations; (n,m) = (25,16), SNR= 20 dB, T = 10.
Orange bars represent the true signals for comparison.

(T = 10) after t = 1, 5, and 10 iterations. The system
size is (n,m) = (25, 16) and the SNR is set to 20 dB. For
comparison, the true signal is also shown in the figure. We
find that the TPG-detector (t = 1) mistakenly detects a
few elements of the input signal as shown in Fig. 10 (a).
After the 5th iteration, as shown in Fig. 10 (b), no bit errors
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FIGURE 11. BER performances for (n,m) = (50,32).

FIGURE 12. BER performances for (n,m) = (100,64).

occur while some values of s6 are not ±1 because of the soft
projection in (13). However, after some additional iterations,
all elements of the output are sufficiently close to ±1 (see
Fig. 10 (c)) indicating that the MSE loss (6) is decreasing.

3) BER PERFORMANCES
We present the BER performance of each detector as a func-
tion of SNR for (n,m) = (50, 32), (100, 64), and (150, 96)
in Figs. 11-13, respectively. All the results show that the
MMSE detector fails to detect transmitted signals reliably
(BER ' 10−1) because the system is underdetermined.
For (n,m) = (50, 32) in Fig. 11, ERTS outperforms the

other detection algorithms by a large margin when SNR is
larger than 10 dB. It should be remarked that ERTS has a
much greater time complexity (around several orders of mag-
nitude) than that of the IW-SOAV (see Fig. 7 in [8]). Com-
paring the TPG-detector with the IW-SOAV, we find that the
TPG-detector performs far better than the IW-SOAV (L = 1)
and shows a BER performance close to the IW-SOAV (L = 5)
when SNR is below 20 dB. Note that the computational cost
for executing the TPG-detector with T = 50 is close to that
of the IW-SOAV (L = 1). The IW-SOAV (L = 5) requires
KitrL = 250 iterations, which is 5 times as many as the num-
ber of iterations required for the TPG-detector with T = 50.

FIGURE 13. BER performances for (n,m) = (150,96).

This implies that the TPG-detector can achieve a good detec-
tion performance with a relatively low computational cost.

For (n,m) = (100, 64) in Fig. 12, ERTS detector shows the
best BER performance in a middle SNR region where SNR is
between 10 and 18 dB but the BER curve of ERTS is saturated
after 20 dB. The TPG-detector and the IW-SOAV (L = 1
and L = 5) outperform ERTS in a high SNR regime. In
such a regime, the TPG-detector exhibits a BER performance
superior to that of the IW-SOAV (L = 1) for the entire range
of SNR, i.e., the TPG-detector achieves an approximately
5 dB gain at BER = 10−4 over the IW-SOAV (L = 1). More
interestingly, the BER performance of the TPG-detector is
fairly close to that of the IW-SOAV (L = 5) when the SNR
is below 20 dB. When SNR = 20 dB, the BER estimate of
the TPG-detector is 1.0×10−4 whereas that of the IW-SOAV
(L = 5) is 2.1× 10−5.
Figure 13 shows the BER performance for (n,m) =

(150, 96). In this case, ERTS shows a poor BER performance,
and cannot achieve a BER smaller than 10−3 for any SNR.
The TPG-detector successfully recovers transmitted signals
with lower BER than that of the IW-SOAV (L = 1). It again
achieves about a 5 dB gain against the IW-SOAV (L = 1)
at BER = 10−5. In addition, the TPG-detector achieves the
lowest BER when SNR = 12.5 dB. Although the IW-SOAV
(L = 5) shows a considerable performance improvement
when SNR > 15 dB, the gap between the curves of the
TPG-detector and the IW-SOAV (L = 5) is only 2 dB at
BER = 10−5.

4) SYSTEM-SIZE DEPENDENCY
In Fig. 14, we show the BER performances of the
TPG-detector and IW-SOAV (L = 1) as a function of
the number of antennas n with the rate m/n = 0.6
fixed. The gap in their BER performances is especially
large for SNR= 20 dB. We also find that the gain of
the TPG-detector increases as n grows despite these algo-
rithms having the same computational costs. It is con-
firmed that the TPG-detector outperforms low-complexity
algorithms especially in the massive overloaded MIMO
channels.
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FIGURE 14. BER performances as functions of the number of antennas n
for fixed rate m/n = 0.6 with SNR= 15,20,30 dB.

TABLE 1. Execution time for training processes of the TPG-detector.

5) TRAINED PARAMETERS
Figure 15 displays the learned parameters {γt }Tt=1 and
{|θt |}

T
t=1 of the TPG-detector after training as a function of

the iteration index t(= 1, . . . ,T ). We find that they exhibit
a zigzag shape with a damping amplitude similar to that
observed in TISTA [11]. The parameter γt , the step size of
the linear estimator, is expected to accelerate the convergence
of the signal recovery. Theoretical treatments for providing a
reasonable interpretation of the characteristic shapes of the
learned parameters are left as future work.

The trained values of α for different SNR values are
shown in Fig. 16. We find that the parameter α depends on
the value of SNR. In particular, the trained value decreases
when SNR≤ 7.5 dB. This tendency is similar to that of
another parameter related to α in the IW-SOAV [8] using the
LMMSE-like matrix. On the other hand, the trained value is
non-monotonic unlike the IW-SOAV; specifically, it increases
when SNR< 7.5 dB. The parameter corresponding to α in the
IW-SOAV should be chosen in advance by numerical simula-
tions. The learning process in the TPG-detector easily tunes
the parameter α in addition to other trainable parameters.

6) COMPUTATION TIME
Wefinally discuss the scalability of the TPG-detector to show
the required computation time for training. The empirical
execution time of the training process of the TPG-detector is
measured by using a PC with GPU NVIDIA GeForce GTX
1080 and Intel Core i7-6700K CPU 4.0 GHz with 8 cores.
Table 1 presents the execution time of the training processes
with different n. Even for the case (n,m) = (150, 96),
we need only 20 minutes for training the TPG-detector
and this result indicates that the training process of the
TPG-detector is practical for fairly large systems.

FIGURE 15. Sequences of learned parameters γt (top) and |θt | (bottom);
(n,m) = (150,96), SNR = 20 dB, 1 ≤ t ≤ T = 50. The trained value of α
is 34.68.

FIGURE 16. The trained α values for different SNR values;
(n,m) = (150,96) and T = 50.

VI. CONCLUSION
In this paper, we proposed the TPG-detector, a deep
learning-aided iterative decoder for massive overloaded
MIMO channels. It is based on the concept of data-driven
tuning using standard deep-learning techniques. The
TPG-detector contains two trainable parameters for each
layer: γt controlling the size of the gradient descent step and
θt controlling the softness of the soft projection. In addi-
tion, the parameter α in the LMMSE-like matrix W (14) is
also optimized in the training process. The total number of
trainable parameters in T layers is thus 2T + 1, which is
significantly smaller than used in previous studies, such as
for the DMD [18], [19]. This promotes fast and stable training
for the TPG-detector.

The computational complexity of the TPG-detector with
T iteration steps without the initialization on W is O(mnT ).
This is an advantage over the OAMP-net [14] which needs
a matrix inversion for each iteration and has a time com-
plexity of O(m3T ). This indicates that the TPG-detector is
more scalable for massive MIMO systems in terms of the
computational cost.
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Numerical simulations show that the use of the
LMMSE-like matrix successfully improves the BER per-
formance of the TPG-detector even when the ratio m/n is
relatively large, i.e., the channel matrix is ill-conditioned. It
is also revealed that the proposed TPG-detector outperforms
the state-of-the-art IW-SOAV (L = 1) by a large margin
and achieves a comparable detection performance to the
IW-SOAV (L = 5). The TPG-detector therefore can be
seen as a promising iterative detector for massive overloaded
MIMO channels providing an excellent balance between a
low computational cost and a reasonable detection perfor-
mance.

In this paper, we treat MIMO systems with QPSK mod-
ulation by separating the real and imaginary part of the sig-
nals. It is expected that the extension of the TPG-detector to
16QAM or 64QAM modulations is straightforward by using
corresponding MMSE functions as a soft projection function
(see [12] for details), which is left for a future work here.
In contrast, this approach will fail for 2K -PSK (K > 2)
modulations because it neglects correlations in the modu-
lation format. Instead, it is crucial to treat complex-valued
signals directly as shown in some recent studies [28], [29].
As a trainable algorithm based on data-driven tuning, some
of the authors recently proposed the complex-field TISTA
for linear and nonlinear inverse problems in the complex
domain [30]. Applying this approach to a massive overloaded
MIMO system is a future research task.

APPENDIX
BRIEF REVIEW OF IW-SOAV
Here, we give a brief review of the IW-SOAV detector. The
IW-SOAV is an effective iterative detection algorithm for
massive overloaded MIMO systems proposed in [7], [8]. It
is based on a variant of the Douglas-Rachford algorithm [31]
which solves the following weighted SOAV (W-SOAV) opti-
mization problem:

ŝ , argminz∈R2n

 2n∑
j=1

w+j |zj − 1| +
2n∑
j=1

w−j |zj + 1|

+
α

2
‖y−Hz‖22

, (15)

where zj (j = 1, . . . , 2n) is the jth element of z and α(> 0)
is a constant. Here, we assume that each symbol xj in the
transmitted signal x is an independent random variable which
takes a value of 1 w.p. w+j and −1 w.p. w−j , 1− w+j .

The IW-SOAV repeats the following procedures: (i) esti-
mation of w+j based on the detected signal and (ii) detection
of the transmitted signal by solving the W-SOAV optimiza-
tion (15). The IW-SOAV is thus a double-loop algorithm.

In the outer loop corresponding to procedure (i), the algo-
rithm approximates {w+j } for each transmitted symbol. The
estimation is based on the approximate log likelihood ratio

which is given by

3̂j =

2m∑
i=1

2hi,j{yi − (µ̂i − hi,jŝ′j)}

σ̂ 2
i − h

2
i,j(1− ŝ

′2
j )

, (16)

where hi,j is the (i, j)th element of matrixH and ŝ′ represents
a clipped signal of ŝ; specifically i.e., ŝ′j (j = 1, . . . , 2n) takes
a value of−1 if ŝj < −1, and 1 if ŝj > 1, and sj otherwise. In
addition, we define

µ̂i ,
2n∑
k=1

hi,k ŝ′k , (17)

σ̂ 2
i ,

2n∑
k=1

h2i,k (1− ŝ
′2
k )+

σ 2
w

2
, (18)

for i = 1, . . . , 2m. Then, the weight w+j is calculated by

w+j =
e3̂j

1+ e3̂j
. (19)

In the inner loop corresponding to procedure (ii), the
algorithm solves the W-SOAV optimization problem with an
iterative process defined by the following recursive formula:

zt = (I + αγHTH)−1(rt + αγHTy) (20)

rt+1 = rt + θt (φγ (2zt − rt )− zt ), (21)

where t(= 1, . . . ,Kitr) denotes the iteration step, θt ∈
[ε, 2 − ε] is a constant, and φγ : RN

→ RN is
a component-wise function whose jth element [φγ (z)]j is
defined by

[φγ (z)]j ,



zj + γ (zj < −1− γ )
−1 (−1− γ ≤ zj < −1− djγ )
zj + djγ (−1− djγ ≤ zj < 1− djγ )
1 (1− djγ ≤ zj < 1+ γ )
zj − γ (1+ γ ≤ zj),

(22)

with dj , w+j − w−j . The choice of the parameters γ > 0,
ε ∈ (0, 1), and the initial value r0 ∈ R2n are arbitrary. In
thisW-SOAV optimizer, the transmitted symbol is received as
x̂ = zKitr+1 afterKitr iteration steps. The IW-SOAV starts with
ŝ = 0 and repeats L outer loops with Kitr inner loops. When
all loops are finished, the sign function sgn(·) is applied to the
output x̂ in an element-wise manner. The parameter α is fixed
appropriately depending on SNR. In numerical experiments
in Section V, we used r0 = 0, ε = 0, γ = 1, and θt = 1.9
(t = 1, . . . ,Kitr), and set α as in [8].
The computational cost of each iteration of the IW-SOAV

is O(mn). Although it contains a matrix inversion operation
which takes O(n3) computational steps, the inversion can be
computed in advance. Since the total number of inner and
outer loops is KitrL, the computational cost of the IW-SOAV
without pre-computation is O(KitrLmn).
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