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ABSTRACT For the pulse Doppler radar system with short pulse sequence, maximum eigenvalue-based
matrix CFAR detector (MEMD) provides an effective solution to the problem of detecting moving targets in
the background of K distribution sea clutter when the target Doppler frequency is within clutter spectrum.
However, its performance is inferior to adaptive normalized matched filter method (ANMF) when the
target Doppler frequency heavily deviates from the clutter spectrum. In essence, the reason for the better
performance of ANMF method is the clutter is effectively suppressed by whitening and matched filter.
Motivated by this, the fusion idea of eigenvalue detection and pre-processing via fast Fourier transform
is considered taking advantage of the priori information of target steering vector. A pre-processing-based
maximum eigenvalue matrix CFAR detection (P-MEMD) method is proposed to suppress the influence of
clutter on detection performance. Finally, the numerical experimental results based on simulated data and
real sea clutter data show that the proposed method achieves better detection performance and robustness
than some conventional methods.

INDEX TERMS Moving target detection, pre-processing, sea clutter.

I. INTRODUCTION
The effective and robust detection for moving target in sea
clutter is always an important and challenging task for mar-
itime radar detection, which is meaningful for both military
and civilian. In general, sea clutter presents non-Gaussian and
non-linear characteristics, so that it has serious impact on
moving target detection [1], [2]. To this end, much attention
has been paid to how to suppress sea clutter so as to improve
the detection performance [3].

The coherent detection methods using local power of echo
and Doppler information are the commonly utilized to deal
with the problem of moving target detection in sea clut-
ter. For example, the cell averaging based on fast Fourier
transform (FFT-CA) constant false alarm detection (CFAR)
method is widely used employing the Doppler filter banks
to improve clutter rejection. The FFT-CA method achieves
good detection performance in the case of no energy leakage
and high Doppler resolution. Take some practical scenar-
ios into consideration, the clutter velocity dispersion caused
by internal movement, radar platform movement, and wind
speed, which results in Doppler frequency broadening of clut-
ter spectrum [4]. In addition, to meet the new requirements
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and challenges from system reaction time, utilizing short
Doppler bursts with few of pulses is the antagonistic way
to relax time budget [5]. However, for short pulse sequence,
the Doppler resolution is poor and the signal component
will exists in other filters when the target Doppler frequency
cannot completelymatch the central frequency of the Doppler
filter bank, which leads to energy leakage [6]. FFT-CA will
suffer from the integration loss with respect to short pulse
sequence and degraded detection performance for the case of
clutter spectrum broadening, energy leakage of Doppler filter
banks and low Doppler resolution [7]. Some other coher-
ent detection methods were proposed to improve detection
performance. More specifically, Kelly proposed the matched
filter (MF) method that achieves satisfactory detection per-
formance in the color Gaussian noise environment. Neverthe-
less, it requires the clutter covariance matrix to be known [8].
To deal with the case of unknown clutter covariance matrix,
adaptivematched filter (AMF)method firstly uses clutter data
of reference cells to estimate the clutter covariance matrix,
and then carries out the coherent matched detection for the
cell of under test (CUT) [9]. Subsequently, the normalized
matched filter (NMF) and adaptive normalized matched fil-
ter (ANMF)methods came into being for the variation of clut-
ter energy of reference cells in the background of compound
Gaussian clutter [10], [11]. The ANMF method improves the
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integration gain by accumulating multiple samples, so as to
obtain better detection performance. However, the ANMF
method relies on the clutter covariance matrix estimation,
which promotes the research on clutter covariance matrix
estimation under different conditions [12], [13]. For K dis-
tribution clutter environment, [14] proposed a suboptimal
α-adaptive matched filter (α-AMF) algorithm to reduce the
computational complexity of optimal coherent K-distributed
detector (OKD). The detection performance of α-AMF is
close to the OKDmethod when the ratio between the number
of reference cells and the length of the coherent pulse train
tends to infinity. While the detection performance of α-AMF
is degraded when the ratio between the number of reference
cells and the length of coherent pulse train is small.

All the above methods are based on the assumption that
the target steering vector is known. If the steering vector
is unknown or mismatched, then the detection performance
of these methods will be degraded [15], [16]. For the case
of unknown target steering vector, [17], [18] proposed the
generalized likelihood ratio test (GLRT) detection method
in Gaussian and compound Gaussian environment, as well
as studied the influence of mismatched steering vector on
detection performance. In addition, the totally blind matrix
CFAR detector based on information geometry obtains good
detection performance for the problem of detecting moving
target in sea clutter [19]–[22]. It transforms the target detec-
tion problem into a geometric problem on matrix manifold,
which overcomes the shortcomings of traditional FFT-CA
method under the condition of short pulse sequence. While
the kind of geometrical methods cost heavy computational
complexity. The maximum eigenvalue based matrix CFAR
detector (MEMD) is given to reduce computational complex-
ity [23]. It achieves superior detection performance when the
target Doppler spectrum overlaps with the clutter spectrum.
However, its performance is inferior to ANMF when the
target Doppler frequency removes from the clutter spectrum.
The main reason is that ANMF method is a coherent method,
which utilizes whitening and matched filter to suppress clut-
ter. While MEMD method, as an incoherent method, cannot
compensate the phase fluctuation resulting in low integration
gain and degraded detection performance. Therefore, for the
case of short pulses, it is very necessary to design a more
robust CFAR detection algorithm with superior detection
performance especially when the target spectrum is sepa-
rated from the clutter spectrum. Motivated by this, we expect
to enhance the detection performance of MEMD by using
phase information or other ways to improve signal-to-clutter
ratio (SCR) under the premise of ensuring CFAR property.

This paper considers the problem of moving target detec-
tion in the background where clutter and noise exist simul-
taneously. The combined idea of eigenvalue detection and
pre-processing is adopted to weaken the influence of clutter
on the detection performance as well as improve the detec-
tion performance of MEMD especially when target spec-
trum separates from the clutter spectrum. It is a technical
difficulty to design an effective pre-processing mechanism.

The pre-processing via fast Fourier transform (FFT) based
maximum eigenvalue matrix CFAR detector (P-MEMD) is
proposed to improve integration gain using the prior infor-
mation of target steering vector. The pre-processing process
utilizing the phase information can suppress the clutter as
well as this operation effectively cope with the performance
degradation problem of the MEMD method when the target
spectrum is separated from the clutter spectrum. In addi-
tion, the constant false alarm rate property of the proposed
method with respect to clutter covariance matrix is analyzed.
Comparedwith the conventional ANMFmethod andMEMD,
the proposed method achieves better detection performance
not only in the strong clutter environment, but also when the
target Doppler frequency removes from the clutter spectrum.
It indicates that the proposed method is more robust for the
case of small bunch of pulses.

The structure of this paper is arranged as follows: the
detection model of moving target is considered in Section II;
Section III reviews two classical coherent methods, that is
FFT-CA and ANMF. And then pre-processing based maxi-
mum eigenvalue detection method is proposed. In Section IV,
the effectiveness of the proposed method is verified by sim-
ulation experiments on simulation data and real sea clutter
data. Section V gives the conclusion.

A. ABBREVIATIONS AND ACRONYMS
A lot of notations adopted in this paper are listed as the fol-
lowing: scalars r , vectors r and matrices R are expressed by
math italic, lowercase bold and uppercase bold, respectively.
The complex conjugate and conjugate transpose operators
are denoted as (·)∗ and (·)H , respectively. λmax(·) means the
maximum eigenvalue of a matrix. Curved inequality�means
that a matrix is positive definite. U (M ) stands for the set of
allM×M unitary matrices. ‖ · ‖2 means the spectral norm of
a matrix. tr(·) denotes the trace of matrix, diag(·) represents
taking the diagonal elements of a matrix and creating a new
column vector.

II. PROBLEM FORMULATION
Formally, the problem of detecting radar moving target in the
background of sea clutter plus noise can be represented by the
following binary hypothesis model [23], [24]:{

H0 : r = c+ n
H1 : r = ap+ c+ n

(1)

where r ∈ CM is the M dimensional observation data vector
of cell under test (CUT), referred to primary data. Under
the null hypothesis, the CUT contains clutter c and Gaussian
noise n. The noise cannot be neglected in some practical
scenarios especially in noise dominated Doppler regions at
low grazing angle. Another hypothesis indicates that the CUT
contains a target echo ap plus clutter c and noise n, where a is
the complex signal amplitude, p is the target steering vector
with component of exp(j2π(m − 1)fd/fr ),m = 1, . . . ,M .
fd stands for the target Doppler frequency, fr represents pulse
repetition frequency.

VOLUME 7, 2019 91415



W. Zhao, M. Jin: MEMD Using Pre-Processing in Sea Clutter

FIGURE 1. The block diagram of FFT-CA method.

In practice, the statistical characteristic of sea clutter grad-
ually deviates from Gaussian distribution for high resolution
radar system. Some literatures have shown that the compound
Gaussian model can reflect the backscattering process of
clutter and accurately model the statistical characteristics
of sea clutter [25]. Clutter can be regarded as the product of
the speckle component obeying the complex Gaussian dis-
tribution and the non-negative texture component. Formally,
clutter is expressed as c =

√
τx. The speckle component x is

zero-mean complex circular Gaussian vector with covariance
matrix of M = E(xxH ). Additionally, covariance matrix is
positive definite, i.e. M � 0. Sea clutter follows K distri-
bution, generalized Pareto distribution and inverse Gaussian
CompoundGaussian distribution (IG-CG)when texture com-
ponent τ follows Gamma distribution, inverse Gamma distri-
bution and inverse Gaussian distribution, respectively. These
three kinds of models accurately model the statistical char-
acteristics of sea clutter under different conditions [26], [27].
In this paper, we assume that the clutter obeys the K distribu-
tion, whose amplitude statistical probability density function
is expressed as follows:

fK (c) =
2γ
0(ν)

(
γ c
2
)νKν−1(γ c) (2)

where γ and ν represent the scale parameter and shape param-
eter of K distribution, respectively. 0(·) is Gamma function;
Kν−1(·) is the second modified Bessel function of order ν−1.

III. PRE-PROCESSING BASED MAXIMUM
EIGENVALUE MATRIX CFAR DETECTOR
This section firstly introduces two widely used solutions
(i.e. FFT-CA and ANMF) to the detection problem (1), and
then pre-processing based matrix CFAR detector is designed.

A. THE CLASSICAL CFAR DETECTORS
FFT-CA method is a classical detection method for the prob-
lem (1), whose block diagram is shown in Fig. 1. It is assumed
that M pulses are transmitted in a coherent processing inter-
val (CPI). As customary, we suppose that a set ofN secondary
data that is free of signal components in the cells adjacent to
CUT is available. The in-phase and quadrature components
of the echo signal are sampled, resulting in a complex matrix

of M rows (pulses) and N + 1 columns (range cells). The
received data of CUT and the reference cells are denoted as
r, r1, . . . , rN , respectively. It is assumed that r1, . . . , rN share
the same covariance matrix with the clutter plus noise vector
in the CUT. The detailed procedure of FFT-CA method is
reviewed as follows [28], [29]:
• The fast Fourier transform (FFT), a computationally
efficient way of implementing a bank of bandpass fil-
ters, is performed on received data in each range cell.
Each DFT coefficient is viewed as the output from a
Doppler filter. The outputs of FFT transform form a
matrix of M rows (Doppler bins) and N + 1 columns
(range cells).

• Calculate the squared magnitude of the FFT outputs in
CUT and reference cells. The data of CUT and adjacent
reference cells in the each Doppler bin are denoted as
|̂rm|2, |̂r1m|2, . . . , |̂rNm|2,m ∈ 1, . . . ,M , respectively.

• Estimate the average power of clutter using the data
of reference cells in each Doppler bin. The average
power of clutter in each Doppler bin is given by
1
N

N∑
i=1

∣∣r̂im∣∣2,m ∈ 1, . . . ,M .

• Compare the spectral power |̂rm|2 of CUTwith the prod-
uct of the power sum of the reference cells and threshold
factor ηm selected to achieve the desired false alarm rate
in each Doppler bin. And then a decision is made that a
target is present in the CUT. It is noted that if the target
Doppler frequency is known, then we can perform the
processing with one Doppler bin alone.

Another conventional coherent method for the detection
problem (1) is adaptive normalized matched filter (ANMF),
whose detection statistics is expressed as follows:∣∣∣pH R̂−1r r

∣∣∣2(
pH R̂−1r p

) (
rH R̂−1r r

) H1
≷
H0

η, (3)

where the covariance matrix R̂r is estimated using the data of
reference cells. r denotes the received data of CUT, p is the
target steering vector.

A long-time coherent integration technique is one of the
most useful methods for improving radar detection abil-
ity. FFT-CA method obtains good detection performance
under the condition of long pulse train. However, the ampli-
tude modulation and Doppler frequency spread of the tar-
get signal over a long integration time are unavoidable.
The antagonistic way is to utilize short Doppler bursts with
few of pulses to avoid amplitude modulation and Doppler
frequency spread. While energy leakage of Doppler filter
banks and low Doppler resolution emerge in the case of
short pulse sequences. The performance of FFT-CA is seri-
ously degraded due to small bunch of accumulated pulses.
The matrix CFAR detection method based on information
geometrywas proposed to overcome these shortcomings [19].
Nevertheless, its heavy computational complexity limits its
application in practical scenarios. The maximum eigenvalue
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FIGURE 2. The block diagram of P-MEMD method.

based detection method (MEMD) is designed to achieve bet-
ter performance with lower computational complexity in the
strong clutter region [23]. While the detection performance
of MEMD is inferior to the classical ANMF method when
the target Doppler frequency heavily deviates from the clutter
spectrum. As an incoherent detector, MEMD does not take
full advantage of the target Doppler information resulting
in low integration gain. This paper considers adding pre-
processing process to weaken the influence of clutter on
detection performance. An enhanced maximum eigenvalue
based matrix CFAR detection method is proposed to improve
detection performance especially when target Doppler fre-
quency removes from the clutter spectrum.

B. PRE-PROCESSING BASED MAXIMUM
EIGENVALUE MATRIX CFAR DETECTOR
The complex sea clutter environment has great influence
on radar moving target detection. The pre-processing based
maximum eigenvalue matrix detector (P-MEMD) method
combines the frequency domain coherent integration with
the maximum eigenvalue method. P-MEMD weakens the
influence of clutter using the prior information of target steer-
ing vector and further improves the detection performance.
Fig. 2 shows the block diagram of the proposed P-MEMD
method, which involves five steps: Preprocess the received
data of CUT and reference cells; Calculate the covariance
matrix of each range cell; Solve the maximum eigenvalue of
covariance matrix in each range cell; Calculate the arithmetic
mean of maximum eigenvalues in reference cells; Make a
decision. In what follows, the detailed procedure of P-MEMD
method will be explained.

Let {r, r1, . . . , rN } is the received data matrix, which is
partitioned into the primary and secondary data arrays. Here,
r denotes the M dimensional received data of CUT (primary
data), r1, . . . , rN represent the received data consisting of
clutter and noise in reference cells (secondary data).
• Pre-processing:
Pre-processing is implemented on the received data in the

frequency domain as FFT-CA. Fig. 3 depicts the flowchart

FIGURE 3. The flowchart of pre-processing process.

of the pre-processing process. The detailed steps of pre-
processing process are explained as follows:

(i) As a common tool for signal processing, fast Fourier
transform (FFT) is simple and can reduce computation
and hardware consumption. The FFT is performed on the
received data {r, r1, . . . , rN } of CUT and reference cells,
which decomposes the received vector into multiple Doppler
bins. FFT transform corresponds to multiple coherent inte-
grators, which improves the integration gain. The outputs of
FFT transform in the CUT and the reference cells consti-
tute a matrix of N + 1 columns (range cells) and M rows
(Doppler bins).

(ii) As shown in the blue dotted box in Fig. 3, the data
of a single Doppler bin is selected using the Doppler bins
selector from the data matrix obtained in step (i). The Doppler
bins selector is designed under the assumption that the target
Doppler steering vector is perfectly known. Therefore, at the
design stage, the Doppler bin selected is easy to determined
according to the target Doppler frequency. The data of the
same Doppler bin for the reference cells are selected when
the Doppler bin of the CUT is determined. This operation
effectively suppress the clutter.

The Doppler frequency of moving target should be known
to perform the accurate pre-processing. However, the actual
speed of the moving target cannot be known in advance, that
is, the target Doppler frequency is unknown. Therefore, it is
necessary to design a different Doppler bins selector covering
the whole Doppler range and perform pre-processing. The
signal energy after FFT transformation should concentrate in
a certain Doppler bin. Motivated by this, the Doppler bins
selector is implemented employing the peak search process
within a certain Doppler frequency range to find the Doppler
bin with the maximum energy, that is, the Doppler bin where
the target may locates in. The detailed search process is
described as follows:

The squared magnitudes of the FFT outputs in step
(i) are calculated to form a new data matrix of N + 1 rows
and M columns. The data of CUT and adjacent ref-
erence cells in the each Doppler bin are denoted as
|̂rm|2, |̂r1m|2, . . . , |̂rNm|2,m ∈ 1, . . . ,M , respectively.
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And then the peak value of squared magnitudes of FFT
outputs in CUT is searched to determine the Doppler
bin where the peak value is located. The data in the
selected Doppler bin (as shown in the red oval dotted box
in Fig. 3) of CUT and adjacent reference cells are denoted as
|̂rm|2, |̂rnm|2,m ∈ 1, . . . ,M , n ∈ 1, . . . ,N , respectively. The
data in the selected Doppler bin forms an N + 1 dimensional
vector.

(iii) The inverse FFT (IFFT) transform is respectively
carried out on the each component representing the outputs
of step (ii) in CUT and reference cells. Taking the data
in CUT as an example, the outputs of step (ii) in CUT is
converted into an M dimensional vector by setting other
Doppler bins than the selected bin to 0, which is expressed
as [0, · · · , r̂m, · · · 0],m ∈ 1, . . . ,M . The data of the ref-
erence cells are processed in the same way, and then the
IFFT transform is implemented to obtain N + 1 vectors with
dimension of M . The outputs of IFFT transform form a new
data matrix {r̃, r̃1, . . . , r̃N }, where r̃ denotes the transformed
data of CUT, {r̃1, . . . , r̃N } represent the transformed data of
reference cells, each complex value of this matrix stands for
a time sample of the filtered data.
• Calculate the covariance matrix:
Calculate the covariance matrices of the filtered data in

CUT and reference cells, and denote them asR,R1, . . . ,RN ,

respectively. Experimental data indicate that the clutter
amplitude probability density function (apdf) can be gener-
ally modeled as a compound-Gaussian process at low grazing
angles. The model degenerates into a spherically invariant
random process especially for time series observed on suf-
ficiently short time intervals [30]. This paper considers the
case of short pulses, which means the clutter satisfies wide-
sense stationary property. References [4], [11], and [30]–[32]
showed that the covariance matrix possesses Toeplitz struc-
ture under the assumption of wide-sense stationary clutter.
The Toeplitz matrix can be used to model the correlation of
periodic stationary processes in periodic time series. With
limited sample support, the structural covariance matrix can
reduce the estimation complexity, which is widely used in
radar imaging, target detection, and communication sys-
tem. Hence, it is a reasonable and advantageous assumption
that clutter covariance matrix possesses the Toeplitz struc-
ture. The Toeplitz matrix can be estimated using empirical
maximum likelihood and eigenvalue decomposition based
method [31]–[33]. The covariance matrices with Hermitian
Toeplitz structure are calculated according to correlation
coefficients and given by the following form [26]:

Rr = E[̃r̃rH ] =


a0 a1 · · · aM−1
a∗1 a0 · · · aM−2
...

...
. . .

...

a∗M−1 a∗M−2 · · · a0

 (4)

where ak is referred to the correlation coefficient and is
expressed as follows:

ak = E[̃rĩr∗i+k ], 0 ≤ k ≤ M − 1, 1 ≤ i ≤ M .

However, the statistical covariance matrix (4) is difficult to
acquire due to a limited number of samples. In general,
the correlation coefficient of the received data is calculated
utilizing the averaging over time instead of statistical expec-
tation. The correlation coefficient is given by

âk =
1
M

M−1−|k|∑
m=0

r̃ (m)̃r∗ (m+ k) , |k| ≤ M − 1. (5)

• Solve the maximum eigenvalue:
Solve the maximum eigenvalues of covariance matrices in

CUT and reference cells by eigenvalue decomposition. The
maximum eigenvalues in the potential target cell and refer-
ence cells are denoted as λmax, λ

1
max, . . . , λ

N
max, respectively.

• Calculate the arithmetic mean:
The arithmetic mean of the maximum eigenvalues in the

reference cells is calculated, which is expressed as

1
N

N∑
i=1

λimax.

•Make a decision:
The test statistic of P-MEMD method is expressed in the

form:

λmax

1
N

N∑
i=1
λimax

H1
≷
H0

η. (6)

It is judged as the target presents in the CUT when the test
statistic is greater than the threshold η; otherwise, it indicates
the target absents in CUT.

P-MEMDmethod implements pre-processing by perform-
ing FFT transform on the received echo data in CUT and
reference cells. Pre-processing is performed in the frequency
domain under the assumption that the target steering vector
is perfectly known. The peak search process is performed
for the scenario with unknown target Doppler frequency. The
clutter can be effectively suppressed if the center frequency
of clutter deviates from the target Doppler frequency. And
then it utilizes themaximum eigenvalue as test statistic, which
can achieve better detection performance in the case of short
pulse sequences. Subsequent simulation results show that
P-MEMD achieves better detection performance not only in
the strong clutter environment, but also in the scenario where
target Doppler frequency removes from the clutter spectrum.

C. CFAR PROPERTY OF P-MEMD DETECTOR
Constant false alarm rate property is an desired property
pursued by adaptive detectors. In essence, CFAR detection
refers to the fact that false alarm probability is independent
of some nuisance parameters related to the clutter such as
clutter covariance matrix. However, the analytical expression
of false alarm probability is difficult to obtain due to the
intricate mathematical description of clutter statistical char-
acteristics. The principle of invariance provides a new means
for the proof of CFAR property. Some literatures resorted
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to principle of invariance to study the CFAR property of
some detectors [34]–[38]. In this paper, the CFAR property
of the proposed method with respect to nuisance parameter
(clutter covariance matrix in our paper) is analyzed using
the framework of invariance principle. This subsection firstly
reviews some definitions and property used in this paper and
then considers the CFAR property of the proposed method
with respect to clutter covariance matrix.

Let G ∈ U (M ) be a finite unitary group,X is data with PDF
f (X; θ ), where θ is the unknown parameter. If the PDF of
Y = g(X) under group transformation g ∈ G does not depend
on unknown parameter θ , then the PDF distribution of Y is
called the standard type distribution, and g is the standard
type transformation. An important property of the invariant
principle is described as follows:
Property 1: Let θ is an unknown parameter, if T (X) is the

invariant statistic about G, and there is a standard transfor-
mation g ∈ G, then the false alarm probability of the binary
hypothesis with test statistic T (X) is independent on unknown
parameter θ [35].

The Property 1 indicates that the proof idea of CFAR
property is to ensure the distribution of test statistics is inde-
pendent of some nuisance parameters under the appropriate
group transformation g ∈ G. Employing this proof frame-
work, we will demonstrates that P-MEMD detector possesses
the CFAR property with respect to clutter covariance matrix.

The test statistics of P-MEMD is expressed in the form:

λmax(R)

1
N

N∑
i=1
λimax(Ri)

(7)

where the covariancematricesR andRi of CUT and reference
cells are calculated using equation (4) and equation (5).

The correlation coefficient (5) can be expressed as follows:

âk =
1
M

M−k∑
m=1

r̃ (m)̃r∗ (m+ k)

=
1
M

[̃r (1) , r̃ (2) , · · · , r̃ (M − k)]


r̃∗ (1+ k)
r̃∗ (2+ k)

...

r̃∗ (M)

 (8)

Furthermore, equation (8) is equivalent to

âk =
1
M

[̃r (1) , r̃ (2) , · · · , r̃ (M)] · Fk ·


r̃∗ (1)
r̃∗ (2)
...

r̃∗ (M)

 , (9)

where

F1 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . . 0
0 0 0 · · · 1
0 0 0 · · · 0

 , Fk = Fk1.

The corresponding covariance matrix calculated by corre-
lation coefficient is expressed in the form

R̂ =
1
M


r̃H r̃ r̃HF1̃r · · · r̃HFM−1̃r

r̃HFH1 r̃ r̃H r̃ · · · r̃HFM−2̃r
...

...
. . .

...

r̃HFHM−1̃r r̃HFHM−2̃r · · · r̃H r̃.

 (10)

where r̃ = [̃r (1) , r̃ (2) , · · · , r̃ (M)]. The maximum eigen-
value of covariance matrix R̂ for M = 2 is given by

r̃H r̃+
∣∣∣̃rHF1̃r

∣∣∣ . (11)

The maximum eigenvalue of covariance matrix R̂ forM = 3
is expressed as follows:

| r̃H
(
I+

1
2
F1FH1 +

1
2

((
F2
1

(
FH1
)2
+ 8F1FH1

)1/2
))

r̃ | .

(12)

The analytic expression of the maximum eigenvalue of
the covariance matrix R̂ is complicated when M > 3. The
derivation and analysis show that the maximum eigenvalue
of the covariance matrix R̂ can be expressed in this form
| r̃f (F1 )̃rH |, where f (F1) is a matrix function of F1 and is a
positive definite matrix.

Furthermore, the test statistics is given by:∣∣̃rH f (F1 )̃r
∣∣

1
N

N∑
i=1

∣∣̃rHi f (F1)̃ri
∣∣ . (13)

Consider the following inner product in the form of a matrix
trace [39]–[42], then formula (13) is converted to∣∣tr (̃r̃rH f (F1))

∣∣
1
N

N∑
i=1

∣∣tr (̃rHi r̃if (F1))
∣∣ . (14)

Under the null hypothesis, assume that the statistical
covariance matrix of r̃ and r̃i is6,which is a positive definite
Hermitian matrix. Thereby, the received data of CUT and
reference cells can be whitened with 6−1/2 and expressed as
the following [35]

r = 6−1/2̃r,

ri = 6−1/2̃ri. (15)

The vector r and ri are zero-mean complex Gaussian vectors
with covariance matrix IM , where IM is identity matrix of
order M . Using the formula (15), the formula (14) can be
converted to ∣∣tr(61/2r̄r̄H61/2f (F1))

∣∣
1
N

N∑
i=1

∣∣tr(61/2r̄ir̄Hi 6
1/2f (F1))

∣∣ . (16)
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Since tr(AB) = tr(BA), then formula (16) is expressed as
follows: ∣∣tr(r̄r̄H61/2f (F1)61/2)

∣∣
1
N

N∑
i=1

∣∣tr(r̄ir̄Hi 61/2f (F1)61/2)
∣∣ . (17)

In addition, 61/2f (F1)61/2 is positive definite matrix, hence
it can be diagonalized by a unitary transformation and is
given by

61/2f (F1)61/2 = V3VH . (18)

For the sake of simplicity, let A = rrH ,Ai = rirHi . Put (18)
into the formula (17), then formula (17) is converted to

tr(AV3VH )

1
N

N∑
i=1

tr(AiV3VH )

. (19)

Furthermore, the formula (19) is recast into

tr(VHAV3)

1
N tr(V

H
N∑
i=1

AiV3)
. (20)

According to the definition of trace of matrix, the for-
mula (20) is equivalent to

diag(VHAV)T diag(3)

1
N

N∑
i=1

diag(VHAiV)
T diag(3)

=
N · diag(VHAV)T

N∑
i=1

diag(VHAiV)
T
. (21)

As shown in formula (21), VHAV is a matrix whose columns
are independent and identically distributed complex nor-
mal vectors with zero mean and covariance matrix IM .
Under H0, formula (21) indicates that the PDF of the test
statistics is independent of clutter covariancematrix under the
group transformation 6−1/2V. In conclusion, the proposed
P-MEMD method ensures the desirable CFAR property with
respect to clutter covariance matrix.

In the following, some Monte Carlo simulation exper-
iments are performed to validate the CFAR property of
P-MEMD method in regard to clutter covariance matrix.
Some simulation parameters are set as follows: the number
of reference cells is 16, the size of pulse train is 8. The clutter
covariance matrix can be modeled as following exponentially
shaped form [12], [18], and [43]:

6 = σ 2
c ρ
|i−k|ej2π fdc(i−k) + I, i, k = 1, . . . ,M (22)

where ρ is the one-lag correlation coefficient. ρ reflects the
variation of the covariance matrix under the given σ 2

c and fdc,
which can be utilized to show the change of false alarm
probability with respect to different covariancematrix. There-
fore, different correlation coefficient of covariance matrix
is employed to assess the CFAR property of P-MEMD.
Correlation coefficient is set to 0.1, 0.3, 0.5, 0.7 and 0.9.
Fig. 4 shows the probability of false alarm versus thresh-
old plots with respect to different correlation coefficient of

FIGURE 4. Probability of false alarm versus the detection threshold of
P-MEMD method for different correlation coefficient of covariance matrix.

TABLE 1. Computational complexity of detection methods.

covariancematrix. As seen from Fig. 4, the curves completely
coincide corresponding to different one-lag correlation coef-
ficients. In other words, the false alarm rate is independent
on the correlation coefficients. It further indicates that P-
MEMD method possesses CFAR property with respect to
clutter covariance matrix.

D. COMPUTATIONAL COMPLEXITY ANALYSIS
The computational complexity of an algorithm is generally
related to its implementation, so the computation complexity
of some special functions is not be considered in the complex-
ity analysis. In what follows, we analyze the computational
complexity of the proposed method using the total number of
the multiplications and additions involved in an algorithm.
This paper considers the computational complexity of the
P-MEMDwith other five kinds of methods: the adaptive nor-
malized matched filtering method (ANMF), shape parameter
dependent adaptive matched filtering method (α-ANMF),
Kullback-Leibler divergence based matrix CFAR detec-
tor (KLD), maximum eigenvalue based matrix CFAR detec-
tor (MEMD) and FFT-CA method. Taking the MEMD
method as an example, the MEMD only needs N addition
operations, N + 1 eigenvalue decomposition operations with
complexity of M3, therefore, the complexity of MEMD is
(N +1)M3

+N . Table 1 summarizes the computational com-
plexity of the proposed method and other algorithms, where
M is the length of transmitted pulse train, N is the number
of reference cells. As observed from Table 1, the computa-
tional complexity of the proposed method is lower than KLD
algorithm. That is because it does not require matrix inverse
operation. While the P-MEMD method costs slightly high
computational complexity than ANMF, α-ANMF, FFT-CA,
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and MEMD methods. Nevertheless, subsequent simulation
experiments will show that P-MEMD method achieves
superior detection performance than other aforementioned
methods.

IV. SIMULATIONS AND DISCUSSIONS
In this section, the performance of P-MEMD method and
some existing conventional detection methods are compared
to verify the effectiveness of P-MEMD method through the
simulation experiment based on simulation data and real
clutter data. For comparison, the ANMF, α-ANMF, KLD,
MEMD and FFT-CA methods are considered.

A. SIMULATION EXPERIMENTS ON SIMULATED DATA
In this paper, we assume that sea clutter follows K distri-
bution, the shape parameter and scale parameter of K dis-
tribution are set as ν = 1, γ = 1, respectively. The mean
Doppler frequency of sea clutter is set to be 65Hz and the
clutter spectrum broadening is adjusted by 3dB bandwidth.
In some practical scenarios, the receiver noise is a factor that
can not be neglected. Therefore, the effect of Gaussian white
noise is also considered in this paper, and the clutter-to-noise
ratio (CNR) is set to be 10dB. For the radar system with
short pulse sequences, the detection of moving targets against
sea clutter environment is intricate due to limited pulses to
be accumulated. In this paper, it is assumed that the radar
transmits 8 pulses in a CPI. The other parameters are set
as follows: signal-to-clutter ratio (SCR) is set to be 0 dB to
20 dB. The pulse repetition frequency is 1000 Hz, the number
of reference cells is 16. The false alarm probability is set to
be 10−4. In addition, the threshold is determined by Monte
Carlo simulation as the theoretical representation of threshold
is difficult to obtain. The samples of the test statistic under
the null hypothesis H0 are used to determine the decision
threshold. According to the preset false alarm probability Pfa,
100/Pfa Monte Carlo simulation experiments are carried out
to determine the threshold with sufficient precision at the
false alarm.

The terrible cases of energy leakage under the condition
of short pulse train and clutter spectrum broadening are dis-
cussed in this paper. Energy leakage is caused when the target
Doppler frequency cannot completely match the central fre-
quency of the Doppler filters bank. Energy leakage is serious
especially when the target Doppler frequency is between two
filters [6]. Several scenarios are considered by adjusting the
3dB bandwidth of sea clutter spectrum and target Doppler
frequency. The following five simulation scenarios are sum-
marized in Table 2, where ‘‘YES’’ and ‘‘NO’’ represent the
presence and absence of clutter spectrum broadening and
energy leakage, respectively. The fifth scenario in which the
target spectrum is within the clutter spectrum is different from
the first four scenarios.

The schematic diagram for the first 4 detection scenarios
are depicted in Fig. 5. The yellow lines represent the clutter
spectrum, the pink lines represent the target spectrum and
blue shaded rectangles spaced apart in Doppler represents the

TABLE 2. Parameter setting for different detection scenarios.

FIGURE 5. A pictorial representation for the detection scenarios.

Doppler bin. The schematic diagram depicted in Fig. 5 just
to make it clear to show the difference between the presence
and absence of the clutter spectrum broadening and energy
leakage. The simulation comparisons for the five cases are
made, which are shown in Fig. 6 to Fig. 10, respectively.

As described in Fig. 6, the detection probability of
P-MEMD method versus different SCRs is compared with
that of ANMF, α-ANMF, KLD, MEMD and FFT-CA meth-
ods for the case (1). It can be seen from Fig. 6 that the pro-
posed method is superior to the KLD, MEMD and FFT-CA
methods in the scenario without clutter spectrum broadening
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FIGURE 6. The detection performance comparison of P-MEMD, ANMF,
α-ANMF, KLD, MEMD and FFT-CA methods in the scenario without clutter
spectrum broadening and energy leakage.

FIGURE 7. The detection performance comparison of P-MEMD, ANMF,
α-ANMF, KLD, MEMD and FFT-CA methods in the scenario with clutter
spectrum broadening and no energy leakage.

and energy leakage. Typically, the detection performance
gap between the P-MEMD and MEMD method is increased
about 2.7 dB due to the clutter suppression process. However,
the detection performance of P-MEMD method is inferior to
α-ANMF and ANMF methods when SCR is less than 7dB
and 3dB, respectively.

Fig. 7 describes the detection performance comparison
curves of P-MEMD, ANMF, α-ANMF, KLD, MEMD and
FFT-CA methods in the scenario with clutter spectrum
broadening and no energy leakage. Compared with Fig. 6,
the detection performance of all themethods are degraded due
to clutter spectrum broadening. Nevertheless, the proposed
P-MEMD method outperforms than the other methods when
the SCR is greater than 5dB.

The detection performance of P-MEMD, ANMF,
α-ANMF, KLD, MEMD and FFT-CA methods for the case
of energy leakage and the absence of clutter spectrum broad-
ening is shown in Fig. 8. It can be observed from Fig. 8 that
the detection performance of several methods are different
when the target Doppler frequency removes from the clutter
spectrum. Hence, the detection performance of P-MEMD,
ANMF, α-ANMF, and KLD methods are greatly improved

FIGURE 8. The detection performance comparison of P-MEMD, ANMF,
α-ANMF, KLD, MEMD and FFT-CA methods in the scenario with energy
leakage and no clutter spectrum broadening.

FIGURE 9. The detection performance comparison of P-MEMD, ANMF,
α-ANMF, KLD, MEMD and FFT-CA methods in the scenario with energy
leakage and clutter spectrum broadening.

due to the little influence of clutter on the detection per-
formance. Moreover, the detection performance of MEMD
method is less improved because it cannot compensate the
phase fluctuation resulting in low integration gain.

For scenario 4, the detection performance of several meth-
ods are compared in Fig. 9. The results show that several
methods suffer from performance loss for the case of the clut-
ter spectrum broadening. Nevertheless, the proposed method
obtains performance improvement of 1.8 dB over α-ANMF
in the case of (4). And it outperforms than ANMF method
about 3.9dB.

We also compare the detection probabilities of several
methods under different SCRs when the clutter spectrum
overlaps with the target spectrum. As shown in Fig. 10,
the performance of ANMF, α-ANMF, KLD and FFT-CA
methods are degraded when the target Doppler frequency is
close to the peak frequency of clutter power spectrum. The
performance gap between the proposed method and other
methods is increased in the area of strong clutter, which
further illustrates the superiority of the proposed method. The
main reason for the improvement of detection performance is
the clutter is effectively suppressed.
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FIGURE 10. The detection performance comparison of P-MEMD, ANMF,
α-ANMF, KLD, MEMD and FFT-CA methods in the scenario in which the
target spectrum overlaps with the clutter spectrum.

FIGURE 11. Detection performance comparison of P-MEMD and ANMF
for different Doppler frequency.

In addition, the actual scenario where the target Doppler
frequency is unknown is considered to detect the target within
the given Doppler interval of -500 to 500 Hz. The perfor-
mance comparisons of P-MEMD method and the ANMF
method is carried out for the SCR of 6dB and -4dB, respec-
tively. Fig. 11 shows that the proposed method achieves
detection performance improvement over ANMF under dif-
ferent Doppler frequency due to the filtering process.

In what follows, the scenario with the presence of sec-
ondary targets is considered to verify the robustness of
the proposed method. The simulation results with respect
to the multiple interfering targets are shown in Fig. 12(a)
and Fig. 12(b), respectively. Here, the interference-to-clutter
ratio (ICR) is equal to SCR. Fig. 12(a) shows the detection
performance comparison of several methods under the condi-
tion that target spectrum is non-overlapping with the clutter
spectrum (fd = 142 Hz). Fig. 12(b) describes the detec-
tion performance comparison of several methods under the
condition that target spectrum is overlapped with the clutter
spectrum (fd = 65Hz). As shown in Fig. 12(a) and Fig. 12(b),
detection performance of P-MEMD method outperforms
than aforementioned detection methods for the scenario with

FIGURE 12. Detection performance comparison of P-MEMD method and
ANMF, α-ANMF, MEMD, KLD and FFT-CA for the scenario with respect to
secondary target.

secondary targets, which indicates the robustness of the pro-
posed method.

In practical scene, the scenario with mismatched steering
vector is often encountered due to the influence of array
calibration error and multi-path effect. Therefore, this paper
considers the detection scenario with mismatched steering
vector in order to verify the robustness of P-MEMD method.
Here, we consider the mismatched case where the difference
between the actual Doppler phase and the nominal Doppler
phase is 5◦. The receiver-operating-characteristic (ROC)
curve gives an overall assessment of a detector over differ-
ent false alarm rates. In general, the area under the ROC
curve (AUROC) is a quantitative index to assess the detec-
tion performance of detectors. Detection probability below
0.5 is not enough to form a stable trace of a target for
most radars [14]. Therefore, the AUROC where detection
probability is over 0.5 is employed to evaluate all the detec-
tion methods. Fig. 13(a) describes the comparison of ROC
curves of several methods under the condition that the target
spectrum is overlapped with the clutter spectrum (nominal
target Doppler frequency is fd = 65 Hz). While Fig. 13(b)
shows the comparison of ROC curves of several methods
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FIGURE 13. ROC comparison curves of P-MEMD, ANMF, α-ANMF, KLD,
MEMD and FFT-CA method for the scenario with mismatched steering
vector.

for the scenario where the target spectrum is separated from
the clutter spectrum (nominal target Doppler frequency is
fd = 215Hz). In Fig. 13(a) and Fig. 13(b), the SCR is set to be
10 dB and 3 dB, respectively. The other parameters setting are
the same as that in the case of (4) and (5). As observed from
Fig. 13(a) and Fig. 13(b), the AUROC of P-MEMD method
is larger than the others. We can conclude that the detection
performance of the proposed P-MEMDmethod is superior to
the ANMF, α-ANMF, MEMD, KLD and FFT-CA methods
for the case of mismatched steering vector. The ROC curves
further demonstrate the effectiveness of P-MEMD method.

B. SIMULATION EXPERIMENTS ON
REAL SEA CLUTTER DATA
Some simulation experiments based on the real clutter
data are performed to compare and evaluate the detec-
tion performance of P-MEMD and several aforementioned
detection methods. The IPIX radar database [44] (file 1:
25#19931108_213827_starea) and [45] (file 2: 19980205_
185111_ANTSTEP.CDF) are employed, which are provided
by McMaster university in Canada. The data 1 was collected
in 1993 conducted at a site in Osborne Head Gunnery

FIGURE 14. Detection performance comparison of P-MEMD, ANMF,
α-ANMF, KLD, MEMD and FFT-CA method for the real clutter data:
25#19931108_213827_starea.

Range (OHGR), Dartmouth, Nova Scotia, on the East Coast
of Canada. The data 2 was collected in 1998 conducted at
Grimsby on the shores of Lake Ontario. The data of file 1 was
divided into 14 range cells, and the data length in each cell is
131,072. The data of file 2 is composed of 27 range cells, each
contains 60,000 clutter data. The shape parameters of K dis-
tribution of the two datasets are estimated to be 0.5072 and
1.0563, respectively. The mean Doppler frequencies of sea
clutter are estimated about 68 Hz and −204 Hz for two
datasets. The false alarm probability is set to be 10−3 due
to the limited available pulses. Two scenarios in which target
spectrum is within clutter spectrum and target Doppler fre-
quency is outside clutter spectrum are considered. For file 1,
the target Doppler frequency are set to be 68 Hz and 215 Hz,
respectively. While for file 2, the target Doppler frequency
are set to be -204 Hz and 215 Hz, respectively.

Fig. 14 (a) and Fig. 15 (a) correspond to the detection
scenario where the clutter spectrum overlaps with the target
spectrum. The performance of the P-MEMDmethod is supe-
rior to ANMF, α-ANMF, KLD andMEMDmethods for these
two sea clutter datasets. For X-band radar, slowmoving target
with target Doppler frequency of 68Hz is detected, whose
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FIGURE 15. Detection performance comparison of P-MEMD, ANMF,
α-ANMF, KLD, MEMD and FFT-CA method for the real clutter data:
19980205_185111_ANTSTEP.CDF .

detection probability curve is depicted in Fig. 14 (a). Since the
target Doppler frequency is near the center of the filter bank,
so there is no energy leakage. And it is almost imperceptible
to clutter for the case of SCR > 20, FFT-CA method is
more favorable to detect targets by using the total energy of
received signals for the scenario where the target spectrum
overlaps with the clutter spectrum, so it has slightly higher
performance than the proposed algorithm that only uses the
maximum eigenvalue for SCR > 20. It is worth noting that
the P-MEMDmethod achieves the performance improvement
of 1.2 dB over MEMD method in Fig. 14(a), which further
indicates that the P-MEMD method can effectively improve
detection performance by making full use of the phase infor-
mation. Fig. 14 (b) and Fig. 15 (b) describe the detection
performance comparison under the condition that the target
Doppler frequency removes from the clutter spectrum. The
detection performance of P-MEMD, ANMF, α-ANMF, and
KLD are improved with the increase of target Doppler fre-
quency. However, the performance of FFT-CA is degraded
due to energy leakage. Several simulation experiments based
on real clutter data indicate that the proposed P-MEMD

method is more robust than other algorithms.
In conclusion, P-MEMD method yields robust perfor-

mance in different detection scenarios. It outperforms the
other algorithms in the case of matched and mismatched tar-
get Doppler steering vector. Hence, the P-MEMD method is
more suitable for practical applications from the perspective
of detection capability.

V. CONCLUSION
This paper provides a pre-processing based maximum eigen-
value detection method to the problem of detecting moving
target under sea clutter environment. The proposed method
utilizes the priori information of target Doppler steering vec-
tor to suppress the clutter as well as improve the detection per-
formance. In particular, the proposed detector possesses the
CFAR property with respect to clutter covariancematrix. This
paper considers five detection scenarios including energy
leakage, clutter spectrum broadening and overlap between
the spectrum and the target spectrum. The simulation results
show that the proposed method has not only good detection
performance in the strong clutter environment, but also the
scenario where the target Doppler frequency removes from
the clutter spectrum. In addition, the proposed method also
achieves better detection performance for the case with mis-
matched target steering vector and multiple interfering tar-
gets. In the future research, the mathematical mechanism of
P-MEMD method to achieve superior detection performance
will be theoretically analyzed.
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