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ABSTRACT Cooperative adaptive cruise control (CACC) communicates the relevant preceding vehicle state
data to the follower (ego) vehicle to improve the vehicle following capabilities. In general, the CACC utilizes
the preceding vehicle’s desired acceleration from wireless communication as a feedforward term in the
controller of the ego vehicle, which dominantly determines the total control input. However, communication
loss would degrade CACC to adaptive cruise control (ACC), where the lack of the feedforward term
during communication loss would increase the inter-vehicular distance or, otherwise, may lead to collision
during vehicle emergency braking. This paper proposes a control algorithm with an adaptive Kalman
filter estimating the acceleration of a preceding vehicle, and the estimated acceleration is implemented
as a feedforward signal in the ego-vehicle CACC controller in case of communication loss. The proposed
control algorithm is evaluated by the experiments using mobile robots that emulate driving. In addition,
the simulations of real vehicles are also conducted. The results of simulations and robot experiments show
that the performance of implementing the adaptive Kalman filter during communication loss is better than
fallback to ACC and the normal Kalman filter based on the Singer model.

INDEX TERMS Communication loss, adaptive Kalman filter, statistical model, cooperative adaptive cruise

control (CACC), acceleration estimation.

I. INTRODUCTION

Cooperative adaptive cruise control (CACC) achieves the
vehicle longitudinal automation, by utilizing the inter-vehicle
distance mostly from radar and the vehicle state informa-
tion received from wireless communication [1], to improve
safety, fuel economy and traffic throughput [2]. For safety
improvement, CACC is able to reduce the diversity of vehi-
cles’ behavior in traffic, which is one of the main reasons
for vehicle crashes [3]. The fuel consumption can also be
reduced by more than one-third by implementing CACC in a
signalized corridor [4]. In the perspective of traffic through-
put, a 100 percent deployment of CACC can increase the
traffic throughput from 2000 veh/hr/In in manual driving to
4200 veh/hr/In [2]. All of these are possible because CACC
allows shorter and smoother safe gaps between vehicles.
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CACC is able to perform vehicle following with smaller
inter-vehicle distance and maintain the string stability, com-
pared with adaptive cruise control (ACC) [5]. The most com-
mon information flow topology is the predecessor following
CACC, in which the preceding vehicle sends its desired accel-
eration to the following vehicle [6]-[8]. The preceding vehi-
cle’s desired acceleration is implemented as the feedforward
term in CACC controller of the ego vehicle and dominantly
determines the total control action, especially during transient
behavior [7], [9], [10]. For example, in PD-controllers, the
feedforward term in CACC controller determines up to 80%
of the total control action [7]. Hence, the preceding vehi-
cle’s desired acceleration is extremely important in CACC
controller.

However, communication impairments, such as communi-
cation loss [10]-[12], latency [13], [14] and security prob-
lem [15]-[17], can compromise the performance of CACC.
The study of communication loss in CACC attracts lots of
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attention in recent years. There are two kinds of communica-
tion loss scenarios in CACC, including the random communi-
cation loss in a short period and the extended communication
loss in an extended period. To address the random communi-
cation loss in a short period, many researchers implemented
the consensus-based controller to utilize the surrounding
vehicle state information from the rest of available commu-
nication links [18]-[20]. In the extended communication loss
scenario, the CACC controller cannot receive the preceding
vehicle’s desired acceleration, and it has to degrade to ACC
for ensuring vehicle safety. Hence, it is necessary to improve
the CACC controller performance during the extended
communication loss period. This paper mainly focuses on
analyzing the extended communication loss problem in the
homogeneous platoon. Previously, three kinds of solutions
have been proposed to deal with the extended communication
loss. The first one is fallback to ACC. When communica-
tion loss happens, CACC normally falls back to ACC for
maintaining string stability, which enlarges the inter-vehicle
distance and degrades its performance [21]. The second one
is to use a better wireless communication protocol. Lee,
K.K. and Chanson, S.T. proposed a wireless communication
protocol, in which a lost packet was resent until it exceeded
the requirement of maximum time delay [22]. This method
induces high communication delay, which might compro-
mise the string stability of CACC [23]. The third one is
proposing an advanced CACC control algorithm. Nunen,
E.v., et al proposed a model predicted control (MPC) for
CACC, in which vehicles shared their own predictions of
the desired acceleration in MPC controller through wireless
communication and the following vehicle saved this infor-
mation of the preceding vehicle [10]. The following vehicle
utilizes this saved information as a feedforward signal in
CACC controller when communication loss happens. How-
ever, this method is effective only when the communication
loss is within the prediction horizon of the MPC controller,
usually within 1 second [24]. Another research [11] proposed
a dynamic spacing policy during communication loss, which
had a risk of collision during vehicle braking. Ploeg, J., et al
utilized the estimated preceding vehicle’s acceleration as a
feedforward term in CACC controller during communication
loss [12]. This method can be implemented for a few seconds
during communication loss. Hence, compared to above meth-
ods, the estimation of the preceding vehicle’s acceleration is a
better solution to improve the inter-vehicle distance tracking
performance of CACC in case of extended communication
loss.

Kalman filter is widely implemented to estimate the states
of maneuvering targets (ego-vehicle or other vehicles) due
to its high computational efficiency. In case of unknown
control action of maneuvering targets, there are many linear
motion models which can be utilized to design a Kalman
filter for maneuvering target states estimation. Among them,
white noise models and Markov process models are mostly
utilized [25]. On one hand, white noise models, like the
constant velocity model and the constant acceleration model,
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model the control action of the target as white noise, which
is easy to implement. The constant acceleration model was
employed to estimate the states of ego-vehicle [26] and other
vehicles [27]. However, the actual control action of the target
rarely has a constant acceleration. On the other hand, Markov
process models, like the Singer model and the “current”
model, regard the control action of the target as a Markov
process model, in which the control action of the target has
time correlation. The Singer model was employed to estimate
the preceding vehicle’s acceleration, which is used to improve
the inter-vehicle distance tracking performance of CACC dur-
ing communication loss [12]. The Singer model assumes the
probability density function (PDF) of acceleration is a sym-
metric ternary-uniform mixture distribution with zero mean.
However, the Singer model does not utilize the past estimated
acceleration information to estimate the new value [25]. And
the “current” model utilizes the estimated acceleration in
the last step as the new acceleration mean and assumes a
conditional PDF with this new acceleration mean, which
improves the accuracy of state estimation [28]. Hence, the
“current”” model has better acceleration estimation accuracy
than the Singer model.

This paper proposes an innovative CACC control strategy
with an adaptive Kalman filter and a calculation method of
the measurement vector of the preceding vehicle. Compared
to the acceleration estimation method in [12], on one hand,
the “current” model is utilized to build the adaptive Kalman
filter in this paper instead of the normal Kalman filter based
on the Singer model in [12]. Based on the analysis in the last
paragraph, the “current” model can provide a better accel-
eration estimation accuracy than the Singer model. On the
other hand, the calculation method of the measurement vector
of the preceding vehicle in [12] includes the inter-vehicle
distance, the relative velocity, and the longitudinal accel-
eration, in which the longitudinal acceleration is from the
accelerometer. The measured signal from an accelerometer
could increase the oscillation of the estimated acceleration.
Hence, this paper proposed a new calculation method of
the measurement vector of the preceding vehicle, which is
based on the inter-vehicle distance, the relative velocity, the
self-velocity, and the self-position. This calculation method
can avoid the oscillatory feedforward control input. The
assumptions and methods for measuring or estimating each
of these variables are specified in Section III-A and B where
the controller is introduced. This approach provides a better
proceeding vehicle state estimation for the control of the
follower (ego) vehicle. The results presented herein reflect
this improvement.

The rest of this paper is organized as below. Section Il illus-
trates the vehicle longitudinal dynamic model for simulations
and the CACC control strategy without communication loss.
Section III presents the proposed control strategy with the
adaptive Kalman filter and the calculation of the measure-
ment vector. Section IV presents the results of simulations
and experiments. Section V draws conclusions and future
work.
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FIGURE 1. Predecessor following CACC.

Il. VEHICLE MODEL AND CACC CONTROLLER

A. VEHICLE LONGITUDINAL DYNAMICS MODEL

The transfer function below is utilized to model the longitu-
dinal dynamic for every vehicle in the CACC platoon, which
considers the actuation delay (z,;) [7], [29]. This vehicle
longitudinal model is widely used for platoon performance
evaluation [30].

G _ 1
wi(s)  s2(nis + 1)
wherein g; (s) is the absolute position of vehicle i in the
Laplace domain, u; (s) is the desired acceleration of vehicle
i in the Laplace domain, »; is a vehicle actuator dynamic
parameter of vehicle i, and P; (s) is the plant of vehicle i.

Pi(s) =

ey

B. CACC CONTROLLER
The CACC controller is to keep a desired inter-vehicle dis-
tance between vehicles while maintaining the string stability.
CACC algorithms could assume different communications
topologies by utilizing the state of one vehicle ahead or
multiple vehicles around. The predecessor following CACC
platoon adopted in this research is illustrated by Fig. 1.

The desired inter-vehicle distance is calculated by a con-
stant time gap strategy, as shown below.

dri(t) = r; + hvi(t) (2)

wherein d, ;(¢) is the desired inter-vehicle distance of vehicle
i; r; is the standstill distance of vehicle i; v;(¢) is the velocity
of the vehicle i; and 4 is the time gap. Hence, the control error
is

ei(t) = di(t) — d i(t) 3

wherein d;(t) is the actual inter-vehicle distance of vehicle i;
and e;(t) is the control error of vehicle i.

To regulate this error, a CACC controller implementing
predecessor following communication topology is employed
(see Fig. 2), which is a PD controller with a feedforward
signal [31]. The CACC controller in the Laplace domain is
presented below [7]. A pre-compensator H —1(s) is designed
to cancel the effect of H(s) in the control feedback loop, such
that the time gap h can be set to any value without retuning
other control gains in the loop.

ui(s) = H™'(s)(kpei(s) + kasei(s) + ui—1) 4

H(s) = hs + 1 5)
C(s) = ky + kys (6)
D(s) = e 7
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FIGURE 2. Control block diagram of CACC.

wherein k, and k; are the PD controller coefficients; H(s)
is the transfer function related to the desired inter-vehicle
distance policy (2); C(s) is the PD controller of vehicle i; D(s)
is the wireless communication delay; and 6 is the wireless
communication time delay constant.

1lIl. ADAPTIVE KALMAN FILTER

To prevent a substantial degradation when communication
fails for an extended period (within a few seconds), an adap-
tive Kalman filter, utilizing the ‘“‘current” model as motion
model, is implemented to estimate the preceding vehicle’s
acceleration, such that the estimated acceleration can be uti-
lized as a feedforward signal in case of communication loss.
In the remainder of the paper, the CACC controller with the
adaptive Kalman filter or the normal Kalman filter means
the CACC controller of the ego vehicle utilized the estimated
acceleration of the preceding vehicle, calculated by the adap-
tive Kalman filter or the normal Kalman filter, as the feed-
forward term during communication loss. Fallback to ACC
means the CACC controller does not utilize any feedforward
term during communication loss. Perfect CACC means there
is no communication loss during the whole process.

Section III-A introduces the adaptive Kalman filter based
on the “current” model and its difference from the nor-
mal Kalman filter based on the Singer model. Section III-B
presents the calculation method of the measurement vector of
a preceding vehicle. Section III-C introduces the discretiza-
tion of the adaptive Kalman filter and the normal Kalman
filter, which can be employed in the mobile robots for exper-
imental validations [32].

A. THE “CURRENT” MODEL AND THE SINGER MODEL
The motion model in the adaptive Kalman filter is the “cur-
rent” model. In contrast, the Singer model is the motion
model of the normal Kalman filter. The state equation of the
“current” model, proposed by [28], is illustrated below.

q(t)
x(t) = | v(t) | = Ax(t) + Ba(t) + Gw(t)
a(r)
0 1 0 q(t) 0 0
=10 O 1 vit) |+ 0 Ja@®)+| 0 | w(r)
0 0 —« a(r) o 1

®)

VOLUME 7, 2019



C. Wu et al.: CACC With Adaptive Kalman Filter Subject to Temporary Communication Loss

IEEE Access

0.6 a>0 e
--———a<0 / \
,/ \
E 04 \
3} / \
A /
027 ‘ // 11
0 i — -

Acceleration (g)

FIGURE 3. Conditional Rayleigh density (¢, = 1).

a
[ IR

- 0 4 a

FIGURE 4. Symmetric ternary-uniform mixture distribution (P is the
probability of zero acceleration; and Pmay is the probability of maximum
acceleration.).

wherein a(t), v(t), g(t) are the acceleration, velocity, and
absolute position of the target, respectively; « is the maneu-
vering frequency; and w(t) is the zero-mean process white
noise, whose covariance matrix is Q.

The main difference between the “current” model and the
Singer model is that the “current” model has an adaptive
acceleration mean a(¢), which will be updated continuously.
However, the Singer model has the same state space equation
with a(t) = 0 [33].

The adaptive acceleration mean in the ‘“‘current” model
means utilizing the past estimated acceleration as the new
acceleration mean, which can improve the acceleration esti-
mation accuracy. And the adaptive acceleration mean a(t)
is updated by the following equation during the estimation
process.

Grr1 = Elag4112] = Elar|1 = & )

wherein z* is all the past measurements; and ay, is the accel-
eration estimation value at the timek.

To employ the adaptive Kalman filter or the normal
Kalman filter, the process noise covariance matrix Q needs
to be computed by the probability density function (PDF)
of target acceleration. The PDF of the target acceleration in
the “current” model is a conditional PDF f (a|ay ), which is a
conditional Rayleigh density [28], as shown in Fig. 3. How-
ever, the PDF of target acceleration in the Singer model is
an unconditional PDF, which is a symmetric ternary-uniform
mixture distribution, as shown in Fig. 4.
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The PDF of target acceleration in the “current” model is
shown below.
¢ (amax — @) exp(—(amax — @) /2/c})
l(@max —a) ax >0
C]:Z(a — d—max) €xp(—(a — a— max)z/z/ci)
l(a—a_max) ax <0

flaksilar) =

10)

wherein /() is the unit step function; amax and a_ max 1S the
maximum acceleration and deceleration, respectively; and c
is a a dependent parameter.

According to these PDFs, the variances of process noise
in the “current”” model and the Singer model are calculated
by the first equation and the second equation below, respec-
tively [25]. Also, it is assumed that dmax = @— max-

4 —m

2 (@max — é\lk)z ar >0
=147, o (11
(@—max +a)* ar <0

2
a
of = =31+ 4P — P) (12)

wherein ak2 is the variance of process noise.

The adaptive Kalman filter is built by combining equa-
tion (8) and the following equation for estimating the preced-
ing vehicle’s acceleration. The normal Kalman filter based on
the Singer model is also built by equation (8) with a(r) = 0
and the following equation.

y(it)=Cx +v(t) = ( (1) (1) 8 )x(t) +v(@) (13)

wherein v(z) is the measurement noise; and y(¢) is the mea-
surement vector. The covariance matrix of measurement
noise R is equal to £ ()W (1)), which is determined by the
radar sensor characteristics. And the covariance matrix of
process noise Q is calculated by the following equation.

0 O 0
0= GE(w(t)wT(t))GT =10 O 0 (14)
0 O 2010,{2

The estimated state of the adaptive Kalman filter and the
normal Kalman filter are calculated by the following equa-
tion [34]. But, in the normal Kalman filter based on the Singer
model, a(t) = 0.

{(t) = AR(t) + Ba(t) + L(y(t) — C3(t)) (15)

wherein Xx(7) is the estimated state of the target vehi-
cle; L is the Kalman gain in Kalman filter. According to
w(i) ~ (0,0Q) and v(tr) ~ (0,R), the Kalman gain L
is attained by solving the corresponding error covariance
algebraic Riccati equation, as demonstrated by the following
equations. The Kalman gain in the normal Kalman filter is a
constant due to the constant process noise covariance matrix
Q in the Singer model. However, According to (11) and (14),
the process noise covariance matrix Q in the adaptive Kalman
filter is updating at each sampling period. Hence, the Kalman
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gain in the adaptive Kalman filter needs to be recalculated at
each sampling period.

AP+ PAT + GOGT — PCTR™'cP=0  (16)
L=PCTR™! (17)

B. CALCULATION OF MEASUREMENT VECTOR

The measurement vector of the preceding vehicle in the adap-
tive Kalman filter and the normal Kalman filter need to be
modified for its calculations in CACC controller since the
ego vehicle cannot measure the velocity and absolute position
of the preceding vehicle. Based on the fact that the radar
sensor installed in the ego vehicle measures the inter-vehicle
distance and the relative velocity between the ego vehicle and
the preceding vehicle, the measurement vector is modified as

below.
_(aqi-1® _ (qi® qi(t)
= <vi_1(z>) = <v,»(r)) + <v,-(r)) (1)

wherein v;(¢) and g;(¢) are the relative velocity and the inter-
vehicle distance between vehicle i and vehicle i — 1, which
is measured by the radar installed in vehicle i. Also, it is
assumed that the velocity and position of the ego vehicle are
measured or estimated precisely. This assumption is reason-
able. For the measurement or estimation of vehicle velocity,
the vehicle velocity can be measured precisely, by the wheel-
speed sensor mounted on the non-driving wheel, except dur-
ing the braking process. And the vehicle velocity also can
be estimated by the wheel speed sensor and the longitudinal
vehicle acceleration sensor [35]. For the measurement and
estimation of vehicle position, the fusion of global navigation
satellite systems and vehicle acceleration sensor or simultane-
ous localization and mapping (SLAM) can provide an accu-
rate estimation or measurement of vehicle position [36]-[38].
Hence, the measurement vector is calculated by the measure-
ment from radar and the estimation or measurement of vehicle
position and velocity.

C. THE DISCRETIZATION OF THE ADAPTIVE KALMAN
FILTER AND THE NORMAL KALMAN FILTER

The discretization of the adaptive Kalman filter and the nor-
mal Kalman filter need to be accomplished for their imple-
mentation in the digital controller. The discrete state space
representation of the adaptive Kalman filter can be written as
below [39].

Xk +1) = ®(k)X (k) + Uk)a(k) + W(k) (19)
Z(k) = HI)X (k) + V (k) (20)

wherein X(k) = (q(k) v(k) a(k))T is the state space vector;
a(k), v(k), q(k) are the acceleration, velocity and absolute
position of the target at time k, respectively; Z(k) is the
measurement vector; ®(k) is the state transition matrix; H (k)
is the measurement matrix; W (k) and V (k) are the process
noise and the measurement noise with covariance matrix Q(k)
and R(k), respectively; U(k) is the input matrix; and a(k) is
the adaptive acceleration mean.
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The equations of ®(k), U(k), Q(k) and H (k) are shown as
follows [40]:

1 T (—l+al+e*T)/a?
dky=10 1 (1—eT)/a 1)
0 0 et
~T/a+T?24+ 1 —eT)/a?
Uk) = T—(1-eT)/a (22)
1—e T
1 0 0
Hk) = ( 0 1 o) (23)
q11 q12 q13
k) =2aof | 12 g2 g2 (24)
q13 423 433

20373

1
g =5—(1 - e 2T 4 2aT +
—202T?% — 4aTe0T)
1
g2 = — (2T 41— 27T 4 2aTe0T

a4
—2aT +a?T?)
1
g3 = —(1 — 2e7 22T _ 2qTe—T) (25)
203

1
g2 = 273(46’” —3—¢ 2T 4 2qT)

1
q23 = ﬁ(eleﬂ +1—2¢70T)
o

1
g33 = —(1 —e2T)
20

wherein T is the sample period.
The ““current” model adopts the standard Kalman filter
discrete algorithm, which is illustrated as below [41].

X(k 4 11k) = ®()X (k[k) + Uk)ack) (26)
Pk + 1]k) = ©(k)P(k|k)DT (k) + O(k) (27)

Sk + 1) = Hk)P(k + 1)HT (k) + R(k) ~ (28)

Kk +1) = Pk + 1/)H (k)S™' (k + 1) (29)

Pk +1k+1)=[—-Kk+ DHKEIPKk+1k) (30
rtk4+1) = Z(k + 1) — HK)X (k + 1]k) (31)
Xk+1k+1) =Xk+1k)+KKk+Drk+1) (32

The normal Kalman filter has the same discretization form
with a(k) = 0.

IV. SIMULATIONS AND MOBILE ROBOT EXPERIMENTS
Simulations and experiments of implementing the adaptive
Kalman filter and the normal Kalman filter in the CACC
controller during communication loss are conducted to com-
pare and validate their tracking performances. Simulations
are based on the automotive model in Matlab/Simulink, and
experiments are conducted in a mobile robot platoon. The
platoon in simulations and experiments are composed of two
vehicles, in which the following vehicle is able to validate the
proposed control strategy. The parameters of the automotive
simulations are illustrated in Table 3.
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FIGURE 5. The velocity profile of automotive CACC (no communication
loss).

Mobile robots used in the experiments have the capa-
bility to emulate the vehicle platoon in real traffic [32].
Mobile robots are equipped with cameras, wireless cards,
and infrared sensors. Each mobile robot has wireless com-
munication, lane keeping, and inter-vehicle distance mea-
surement capabilities. The lane keeping capability is based
on the lane detection by cameras. The infrared sensors are
used for the inter-vehicle distance measurement. The wireless
communication code is developed by socket programming
using UDP. The experimental platform is developed in [42].
More detailed settings of mobile robots are described in [32].

Four control strategies, including perfect CACC, CACC
with the adaptive Kalman filter, CACC with the normal
Kalman filter and fallback to ACC, are tested in simula-
tions and experiments. As mentioned in Section I, the wire-
less communicated desired acceleration of preceding vehicle
dominantly determines the total control action during the
transient behavior. Hence, it’s important to test these four
control strategies during the acceleration and deceleration
process. In simulations and experiments, communication loss
is set to happen in the whole acceleration and decelera-
tion process, and no communication loss happens in perfect
CACC.

A. THE RESULTS OF REAL VEHICLE SIMULATIONS
In the vehicle (automotive) CACC simulations using a real
vehicle model, there are two vehicles in the CACC platoon,
and the velocity profile in perfect CACC (no communication
loss) is demonstrated in Fig. 5. The vehicle model used in
the simulations is based on equation (1) and its parameter
is demonstrated in Table 3. The inter-vehicle distance errors
of perfect CACC, CACC with the adaptive Kalman filter,
CACC with the normal Kalman filter and fallback to ACC are
displayed in Fig. 6. The estimated acceleration of the adaptive
Kalman filter and the normal Kalman filter are illustrated
by Fig. 7.

Five more velocity profiles of the preceding vehicle with
different accelerations and decelerations (0.5,1,1.5,2.5and 3
m/s*) are performed to validate the algorithms. The mean and
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FIGURE 6. The inter-vehicle distance error in different strategies.

FIGURE 7. The estimated acceleration of the normal Kalman filter and the
adaptive Kalman filter.

FIGURE 8. The mean of inter-vehicle distance error with different
accelerations (The percentage means the corresponding mean divided by
that for the fallback to ACC).

RMS of inter-vehicle distance error during acceleration and
deceleration are summarized in Fig. 8-11.

B. THE MOBILE ROBOT EXPERIMENTS SETUP

The mobile robot experiments are performed in a straight
lane with white markers, as displayed in Fig. 12. The platoon
has two mobile robots. Unlike radar, the infra-red sensor on
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FIGURE 9. The mean of inter-vehicle distance error with different
decelerations (The percentage means the corresponding mean divided by
that for the fallback to ACC).

FIGURE 10. The RMS of inter-vehicle distance error with different
accelerations (The percentage means the corresponding RMS divided by
that for the fallback to ACC).

FIGURE 11. The RMS of inter-vehicle distance error with different
decelerations (The percentage means the corresponding RMS divided by
that for the fallback to ACC).

the mobile robot only can measure the inter-vehicle distance.
Hence, a filtered version of relative velocity is implemented

93564

FIGURE 12. Mobile robot platoon experiments.
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FIGURE 13. The velocity of mobile robots in perfect CACC (without
communication loss).

for the measurement of relative velocity, as shown below.

Furthermore, the robot velocity is measured by the wheel

speed sensor in the electronic motor. And the robot position

is estimated by the integration of the vehicle velocity, which
is accurate enough for the robot running in a straight lane.
s

14+ 7ts

wherein Ag;(s) and Av;(s) are the inter-vehicle distance and

the relative velocity between vehicle i and vehicle i — 1 in

Laplace domain, respectively; and t is a parameter for this
filter.

vi(s) = gi(s), <1 (33)

C. THE RESULTS OF MOBILE ROBOT EXPERIMENTS

Two mobile robots form a CACC platoon for experiments.
A desired velocity profile is designed in the preceding robot,
as displayed in Fig. 13, and the following robot follows
the preceding robot using the constant time gap policy. The
velocity of the following robot in Fig. 13 is in perfect CACC.
The acceleration and deceleration of the preceding robot are
equal to 0.1 m/s>.

The scenario of robot experiments is communication loss
during acceleration (5-10s) and deceleration (15-22s). The
inter-vehicle distance errors of four control strategies are
demonstrated in Fig. 14-18. The estimated acceleration of
the adaptive Kalman filter and the normal Kalman filter are
illustrated by Fig. 19.

Two more velocity profiles of the preceding robot with
different accelerations and decelerations (0.06 m/s*> and
0.08 m/s”) are performed to validate the algorithms. Also,
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;I(':URE }lllt The‘;nfteﬁ:vehI:cIekdtlst;l(r:\(c:edertor of |mp|e|!|er;?mglthe normal FIGURE 17. The inter-vehicle distance error of implementing the adaptive
alman fifter and 1alling back to uring communication loss. Kalman filter during communication loss and perfect CACC.

FIGURE 15. The inter-vehicle distance error of implementing the adaptive FIGURE 18. The inter-vehicle distance error of implementing the adaptive
Kalman filter and falling back to ACC during communication loss. Kalman filter and the normal Kalman filter during communication loss.

FIGURE 19. (Solid black) Desired acceleration, (dashed red) estimated
acceleration in the adaptive Kalman filter and (dashed-dot blue)

FIGURE 16. The inter-vehicle distance error of implementing the normal estimated acceleration in the normal Kalman filter.

Kalman filter during communication loss and perfect CACC.

D. RESULTS SUMMARIZATION AND ANALYSIS
there is communication loss during the acceleration and The adaptive Kalman filter can estimate the longitudinal
deceleration process. The mean and RMS of inter-vehicle acceleration of the preceding vehicle accurately. And the
distance error during acceleration and deceleration are sum- acceleration estimation accuracy of the adaptive Kalman fil-
marized in Fig. 20-23. ter is better than the normal Kalman filter while they have
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FIGURE 20. The mean of inter-vehicle distance error with different
accelerations (The percentage means the corresponding mean divided by
that for the fallback to ACC).

FIGURE 21. The mean of inter-vehicle distance error with different
decelerations (The percentage means the corresponding mean divided by
that for the fallback to ACC).

FIGURE 22. The RMS of inter-vehicle distance error with different
accelerations (The percentage means the corresponding RMS divided by
that for the fallback to ACC).

a similar convergence speed. In real vehicle simulations,
as shown in Fig. 7, the estimated acceleration of the adaptive

93566

FIGURE 23. The RMS of inter-vehicle distance error with different
decelerations (The percentage means the corresponding RMS divided by
that for the fallback to ACC).

TABLE 1. Mobile robot experiments: The mean and RMS of inter-vehicle
distance error.

Accelerati Mean RMS
on
(m/s>) NKF AKF PCACC NKF AKF PCACC
0.6 50% 12% 13% 78% 63% 67%
0.8 49% 10% 11% 55%  42% 55%
1 68% 20% 14% 61% 53% 50%
-0.6 51% 2% 10% 69%  54% 38%
-0.8 49% 2% 9% 58%  55% 44%
-1 57% 5% 10% 44%  42% 51%

The percentage means the corresponding mean or RMS divided by that
for the fallback to ACC.
NKF: normal Kalman filter; AKF: adaptive Kalman filter; PCACC:

perfect CACC.

Kalman filter is 92.5% of the desired acceleration, and the
normal Kalman filter is 77.5%. And the convergence time of
these two filters is around 0.8 second. In mobile robot exper-
iments, as shown in Fig. 19, the estimated acceleration in the
adaptive Kalman filter is 90-95% of the desired acceleration,
and the estimated acceleration in the normal Kalman filter
is 60-65% of the desired acceleration. And the convergence
time of these two filters is around 1.35 second.

The mean of the inter-vehicle distance error in CACC
with the adaptive Kalman filter is much less than fallback to
ACC, which also has a substantial improvement, compared
to CACC with the normal Kalman filter. In real vehicle
simulations, as shown in Table 2, the mean of the inter-vehicle
distance error in CACC with the adaptive Kalman filter is
about 20% of fallback to ACC, and CACC with the normal
Kalman filter is about 32%. In mobile robot experiments,
as shown in Table 1, the mean of the inter-vehicle distance
error in CACC with the adaptive Kalman filter is about 2-20%
of fallback to ACC, and CACC with the normal Kalman filter
is about 49-68%. The feedforward term in CACC controller,
the desired acceleration of the preceding vehicle, is able to
make the control error converge to zero faster. Hence, a more
accurate estimation of the preceding vehicle’s acceleration
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TABLE 2. Real vehicle simulations: The mean and RMS of inter-vehicle
distance error.

Accelerati Mean RMS
on
(m/s*) NKF  AKF PCACC NKF  AKF PCACC
0.5 35%  22% 5% 74%  74% 65%
1 32%  20% 2% 48%  48% 37%
1.5 32% 19% 1% 42%  38% 26%
2 32%  20% 1% 39%  34% 20%
2.5 32%  20% 1% 37%  31% 16%
3 32%  20% 1% 36%  30% 13%
-0.5 31% 18% 1% 66%  66% 60%
-1 31%  20% 1% 48%  45% 36%
-1.5 30% 18% 2% 41%  37% 25%
2 30% 19% 2% 37%  31% 19%
-2.5 31% 19% 1% 36%  30% 15%
-3 32% 19% 1% 36%  29% 13%

The percentage means the corresponding mean or RMS divided by that
for the fallback to ACC.

NKF: normal Kalman filter; AKF: adaptive Kalman filter; PCACC:
perfect CACC.

leads to a smaller mean of the inter-vehicle distance error in
case of communication loss.

The RMS of the inter-vehicle distance error in CACC with
the adaptive Kalman filter is much less than fallback to ACC,
and the difference between them is increasing with increasing
acceleration. It also has a few reductions, compared to CACC
with the normal Kalman filter. In real vehicle simulations,
as shown in Table 2, the RMS of the inter-vehicle distance
error in CACC with the adaptive Kalman filter is about
29-74% of fallback to ACC, and CACC with the normal
Kalman filter is about 36-74%. In mobile robot experiments,
as shown in Table 1, the RMS of the inter-vehicle distance
error in CACC with the adaptive Kalman filter is about
42-63% of fallback to ACC, and CACC with the normal
Kalman filter is about 44-78%.

V. CONCLUSION

The innovative CACC control strategy proposed in this
paper effectively improve the performance of CACC during
extended communication loss. The adaptive Kalman filter,
based on the “current’” model, can estimate the acceleration
of the preceding vehicle and improve the performances of
CACC during communication loss, which reduces the mean
and RMS of inter-vehicle distance error significantly, com-
pared to fallback to ACC. In the simulations and experiments,
the results show the mean of inter-vehicle distance error in
the adaptive Kalman filter is less than the normal Kalman
filter based on the Singer model. Hence, implementing the
adaptive Kalman filter is a better solution than the normal
Kalman filter during communication loss.

Although the mobile robots emulating real vehicles pro-
vided a good initial proof of this concept and insights, in the
future, real vehicle experiments need to be conducted to
verify the implementation of the adaptive Kalman filter in
CACC. Also, the platooning issues of multiple vehicles, like
platoon stability analysis with or without communications
loss and other communications related issues, need to be
further studied in the future.
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APPENDIX

TABLE 3. The parameters of automotive simulations.

Parameters Description Value

7; Vehicle actuator dynamic parameter 0.1s

T Vehicle actuation delay 0.2s

h Time gap 0.5s

t; Standstill distance 3m

kl, PD controller coefficient 2

kd PD controller coefficient 2

0 Wireless communication time delay 0.02s
constant

a Maneuvering frequency 1.25s7"

R Probability of zero acceleration 0.1

P Probability of maximum acceleration 0.01

Ao Maximum acceleration 8m/s*
Variance of measured inter-vehicle

T distance 0.029m’

o Variance of measured relative vehicle — 0.017m” / s*

a velocity
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