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ABSTRACT Disasters (natural or man-made) can be lethal to human life, the environment, and infrastruc-
ture. The recent advancements in the Internet of Things (IoT) and the evolution in big data analytics (BDA)
technologies have provided an open opportunity to develop highly needed disaster resilient smart city
environments. In this paper, we propose and discuss the novel reference architecture and philosophy of
a disaster resilient smart city (DRSC) through the integration of the IoT and BDA technologies. The
proposed architecture offers a generic solution for disaster management activities in smart city incentives.
A combination of the Hadoop Ecosystem and Spark are reviewed to develop an efficient DRSC environment
that supports both real-time and offline analysis. The implementation model of the environment consists of
data harvesting, data aggregation, data pre-processing, and big data analytics and service platform. A variety
of datasets (i.e., smart buildings, city pollution, traffic simulator, and twitter) are utilized for the validation
and evaluation of the system to detect and generate alerts for a fire in a building, pollution level in the city,
emergency evacuation path, and the collection of information about natural disasters (i.e., earthquakes and
tsunamis). The evaluation of the system efficiency is measured in terms of processing time and throughput
that demonstrates the performance superiority of the proposed architecture. Moreover, the key challenges
faced are identified and briefly discussed.

INDEX TERMS Big data analytics, Internet of Things, smart city, disaster management, Hadoop, spark,
smart data analytics, geo-social media analytics, disaster resilient smart city.

I. INTRODUCTION
The intensity of disasters (natural or man-made) has
increased in the last few decades. IFRC, world disaster report
2018 [1] identified 3,751 natural disasters such as earthquake,
flood, tsunami, etc., that occurred in the last 10 years globally,
costing total damage of 1,658 billion USD and affecting over
2 billion people. Moreover, a total of 118 man-made disasters
such as nuclear meltdowns, structure failures, transportation
accidents, terrorism acts, etc., were reported in 2017 only,
resulting in more than 3000 deaths [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Lu Liu.

Disaster Management can be considered as a set of orga-
nized processes that incorporates the planning and managing
of the activities in any of the disaster phases i.e., mitiga-
tion, rescue, response, and recovery. Disaster management
activities are carried out through the collaboration of various
concerned government and private sector authorities. The
main aim of disaster management is the integration of the
interrelated processes that can provide efficient means to ana-
lyze, monitor and or predict disasters. In order to minimize
the possibilities of casualties and environmental destruction,
disastermanagementmeasures need to be both preventive and
reactive. The key functions of disaster management are to
trigger early warnings, collect the information in real-time,
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accurately estimate the damage, quickly figure out the evacu-
ation routes and effectively manage emergency resource [3].

Traditional disaster management systems are getting out-
dated as they are becoming inadequate to manage operations
with multi-sourced data and to store and analyze huge vol-
umes of disaster data in real-time [4]. With the constraints of
accurate and timely decision-making, disaster management
and resilience processes require a reliable and effective envi-
ronment that integrates various state-of-the-art technologies
to enhance its performance. Moreover, it is very important
to be able to engage any information source critical to the
situation in time for emergency responders, especially during
the initialization of the crisis response [5].

In this age of technology, the disaster management pro-
cess can be provided with multiple supportive data sources
to acquire information that can be utilized effectively in
rescue, response and as well as in the mitigation and pre-
paredness phases of a disaster. Modern disaster management
systems need to support various types of data generated from
heterogeneous sources, hence requires deploying effective
data integration and multi-modal data analysis methods to
extract valuable information. Relevant information needs to
be collected from various potential data sources (i.e., Sensors,
SocialMedia, Satellites, Smartphones, Authoritative/Historic
data repositories, etc.), to increase the scope of situational
awareness and acquire new insights for effective decision-
making. Fortunately, with the emergence of new technologies
such as the Internet of Things (IoT), Big Data Analytics
(BDA), Cloud Computing, Fog Computing, etc., the disaster
management process automation is getting equipped with
more advanced services for timely and accurate operations.
The growth of communications through Web 2.0; the latest
technological advancements such as social media, smart-
phones, location-based systems, satellites, in-situ sensors
data; and the potential ability to integrate them along with
traditional data sources such as authoritative/public data and
mass media can lead to new application era for the disas-
ter management systems. The availability and integration of
information from heterogeneous data sources and its coordi-
nation and understanding with decision makers, emergency
responders, governments and also citizens will be the core
ideology of this new and highly needed disaster management
application model.

The world’s population living in urban areas and neighbor-
ing localities is projected to rise to around 68% by 2050 [6].
The prompting increase in the population density of urban
cities has defied the requirements of better services and
suitable infrastructure for its inhabitants. Smart city incen-
tives are considered an ideal solution by experts in both
academia and industry to answer the challenges that occur
from population growth, environmental pollution, shortage of
energy sources, etc. [7]. The concept of Smart City is getting
popularity, where various electronic devices and network
infrastructure are incorporated together to attain high-quality
two-way collaborative multimedia services. Hence, a smart
city equipped with the capability of generating early

warnings, monitoring, and predicting the disasters can be
a game changer in minimizing fatalities by generating the
required information and insights for the concerned author-
ities to intelligently manage the disaster scenarios.

An important component of any smart city is IoT, an infras-
tructure that allows devices to communicate with each other
over the internet. IoT is evolving rapidly and immense value is
given to it by various governments, enterprises and academic
institutions. In themodernworld, the scope and size of IoT are
triumphing drastically, endowing new opportunities and also
demanding challenges in the world of the internet [8]. Due
to the intercommunication among various devices in such
systems, a substantial amount of data is generated known
as big data. The devices in such systems sense and transfer
a large amount of data (Big Data) to the main station after
identifying the encompassing activities. Billions of devices in
correspondencewith a huge populationwould intercommuni-
cate, leading to the production of overwhelming big data that
requires storage and analytics for information acquisition.
Moreover, as the interconnected devices in IoT are getting
more advanced, a variety ofmultimedia content (video, audio,
still image, etc.) is also becoming available in IoT [9].

Social media platforms are also offering open opportu-
nities for smart city initiatives to extract valuable informa-
tion for improved decision-making. Users of social media
are regarded as ‘‘Human as a sensor’’ since they provide
real-time information that can offer more insights about
a particular incident [10]. Social media enables people to
communicate, express views and share contents like text
/micro-blog, photos and videos with or without geo-location
through an internet-based application. Crowdsourcing and
especially volunteered geographical information (VGI) [11]
are becoming the major basis of data for disaster manage-
ment, as citizens are actively contributing in disaster response
with easy access to social media and location-enabled report-
ing tools. Geospatial data, boosted with crowd generated
geospatial content in the last few years is more in focus
as compared to conventional data sources for disaster/crisis
management systems [12]. A large amount of literature exists
that is emphasizing on questions ranging from the overall
framework of disaster social media design [13], to models
that help emergency responders understand how crisis infor-
mation is produced and shared by the general public through
social media [14], to architectures for data quality assessment
and filtration of user-generated content accessed from social
media for disaster management [15].

‘‘Big data’’ is normally described as the ‘‘next big thing
in innovation’’ and truly so, as big data concept is a revolu-
tionary approach regarding data management and analysis.
In literature, the term ‘‘big data’’ usually refers to two dif-
ferent concepts, i.e. a) to state the massive size of the data
itself, and b) to state the ever-evolving set of techniques and
technologies that aid in effective processing andmore insight-
ful analysis of large volumes of data. For big data applica-
tions, the most important task is to discover hidden values
rapidly from datasets having the enormous size that can
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possess various types of data (i.e., structured, semi-structured
and unstructured) [16]. Big Data Analytics (BDA) examines
large datasets from multiple sources for extracting valuable
information and insights that can help organizations make
informed decisions.

The huge volumes of unstructured data were considered
useless a decade ago, but with the advancements of BDA
tools; these datasets are being analyzed to acquire valu-
able information and insights. However, the reliability of
captured data, ensuring the privacy of citizens, and lack of
understanding and collaboration between volunteer groups
and governmental organizations for managing big data are
some of the key issues still faced [17]. Traditional data col-
lection methods are very expensive and time-consuming,
as it involves tedious field surveys and outdated instruments.
Thus, the incorporation of smart technology is needed that
can effectively and robustly gather a huge amount of data,
perform analytics and predict the future for improved plan-
ning and development [18].With the growing interest of com-
panies, governments, and academia for utilizing the potential
benefits of BDA, a great deal of research is going on regarding
designing and deployment of systems to efficiently manage
and analyze big data for extracting new insights for decision
making [19]. Currently, the main sources of big data are the
human interactions on the Web 2.0, sensing information on
the IoT, operational and transactional data in enterprises and
data generated from scientific research, etc. Out of which
the big data generated by IoT originate unique characteristics
that include heterogeneity between the datasets, a variety
of information, unstructured features, noisy data, and high
redundancy [20]. Excitingly, data streams from the IoT will
test the traditional approaches for data management and will
eventually endorse the concept of big data [21].

Developing architectural models that implement the IoT
and BDA technologies for disaster management automation
and addressing the potential design challenges associated in
the same area is an overlooked aspect in current literature.
When dealing with a massive amount of distributed data
from multiple sources (i.e. social media, sensors, satellites,
emergency responders, online news, etc.) the major issues
faced are data aggregation, integration, and processing of
the multi-source heterogeneous data. For solving data man-
agement issues in traditional disaster management systems,
there is a need to develop system architectures that sup-
port the integration of multi-source data, provide effective
communication and fast access, deliver updated and suitable
data and assist in the standardization of information [22].
Since traditional methodologies are not suitable to deal with
these huge volumes of data from multiple sources, BDA
frameworks seem to be the effective solution to extract the
required information and new insights from these raw data
streams [23]. Big data has the potential for producing a
much-advanced version of emergency response, as it has
access to critical real-time information that can be helpful
for disaster management [24]. Moreover, BDA is capable
of processing huge sets of disaster-related data in real-time

during any of the four phases of disaster management (i.e.,
Mitigation, Preparedness, Response, and Recovery) [25].

The major contributions of this paper include:
a) An innovative and state-of-the-art concept of BDA- and

IoT-based environment for disaster resiliency in smart
city infrastructure is proposed. The proposed concept
of Disaster Resilient Smart City (DRSC) urges for the
collaboration of IoT and BDA, where IoT has the poten-
tial to offer a framework of a ubiquitous network of
interlinked sensors and smart devices, and BDA has
the potential to facilitate the real-time processing of
IoT along with other related data streams to reveal new
information, patterns, and insights for effective disaster
management. Figure. 1 illustrates the overall scenario of
the concept of a BDA- and IoT-based DRSC.

b) A novel reference architecture is presented to demon-
strate the general framework for the proposed con-
cept of DRSC, with the aim to provide a roadmap for
future expeditions. A complete five-layered architecture
is planned for a DRSC environment, which supports
large volumes of datasets from multiple data sources
for efficient real-time and offline analysis that aids in
triggering early warning/alert generation, monitoring,
and prediction of disaster situations.

c) A combination of the Hadoop framework and Spark
analytical engine is implemented and tested to support
real-time and offline processing on various datasets gen-
erated from IoT and Twitter. The implementation model
of the deployed system is focusing on the alert genera-
tion for disasters within the scope of the proposed DRSC
framework to understand the system efficiently.

d) The system is evaluated regarding processing time and
throughput. The results demonstrate the performance
superiority of the system.

e) Finally, the open challenges that can be faced during the
deployment of such an environment are identified and
discussed briefly.

The remainder of this paper is organized as follows.
Section II outlines the motivation for the research in
detail. Section III thoroughly describes the proposed archi-
tecture and its subsection layers i.e., Data Resource,
Data Transmission, Data Aggregation, Data Analytics and
Management, and Application and Support Service. The
implementation model for the deployed environment and its
subsection i.e., Data Harvesting, Data Aggregation, Data Pre-
Processing, and Big Data Analytics and Service Platform
are also presented in the same section. Section IV presents
the data analytics results and discussion along with the
applied critical threshold, system implementation and system
efficiency evaluation details. Section V highlights the key
challenges that need to be addressed for future research
undertakings. Finally, Section V concludes the paper.

II. MOTIVATIONS
There is an increasing and compelling demand from the
disaster management community and concerned authorities
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FIGURE 1. Illustrative scenario of a BDA- and IoT-based disaster resilient smart city.

to be provided with latest and accurate information for dis-
aster management processes using any possible data source.
Moreover, disaster response needs more improved opera-
tions and lack of (big) data availability for supply networks
is a major limitation [26]. Zheng L, et al [27] state ‘‘the
techniques to efficiently discover, collect, organize, search,
and disseminate real-time disaster information have become
national priorities for efficient crisis management and dis-
aster recovery tasks’’. It is challenging for the traditional
disaster management systems to collect, integrate and process
large volumes of data frommultiple sources in real-time [28].
Moreover, the constraint of generating results in a small
amount of time for emergency rescue and response, growing
big data management issues and limited computational power
makes the current traditional disastermanagement inadequate
for the efficient and successful application. Previous stud-
ies have widely discussed the importance of timely, oper-
ational and accurate information for disaster management
processes [29]–[31]. During the initial stages of a disaster,
the responsible authorities need to make accurate and fast
decisions. These decisions can only be successfully imple-
mented if they are provided with quality information from
different sources covering multiple dimensions.

Apart from the conventional data sources (i.e., field sur-
veys, satellite imagery, archived databases) for disaster man-
agement a number of new potential data sources needs to
be evaluated. One of the potential data sources for disaster
management includes IoT-based sensors. IoT based sensors
provide multi-dimensional data that can help in collecting

the required information (readings of temperature, radiation,
toxic gases, etc.) in case of any disaster. IoT driven plat-
forms can provide disaster management systems such as
early warning system with time critical, scalable and inter-
operable services [32]. IoT technologies offer the ability of
distributed sensing with the potential integration of hetero-
geneous data, which makes it suitable for disaster manage-
ment applications [33]. Another emerging and yet underused
big data source for disaster management is social media.
A smart city needs to consider social media to enhance com-
munications with citizens, acquire feedbacks and encourage
empowerment between citizens and authorized organizations.
Though dealing with social media data requires an applied
research approach, however, the importance of basic research
for introducing the latest technology aided platforms and
addressing the emerging architectural level issues for fast and
effective processing of social media-generated data particu-
larly for disaster applications cannot be neglected.

In one of our previous work [34], we identified the key
benefits of BDA- and IoT-based disaster management sys-
tems and also investigated the recent literature conducted
regarding various applications encompassing BDA and IoT
for disaster management. We concluded that there are numer-
ous benefits and many unexplored open opportunities allied
with BDA and IoT technologies for the time-sensitive and
accuracy-demanding application of disaster management.
The growth of big data, the advancement of BDA tools and
the expansion of the IoT are boosting the concept of smart
cities. Smart cities are getting equipped with multiple data
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sources to effectively help the citizens in their daily life
activities. To deploy any smart city initiative, advance data
sensing capabilities with highly efficient communication net-
work play a major role. However, for a smart city to become
a DRSC it needs to execute effective aggregation and storage
of huge volumes of data, integrate heterogeneous datasets and
perform analytics in both real-time and offline to extract the
required information. These challenges signify the leading
edge of BDA and IoT advancements, which collectively are
capable of dealing with the urgency of this problem.

Disaster management applications necessitate more
attention due to their time-sensitivity and high accuracy
constraints owing to the life or death of human lives. Dis-
aster management can be divided into various applications
i.e., early warning/alert generation, response, evacuation,
monitoring, and prediction. This study tries to implement and
evaluate the alert generation application for disasters through
a proposed architecture. Established early warning systems
such as IMIS (the early warning system for radioactivity in
the environment by the German federal government) [35] are
often multi-source systems, but they are neither multi-modal
nor do they support the disaster management life-cycle
(response, continuity, recovery) [36]. Furthermore, they do
not exploit today’s available state-of-the-art technologies
(such as Hadoop and Spark) and are, therefore, limited
with respect to dealing with existing and emerging big data
challenges.

BDA frameworks are used to analyze various applications
of the smart city, however the time sensitive and accuracy
demanding disaster/crisis/emergency management applica-
tions are still to be evaluated. There are very few research
resources in the area of the smart city and disaster resilience
and BDA- and IoT-based DRSC is rarely been investigated.
Moreover, the requirement of an efficient and scalable com-
pact environment for a BDA- and IoT-based DRSC has not
been fully met yet. Therefore, this study attempts to present
an architectural solution that is designed and evaluated for
a DRSC and able to work with different data sources sup-
ported by state-of-the-art big data analytical tools. The moti-
vation behind our effort is to provide innovative and effective
BDA- and IoT-based DRSC architecture that considers het-
erogeneous data sources and real-time processing for more
instant and insightful results. The aim of this research is
to integrate different aspects of BDA and IoT for effective
utilization of multi-source big data and to gain from the
opportunities they offer for effective disaster management.

III. BDA- AND IOT-BASED DISASTER RESILIENT SMART
CITY
In this section, we first propose a novel conceptual refer-
ence architecture that aims at providing an effective platform
for storage, mining, and processing of various data sources
including IoT generated and crowdsourced big data. Then
we present the detailed information regarding the implemen-
tation model of our deployed system to illustrate its overall
operations and functions.

A. PROPOSED REFERENCE ARCHITECTURE OF BDA- AND
IOT-BASED DRSC
Several BDA and IoT architectures focusing on various
operations and attributes in smart city concepts are found
in the literature. For example, real-time data was utilized
for BDA in an IoT-based smart city for the smart trans-
portation system in [37]. In [38], a healthcare architecture
is proposed that uses BDA on data from dedicated IoT
devices. Similarly, in [39] the authors proposed an architec-
ture for smart urban planning based on BDA and utilizing IoT
datasets. In another study [40], a framework was proposed
for weather data analysis using BDA and IoT to extract
meaningful information from huge volumes of unstructured
data. In [41], BDA and IoT based classification extension
system designwere proposed formonitoringwater conditions
in real-time. However, to the best of our knowledge, no archi-
tecture has entirely focused on integrating BDA and IoT for
any kind of disaster management or resilience in smart city
projects.

There is a great scope to validate and evaluate various
BDA and IoT technologies for a mission-critical application
such as disaster management. To benefit from the state-of-
the-art applications and value-added capabilities presented
by BDA and IoT with disaster management in perspective,
we propose a novel disaster resilience smart city reference
architecture that can be assisted with the advanced capabil-
ities collaboratively offered by BDA and IoT. Based on the
abstraction and identification of the various technological
domains, the proposed architecture of IoT and BDA for a
DRSC in this study can either be considered as i) a ref-
erence model for data abstraction that defines relationships
among IoT and Big Data entities for DRSC and; ii) a stan-
dardized framework for assembling overall DRSC system
entities.

The following challenging characteristics are taken into
consideration during the design process.

• The architecture should be open to any potential data
source that can provide additional insights to the results.

• The architecture needs to ensure the effective transmis-
sion of data over the communication networks.

• The architecture needs to guarantee the flawless storage
of structured and unstructured data that can be either
real-time or historical data.

• The architecture should be scalable to handle different
data processing algorithms and analytical packages.

• The architecture should be able to present the processed
results to the decision makers in an interactive manner
and if necessary share the results with other subsequent
applications.

As shown in Figure. 2 the proposed architecture is split
into five layers, i.e., 1) Data Resource; 2) Data Transmission;
3) Data Aggregation; 4) Data Analytics and Management,
and 5) Application and Support Services layer. The following
subsections thoroughly describe each layer of this envisioned
architecture in detail.
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FIGURE 2. Proposed reference architecture for BDA- and IoT-based disaster resilient smart city.

1) DATA RESOURCE LAYER
This layer deals with the recognition all the potential data
sources and collection of data generated by them. It contains
all the potential IoT based data sources for DRSC such as
in-situ sensors, RFID tags sensing, GPS, surveillance cam-
eras, smartphones, satellite remote sensing etc. Moreover,
DRSC can benefit to a large scale from a number of data
resources, that can be taken aboard, such as social media
streams and authoritative/historical data held by government
or other disaster management organizations. Depending on
the type of the source, the data can be about location, ori-
entation, temperature, humidity, situation description, image
or audio/video etc. Moreover, the collected data can be both
structured and unstructured as illustrated in Table 1. These
data sources generate different data types and formats. Hence
integrating them for processing is a challenging task. The
main data formats that can efficiently be processed in this pro-
posed framework are (XML, CSV, JSON, ARFF, JPEG, and
MPEG-2). Moreover, different data converters can be used
to integrate various types of data prior to the data processing
phase. The data sources are connected to a local data access
middle layer or a remote station where the generated data

are collected and integrated to be communicated via the data
transmission layer.

2) DATA TRANSMISSION LAYER
Data transmission layer acts as the core component in any
smart city architecture as it is providing the communica-
tion channels throughout the environment. The transmis-
sion layer is responsible to connect the data sources to the
data aggregation layer and provide communication chan-
nels through out the environment in a secure and efficient
manner. It is recommended to establish the disaster infor-
mation networks by considering all the available options in
the form of wired, wireless, or satellite networks to ensure
a ‘‘never-die-network environment’’ [42]. The transmission
can be on wired or wireless medium categorized by Local
Area Network (LAN), Wide Area Network (WAN) and
Personal Area Network (PAN). The transmission layer is sup-
ported by a combination of access transmission communica-
tion technologies such as ZigBee, Bluetooth,Wi-Fi, Ethernet,
WiMax, NFC and RFID; and network transmission com-
munication technologies such as CDMA, GPRS, 3G/LTE,
and 5G.
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TABLE 1. Structured and unstructured data in the context of disaster management.

3) DATA AGGREGATION LAYER
With the possible inclusion of many heterogeneous data
sources (i.e. IoT sensors, social media streams, satellites,
electronic media, geo-portals, authoritative data), the sys-
tem’s reliability and value for effective decision-making
increase undoubtedly, but on the other hand, it can also
increase system vulnerability and complexity. The Data
Aggregators are responsible to collect all the data under
one multi-source database through different transmission
mediums. Data can be gathered in the form of structured
and unstructured data separately, using Apache Flume and
Apache Sqoop respectively. Moreover, Spark Streaming can
be utilized for real-time data collection. Apache Flume [43] is
an open-source tool which provides a distributed and reliable
service for collecting, aggregating and transferring huge vol-
umes of unstructured data. It can aggregate and channelize
unstructured data from various sources to HDFS directly.
It is fault tolerant, robust and simple with many recovery
mechanisms that use extensible datamodel for online analytic
applications. Apache Sqoop [44] on the other hand is also
an open-source tool but designed for extracting bulk data
from structured databases (i.e. Relational database, NoSQL
database, Data warehouses) to HDFS. Spark Streaming is
ideal for real-time data aggregation from sources like Twitter
and IoT based data streams. A combination of these tools,
through a data pipeline can be utilized to collect the desired
data. In this phase, the essential Meta data information such
as data source, content, time stamps, location, etc. can also be
identified.

4) DATA ANALYTICS AND MANAGEMENT LAYER
The main layer for data analytics and management contains
a set of different tools to aggregate, store, process, query and
analyze data. A combination of different BDA frameworks
(i.e., Hadoop Ecosystem and Spark) can be reviewed to
develop a real-time and efficient system for disaster man-
agement processes. An interoperable and efficient storage
mechanism is required for the streaming structured
and unstructured data. Hadoop Distributed File System
(HDFS) [45] is a distributed storage file system designed to
operate on commodity hardware with higher efficiency to
handle large volumes of data. HDFS acts as the underlying
storage for any Hadoop based system. Its main advantage is

scalability, from a single server to thousands of machines
and each capable of using local storage and computation.
It consists of two types of nodes, i.e. NameNode denoted as
‘‘Master’’ and numerous DataNodes denoted as ‘‘Slaves’’.
Namenode is responsible for managing the hierarchy of
life system and director namespace that acts as metadata
while DataNodes stores the actual data content. The data
content is split into blocks and each block is replicated
across different DataNodes for redundancy. Reports of all
the existing blocks are sent to the NameNode periodically
for monitoring and record. Along with HDFS based storage,
a variety of programming models can be used for processing
and analyzing big data, depending on the final results and
business requirements. In this big data environment, it is very
important to execute queries rapidly and retrieve results in
the shortest time possible. Apache Spark [46] an open-source
general computation engine for Hadoop, by far can fit the
bill for a time critical and massive data sized systems. Spark
is ideal for interactive queries and also supports processing
of real-time data streams. It is a well-recognized processing
framework with elegant APIs that supports various computer
languages (i.e. Python, Scala, Java) and ensures fast, flexible
and easy-to-use computing to execute machine learning or
SQL assignments with streaming datasets. Moreover, it has a
vast set of libraries (i.e. MLlib, GraphX, Spark Streaming,
Spark SQL) for different functions with the possibility of
adjusting and tuning according to the requirement.

A set of various supplementary tasks can be performed
to accomplish the required analysis and to provide accurate
and timely results to the decision-makers. Event detection is
very critical in disaster management and needs to be oper-
ational to identify any disastrous event that occurs. Event
detection backed by IoT sensor data and social media streams
can detect any incident within the first few seconds of its
occurrence [47]. Pattern recognition mechanism offers the
machine learning ability to detect the useful patterns of infor-
mation from textual or spatial data sets crucial for disaster
management [48]. Semantic engine can be utilized for effec-
tive information management, i.e., categorizing, searching
and extracting of unstructured information. A number of data
mining techniques can be utilized to discover new, effective
and otherwise hidden patterns of insights from the available
information. Multi-source information fusion technologies
help to integrate the required data from heterogeneous data
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FIGURE 3. Implementation model of the deployed system.

sources. Task management helps to identify workloads on
different entities in the system and effectively managing sys-
tem’s operations.

5) APPLICATION AND SUPPORT SERVICES
An interactive web-based application interface can pro-
vide decision makers (Emergency responders, Public health,
Police, Fire Department) with the required results. The results
can be queried and displayedwith different visualization tools
accessed through web-based APIs. Software solutions that
provide a web-based user interface and does not require man-
ually scripted queries can be utilized for result generation and
visualization for decision-makers. Furthermore, the decision
making process can be integrated with various services such
as decision models, soft computing, result interpretation and
visualization technologies depending on the requirements for
a specific application. The obvious aim of the big data ana-
lytics platform is to boost the decision-making process with
a steady flow of the required information and new patterns
for more insights. The decision-making process can be sup-
ported by defining decision models that contain the steps of
how the required goals are distinguished, structured and pro-
cessed to carry out a particular decision. The decision-making
process can then be provided with the generated results by
using defined decision models, result interpretation tools and

soft computing methods. Various visualization tools such
as Kibana, Tableau, Plotly, etc., can be used to provide an
interactive and user-friendly interface for decision-makers.
Moreover, the proposed big data analytical services environ-
ment should be able to integrate with the traditional disaster
management systems to provide results according to their
configurations and requirements.

B. IMPLEMENTATION MODEL
The implementation model that outlines the details of all the
operational steps performed in our deployed system focusing
on alert generation within the scope of DRSC is presented
in Figure. 3. The proposed implementation model is divided
into four layers, i.e., 1) DataHarvesting; 2) DataAggregation;
3) Data Pre-Processing; 4) Big Data Analytics and Service
Platform. The following subsections explain each layer of the
implementation model in detail.

1) DATA HARVESTING
Initially, a number of potential data sources (i.e., weather
sensors, smart home-generated data, vehicular traffic, social
media streams) that provide valuable information in the con-
text of disaster management are identified. Data is primarily
collected through local data aggregators of each respective
data source. Local data aggregators convert the analog data
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TABLE 2. Dataset details.

into machine-readable digital form. Data harvesting process
transfers the data from local aggregators that are collecting
data from sensors environments measuring the real-world
situations. The data harvesting is a challenging process due
to the involvement of heterogeneous data sources producing
huge amount of data. Therefore, we assume that potential
sensors already deployed by various centers for different
applications provide the data for our system. These data
resource centers collect real-time data from heterogeneous
sensors already deployed in smart cities. Hence, we are skip-
ping the data harvesting mechanism in our proposed model
and considering the recognized data sources as mentioned
in Table 2, which consists of the information about all the uti-
lized datasets, including dataset description, size, number of
parameters, application and the reference of the data sources.

2) DATA AGGREGATION
Data aggregation process is performed to categorize the col-
lected data for the effective extraction of the required val-
ues. Data aggregation process ensures the accessibility of
the required data values from the available data sets and
assembles it for further analysis. Our proposed model is
open to various data sources (i.e., weather sensors, smart
home-generated data, vehicular traffic, social media streams,
digitally archived data). The collection of different data
sources is considered as a Data Resource (DR) that provides
the required data to the system. The DR contains Datasets
sets (DS) (i.e., temperature, smoke, gas, etc.) comprising of
Values (V) with their respective recorded Time (t). Table 3
shows the categorized illustration of the datasets that can be
mathematically presented as in Equation 1. This categoriza-
tion of DR helps in evaluating the required DS with respect
to specific timings for a given scenario.

DSm =
n∑
t=1

Vm,t

DR =
m∑
i=1

DSi

Hence,

DR =
m∑
i=1

n∑
t=1

Vi,t (1)

TABLE 3. Data resource categorized illustration.

3) DATA PRE-PROCESSING
The datasets are initially pre-processed to remove incom-
plete, ambiguous, and redundant data. The raw datasets usu-
ally contain outlying, unfeasible or missing values that can
lead to ambiguous results. Hence initially, the datasets need
to be inspected for such issues to ensure that the atomicity of
the data is retained. This layer cleanses the data by dealing
with incomplete and noisy data. Data filtration steps define
the data quality parameters for huge volumes of unstructured
and structured data. This layer ensures the verification and
credibility of the data source through its meta-data. The col-
lected data contains a significant amount of redundant data;
therefore, redundancy checks, that could be either syntactic
and or semantic, remove unnecessary data to minimize the
storage and processing load. Data pre-processing techniques
need to be applied prior to any kind of data analytics. Data
pre-processing also referred to as normalization, applies var-
ious data transformation techniques to compile the data val-
ues so that they fall within a prescribed range i.e. [0 ∼ 1].
When integrating different data sources, normalization plays
a key role in scaling the wide and short-ranging values to
a common range for better data analysis. In our proposed
algorithms, we required a common threshold value for some
diverse datasets. Therefore, a normalization technique that
can preserve the significance of each value including outliers
was required.

We used the Z-score normalization using Mean Abso-
lute Deviation to normalize the aggregated datasets. Z-score
normalization [53] also referred to as zero-mean normal-
ization technique is widely used to normalizes the dataset
input values using Mean and either Standard Deviation (σ )
or Mean Absolute Deviation (MAD). We opted for Z-score
normalization with Mean Absolute Deviation (MAD) instead
of Standard Deviation (σ ) as it has been shown to be more
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robust to outlier values and hence reduce outliers effect on
the results. Mathematically it can be shown as,

SA=
1
n
(|V1 − Ā|+|V2 − Ā|+|V3 − Ā|+. . .+ |Vn − Ā|)

Vi′ =
Vi − Ā
SA

Ni =
1
5
(Vi′)

NDS = Ni + 0.5 (2)

where (Ā) is the mean of the attribute dataset and Vn repre-
sents the values in the dataset. SA shows the final MAD value
of that particular attribute data set. The normalization of val-
ues through Z-score normalization usingMADcan be derived
mathematically as shown in Equation 2. Where Vi represents
the old values and V ′i is the new normalized value of an
attribute dataset. The values after the z-score normalization
lies between [−2 ∼ 2]. To convert the values to an interval
scale of [0 ∼ 1], we first divided all values by 5 to get the
1-point range. As the mean is still 0 at this stage therefore we
added 0.5 to all values producing the final normalized values
ranging from [0 ∼ 1]. Normalized Data set (NDS) against
each respective DS is then considered for further analysis.
The pseudocode for the normalization process is proposed in
Algorithm 1.

Algorithm 1 Data Normalization
BEGIN
Input: Datasets of each data values (DS)
Output: Dataset of normalized values (NDS)
Steps:
1: FOR EACH i = 1 to n LOOP F i is ID of dataset
2: Calculate the Mean (Ā) for each dataset
3: Calculate the Mean Absolute Deviation (SA) for each

dataset
4: Find the Z-score normalization (Vi′) for each dataset

value F Vi′ =
Vi−Ā
SA

5: Divide all values by 5 F to get 1-point range
6: Add 0.5 to all values F to get values at scale of [0 ∼ 1]
7: Return the normalized values in new datasets (NDS)
8: CONTINUE(n+1);
9: END LOOP

END

We also focused on normalizing the Twitter dataset (TDS)
considering alert generation process that can be achievedwith
the number of tweets in a specific location about a specific
disaster event. Based on number of the geo-located tweets
and textual content analysis, an alert generation process can
be initiated. Moreover, with the twitter dataset input also
compressed to [0∼ 1] scale regarding the number of location
tweets and hashtag tweets, a wider set of possible solutions
can be achieved with the integration of the threshold settings
for various other applications. We retrieved Tweets from a
specific disaster-affected location containing useful hashtags

that are referring to the respective disaster and then sort the
tweets according to their time-stamps. The algorithm that
generates alerts is based on the number of disaster-related
hashtags within the number of geo-located tweets gathered
from the targeted location in a specified amount of time.
Initially, the total numbers of tweets gathered from the tar-
get location are identified denoted as (TL). Then, the total
number of tweets with the related hashtags within (TL) are
filtered and denoted as (TH ). For example, for an earthquake
scenario in Istanbul, Turkey, (TL) will be the total number of
tweets collected within the geo-coordinates of Istanbul. Then
the number of earthquake-related hashtags or keywords (i.e.,
Earthquake, Deprem (Turkish for Earthquake)) are filtered
out as (TH ) from (TL) in fixed time intervals (t) (i.e., 5 mins).
To normalize the Twitter dataset (TDS) in hand to a scale of
[0 ∼ 1], we used the Equation 3.

TDSt =
TH
TL

(3)

4) BIG DATA ANALYTICS AND SERVICE PLATFORM
Large volumes of data require combination of state-of-the-
art big data analytical tools that can efficiently process the
datasets for both real-time and offline analysis. As shown
in the proposed architecture, a combination of the Hadoop
ecosystem and Spark engine is utilized to meet these require-
ments. Initially, the data is classified with the help of the
identifier and the message type. The classification phase dis-
tributes the contents according to their data status and formats
for effective processing. The classified data is then converted
to Hadoop and Spark understandable format i.e., sequence
files. The system platform equipped with the Spark Engine
and Hadoop Ecosystem process the data according to the pre-
scribed algorithms. The implementation is attained by using
the Hadoop ecosystem with MapReduce mechanism. Parallel
formation of MapReduce is deployed with HDFS. HDFS dis-
tributes the data in equal blocks among the data nodes. Each
block is copied on more than one data node allowing each
node to perform processing on its allocated block by using
Map function. A master node with the authority of distribut-
ing data blocks to other nodes then concatenates the results
from all the nodes by using Reduce function. A standalone
Hadoop based system is only suitable for offline batch pro-
cessing. Therefore, we deployed Apache Spark for real-time
data processing. Apache Spark is used along with Hadoop for
more powerful operations on real-time streams of data. Spark
Streaming that supports both online and offline data streams
is deployed for data aggregation in the system. Spark Engine
workswith Resilient DistributedDatasets (RDDs)which is an
efficient in-memory (RAM) cluster computing abstraction.
Spark provides fast, flexible, fault tolerant and advanced
data analytics operations. By default Hadoop implementa-
tion in programmed in Java, so we used Java language for
programming and also opted for the use of Java version of
Spark. In our system, we are benefiting from the parallel data
processing through Hadoop and real-time data processing
by using Apache Spark. This combination provides flexible
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and effective storage, accurate parameter calculation and fast
result generation. SparkSQL [54] is a SQL based declarative
languages that perform big data analysis tasks. It is Spark’s
module to query data inside Spark core programs. For data
query we used SparkSQL as it gives fast response to queries
even if scaling to thousands of nodes with spark engine.
It enables extension with advanced analytics algorithms such
as machine learning and graph processing. One of the key
advantages of using Spark is the advance libraries it offers for
analytics. Spark MLlib [55] is a machine learning framework
that works with the Spark core engine. It is quite famous with
data scientist due to its simplicity, language compatibility,
scalability, Spark based speed performance and easy integra-
tion with other tools. It allows data scientist to forget about
the infrastructure and configuration complexities and to only
focus on their data related issues and models. Spark MLlib
is a general-purpose library, which offers several optimized
machine learning algorithms (e.g., classification, clustering,
filtering, collaborative) and provides the flexibility to amend
and extend the algorithms for specialized use cases. Spark
GraphX [56] constitutes an interactive graph computation
engine that manipulates graphs and executes graph and data
parallel systems. It provides a library of graph-based algo-
rithms (i.e. triangle counting, counted components, PageR-
ank) for different graphs manipulation operations. Once we
get the results from the big data analytics and service plat-
form, the generated results are then visualized for better
understanding.

IV. DATA ANALYTICS: RESULTS AND DISCUSSION
This section presents the defined critical threshold, analy-
sis results, system implementation and efficiency evaluation
details to perform and understand the feasibility of the study.
The system developed with a combination of the Hadoop
ecosystem and Spark engine is considered as the main sta-
tion. The link is established from smart systems and twitter
streams to the main station for aggregation of the real-time
and offline data. As discussed before, due to the limited data
access, at this level it is not possible to directly aggregate
data from various potential data sources, therefore, existing
smart systems’ and twitter datasets are utilized for analysis.
The aim of the analysis is to demonstrate how multiple het-
erogeneous data sources can be used in a DRSC concept to
achieve the desired results. In the remainder of this section,
we first explain the critical threshold used for the various
applications. Then the analysis results and discussion against
each IoT generated datasets and geocoded Twitter datasets are
presented. Lastly, the system implementation and efficiency
evaluation details are presented that illustrates the proposed
system is efficient and scalable for applications.

A. DEFINING THE CRITICAL THRESHOLD
The critical threshold (CT) can be defined as a particu-
lar value or boundary limit which if exceeded alters the
results or generate an alert. Various CTs are set for different
datasets according to the application requirements in this

TABLE 4. Defined critical threshold for different IoT applications.

TABLE 5. Defined twitter critical threshold for various alert message level.

study. CTs are defined manually for each dataset accord-
ingly, such as temperature CT for fire detection and alert
generation, toxic gases level CT for pollution monitoring, etc.
CT values can be defined in binary, float or percentage for-
mat, such as 55 degree Celsius for fire detection and 200
gram/meter3 gas level for toxic gases alert generation. The
CT values are set based on the atmospheric conditions of the
application environment. CTs needs to be carefully defined
as the effectiveness of results depends on it. Table 4 contains
the CT values established for different applications used in
this study.

Since we also have normalized Twitter dataset (TDS) con-
sidering tweet counts and their time-stamps, we established
the Twitter Critical Threshold (TCT ) as shown in Table 5. The
alert message status depends on the TDS value derived from
the Equation 3 according to a respective scenario in a given
time-frame.

B. ANALYSIS RESULTS
In order to exploit the proposed architecture for IoT generated
datasets, we considered three main incidents that normally
happen in our daily life and are suitable within the context
of alert generation for disaster management. The applica-
tion of these incidents are 1) Detecting fire in a building;
2) Monitoring overwhelming nature of pollution in the city;
3) Identifying road blockage due to any natural disaster or
accident for assisting emergency evacuation. We elaborated
in detail how the system detects these events and generate
alerts.

The building (factory, office, house, etc.) temperature data
is monitored for every room in order to identify the fire
accident in the building. The fire simulator developed by
NIST, called Fire Dynamic Simulator (FDS) [49], is used
to generate various fire events in the building. We analyzed
the temperature and smoke readings with their rising rates
to identify a fire event or no event. Then, we set critical
threshold for temperature and smoke readings for the fire
event as proposed in Algorithm 2. The rising rate is calculated
as the rising temperature and smoke values per minute. The
algorithm calculates the average of the last 3 values with
each new temperature and smoke value respectively. If the
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FIGURE 4. Fire monitoring through temperature analysis in a building.

Algorithm 2 Fire Alert
BEGIN
Input: Temperature (T) and Smoke (S) Readings
Output: Fire Alert/No-Fire
Steps:
1: FOREACH n Reading of Temperature (T) and Smoke
(S) LOOP

2: T_Avg=
∑n

t=n−3 Tt
3

3: S_Avg=
∑n

t=n−3 St
3

4: IF (T_Avg> CT)
5: T_Report : = TRUE
6: ELSE
7: GoTo(Tn+1)
8: ENDIF
9: IF (S_Avg> CT)

10: S_Report : = TRUE
11: ELSE
12: GoTo(Sn+1)
13: ENDIF
14: END LOOP
15: IF (T_Report && S_Report = TRUE)
16: GENERATE (Fire_Alert);
17: ELSE
18: CONTINUE(n+1);
19: ENDIF
END

average of the temperature and smoke readings exceeds their
allocated CT values respectively, then the event is reported
positive. If both temperature and smoke values result in pos-
itive reports, then the algorithm generates a fire alert. This
method is proposed to confirm the occurrence of the fire event
with different sensors data and to reduce the chances of false
alarm in case of malfunction of one sensor.

Figure. 4 shows the temperature scenario (in degrees Cel-
sius) while considering no-fire event and then abruptly the
fire occurs. Till time T10, there is no event, thus, the tem-
perature is lower and its changing behavior is quite pre-
dictable, which is also lower. Afterward, the temperature level

FIGURE 5. Smoke monitoring through smoke density in a building.

FIGURE 6. Pollution monitoring in a city through various gases.

upsurges gradually from the normal range. Hence, the system
started analysis using temperature rising rate and noticed that
the rising level is quite higher than before. So, the system
presumed that it is fire. However, when its level increased
from the critical threshold for temperature, the fire event is
confirmed to report a true status. Similarly, Figure. 5, shows
the smoke scenario measured in gram/meter3. When both
scenario returns true status the fire alert is generated and
notified to take further necessary actions.

Correspondingly, we have also taken the pollution
data [50] of Aarhus city in Denmark to generate alert for the
invincible nature of pollution and toxic gasses in the city.
The data is collected through 499 gas sensors placed within
the city to measure toxic gases including carbon monoxide
(CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone
(O3), and other Particulate matter. Once any of these gases
level exceeds from the normal range, it can be dangerous for
citizens, especially children, elderly people, and allergy or
asthma patients. Thus, the system generates alerts to the cit-
izens if it exceeds the established CT indicating higher toxic
gases level in the air. Algorithm 3 shows the pseudocode for
the pollution level alert generation process. Figure. 6 shows
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FIGURE 7. Pollution monitoring in a city through ozone and particulate
matter’s level.

Algorithm 3 Pollution Level Alert
BEGIN
Input: Air Quality Metrics (M)
Output: Pollution Alert/not-polluted
Steps:
1: FOREACH Gas_Readings R (R_CO, R_SO2, R_NO2,
R_O3) in (M) LOOP

2: IF (R_CO, R_SO2, R_NO2, R_O3) > CT)
3: Rep =1
4: Pollution_Alert();
5: ELSE
6: Rep =0
7: GoTo (Next_R)
8: ENDIF
9: END LOOP

END

various time slots when the toxic gases i.e., carbon monox-
ide (CO), sulfur dioxide (SO2), and nitrogen dioxide (NO2)
exceed from the serious threshold. Whereas, Figure.7 elabo-
rates the changing behavior of ozone and particulate matters.
At time T1 to T50, most of the time the ozone level is
more than 200 in the air, which is dangerous for citizens.
Accordingly, the system generates alerts to the people to take
precautionary measures or avoid going outside.

Furthermore, for emergency evacuation path planning and
real-time traffic analysis, to identify road blockage and acci-
dents, we used the manually modified version of Volkhin
road traffic simulator [51]. We took pairs of locations and
the traffic data among them, including a number of vehicles
moving in between each of the pairs and their speed. Road
blockage is identified when the number of vehicles exceeds
from the threshold and the ‘time to reach’ is exponentially
increased. Algorithm 4 depicts the pseudocode for the route
blockage alert process. The analysis result of the road block-
age is depicted in Figure. 8. Till time T40, the number of
vehicles between two the specified points is minimum. Con-
sequently, the ‘time to reach’ is least and fluctuates based on
the average speed of vehicles. However, whenever the vehicle

Algorithm 4 Route Blockage Alert
BEGIN
Input: TrafficData with (Num_vehicles) and Time interval (T)
Output: Route Status (Blocked and New Route)
Steps:
1: Identify Time interval (T) F (T) is time to reach
2: Identify (R) F (R) is Route towards destination
3: FOREACH Reading (Num_vehicles) at (T) on (R)

LOOP
4: IF (Num_vehicles) > CT)
5: GoTo(Next_Reading)
6: ELSE
7: Blockage_Alert();
8: Alternative_Route (Assign New_Route (R));
9: ENDIF
10: END LOOP
END

FIGURE 8. Traffic blockage analysis on a road.

count rises from the normal range, the ‘time to reach’ starts
increasing accordingly as both are proportional to each other.
Once the number of vehicles crosses the serious threshold
limit (i.e., the maximum capacity of vehicles on the road),
the value ‘time to reach’ parameter boosted exponentially.
This boosting time value and the number of vehicles are two
indicators of road blockage to assist emergency evacuation
path planning.

In order to analyze the proposed architecture for Twitter
datasets we focused on 2018 earthquake followed by tsunami
occurred at Palu, Sulawesi, Indonesia. On 28 Septem-
ber 2018 at 18:02:44 local time, a large earthquake
of 7.5 magnitudes struck the island of Sulawesi, Indone-
sia. Following the earthquake, a tsunami struck Palu city,
sweeping houses, and buildings on its way. The death toll is
estimated to be more than 3,000 people [57].

For the Twitter-based analysis, we acquired data from the
Twitter stream grab [52], a Twitter data archive containing
data from 2012 to 2018. The data sets are collected on a
monthly basis, each having size of more than 40 GB and are
provided in JSON format. Originally, we collected 41 GB
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FIGURE 9. Overall geocoded tweet map of palu, indonesia from 28th to
29th september 2018.

FIGURE 10. Geocoded tweets found with #earthquake and #gempabumi
in palu, indonesia.

of Twitter data for the month of September 2018. Initially,
we found a total number of 117,894,272 geocoded tweets
without any geo-coordinate filtration. Since we only wanted
to focus on the Palu city; therefore, we filtered out the tweets
within the geo-coordinates of Palu city.

A total of 981 geocoded tweets were collected within
the specified range from 28th to 29th September 2018 as
shown in Figure. 9. Most of the twitter users do not
enable the geo-location option while tweeting due to pri-
vacy concerns [58] and less than 5 percent of tweets have
geo-coordinates attached with them [59]. Hence, the lesser
number of tweets can be justified. The tweets were
mostly tweeted in the Indonesian language (about 82%) as
shown in Figure. 11. The final results were mapped using
MAPD [60] for temporally visualizing data. The cross fil-
tering capability of Twitter to analyze any activity with a
given hashtag provides a great opportunity to acquire the

FIGURE 11. Major languages used for all geocoded tweets within Palu,
Indonesia.

FIGURE 12. The workflow of Twitter data analysis.

desired results in a compact manner. We analyze all the
geocoded tweets through hashtags, considering the main
natural disasters i.e. (Earthquake and Tsunami). A total
number of 104 tweets were identified with hashtags of
Earthquake and Gempabumi (Indonesian for earthquake).
Figure. 10 shows the geocoded tweet map filtered with
#Earthquake and #Gempabumiwithin Palu city. Interestingly,
these tweets were reported within a few minutes of the earth-
quake occurrence. After the earthquake, in approximately
30 minutes a six metre-high tsunami arrived to Palu city caus-
ing damage that was more devastating [61]. This scenario
presents a very good case study to identify the role of twitter
using alert generation thresholds. With the proposed Equa-
tion 3 and the Twitter-based critical threshold range as shown
in Table 5, we can generate warning alerts for such a situation.
The overall workflow of Twitter data analysis is illustrated
in Figure. 12.

C. SYSTEM IMPLEMENTATION AND EVALUATION
The system is implemented on Hadoop single node environ-
ment assisted by different Spark libraries operated on Ubuntu
14.04 LTS with machine specifications as coreTM i5 sup-
ported by 3.2 GHz x 4 processors and 8 GB of RAM. The
main hardware and software configurations used to imple-
ment the proposed system are shown in Table 6.

Since, we focused on processing large datasets that
requires efficient real-time processing, therefore we eval-
uated our system with regards to data processing and
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TABLE 6. The hardware and software configurations of the system.

FIGURE 13. Efficiency of the system with respect to processing time with
increasing dataset size.

FIGURE 14. Efficiency of the system with respect to throughput with
increasing dataset size.

throughput considering the increasing data size.
Figure. 13 shows the processing time efficiency result cor-
responding to the increasing dataset size. It is expectable
that with the increasing data, the processing time also rises.
However, with our system, the rise in the processing time
is quite lower corresponding to the huge rise in the data size.
Figure. 14 shows the throughput analysis result of the system.
The throughput result shows the number ofMBs processed by
the system in a given timeframe. The system shows promising
throughput tendency with increasing data size. In addition,
with our Hadoop implementation, the throughput of the
system is increasing the function of data size. This increas-
ing throughput with the data size is the major achievement

FIGURE 15. Efficiency of the system with respect to processing time for
increasing number of tweets.

due to parallel processing implementation using MapReduce
programing paradigm and number of simultaneous nodes
of Hadoop. As we also processed a huge set of tweets for
alert generation process, therefore processing time for Twitter
dataset is shown in Figure. 15. Here, the system processed
the tweets in accordance to the time sequence they were
reported (i.e., milliseconds). The number of tweets are the
117,894,272 geocoded tweets that were identified without
any geo-coordinate filtration.

V. RESEARCH CHALLENGES
In this section, the main research challenges that can be asso-
ciated with the DRSC environment are discussed. The study
has highlighted a variety of challenges that may be encoun-
tered during the designing and implementation phases and
can reduce the efficacy of the environment. These research
challenges can also identify some promising future research
directions for further exploration and development of the
DRSC environments.

A. FAULT TOLERANCE
In a disastrous situation, with multiple data sources, the prob-
ability for various hardware components to fail is high due
to physical damage, exhausted batteries or failure of com-
munication channels. In a DRSC environment data sources
should be able to provide data even with blackouts and infras-
tructure impairment to maintain system availability. Backup
power consumption mechanism and alternative communica-
tion channel establishment need to be guaranteed. Moreover,
the environment needs to be equipped with capabilities such
as regular backups and cloud-based storage mechanism with
distributed computing support that can be used in case the
primary system goes down.

B. INTEROPERABILITY
Data is acquired from various real-time and static data sources
having different data formats. It is challenging to integrate
large volumes of heterogeneous data that possibly can be
of low quality due to high data redundancy. The required
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information is hard to filter from this massive quantity of
noise and ambiguous data as a whole. It is more challeng-
ing to integrate these heterogeneous datasets according to
the system’s requirements. To deal with data heterogeneity
issues, sampling and filtering techniques need to be trained to
acquire the highest level of semantic interoperability and data
quality. Due to the diversity of data sources, interoperability
issues is an open challenge that can be tackled if interoper-
ability is assured on the data generation, structure, storage,
coding, and software/hardware operations level.

C. META DATA
For a time-sensitive and data quality critical application
like disaster management, metadata plays a vital role in
identifying and managing the data sets. The collection and
management of metadata for heterogeneous big data sources
especially in disaster situations is an important challenge.
Generating and maintaining metadata in big data paradigm
is very difficult due to multiple data sources and data for-
mats. While some of the data sets already possess some kind
of metadata attached to them, most lack it. Additionally,
it becomes more complex as many data sources i.e. numerous
in-situ sensors are operated for different purposes by the gov-
ernment and private organizations. The key metadata features
that need to be identified for the disaster-related data sets
in the context of DRSC environment are data source, con-
tent, time stamps, spatial reference, data identification num-
bers. Through metadata, a number of data quality concerns
and integration related issues can be removed and authentic
datasets can be presented for analysis.

D. PRIVACY AND SECURITY
Privacy concern has been a serious issue in big data analytics,
as it mostly utilizes personal information (i.e. financial, health
records, location) to produce the required results. Personal
information is exposed to scrutiny, which is increasing con-
cerns about profiling, segregation, theft, and tracking [62].
For example, social media datasets contain personal infor-
mation and location of the users, which can be used by
malicious agents for harmful purposes, especially in a cri-
sis like civil wars. The end users of IoT are faced with
various security and privacy issues that limit IoT’s usage
and productivity [63]. Additionally, there is lack of adequate
security tools for a number of technologies in the Hadoop
Ecosystem [64]. Even with the availability of huge and richly
detailed data, the threat of security either perceived or immi-
nent can cause serious damage to the trust on data aggregation
and sharing [65]. Applying suitable security mechanisms and
access control checks on disaster-related data is important
to ensure protection against malicious use and sustain data
integrity, availability, and confidentiality.

E. TIME CONSTRAINT
Time is critical in disaster management as a quick response
can save lives. Engaging huge volumes of heterogeneous data
to extract desirable results in a limited time for emergency

response is quite difficult. The data quality process itself
involves complex processes like data aggregation, filtration,
and normalization that can take plenty of time even with
advanced tools. Moreover, unstructured data can add to the
problem, demanding different filtration methods depending
on the particular format. It is a big challenge for the existing
techniques and tools to generate quality data from huge vol-
umes of heterogeneous data according to the decisionmaker’s
requirement in a specified amount of time.

F. STANDARDIZATION
Standards are useful to endorse system efficiency, adopt tech-
nological and administrative changes, and provide legitimate
guidelines for usage, policy, and future research. With the
growing usage of BDA and IoT technologies, there is a big
need and scope for communication standards, data integration
standards and security standards to be re-examined. It is
very challenging to define and follow standards for different
evolving technologies keeping in mind the prerequisite of
disaster management to be provided with accurate solutions
in near real-time.

G. GIS-BASED VISUALIZATION
Mapping and visualization is the most important part of
the DRSC environment, as decision-makers and emergency
responders need quick and accurate predictions, insights and
ground facts that are easy to interact with and understand. Big
data analytics and visualization tools should work flawlessly
to acquire effective results in real-time. Generally, the big
data analytics interface is designed for technical users, so an
additional tool is used for a user-friendly look and visual-
ization. A Geographical information system (GIS) provides
an interactive interface for mapping and analyzing spatial
data. With the emergence of 3D and touch screen interac-
tive technologies, visualization increases the processing time
and hence demands additional system resources. Designing
GIS-based visualization supported by big data analytics is an
interesting research area which needs to be further investi-
gated for user-friendliness and performance.

VI. CONCLUSION
The collaboration of the latest BDA and IoT technologies
provides a more proficient environment for heterogeneous
data sources to generate multi-dimensional data that is use-
ful to perform effective analytics for extracting the required
information used in disaster management applications. This
approach can result in quick and effective situational aware-
ness and hence help in reducing the impact of the disaster.
A huge research gap still exists in BDA and IoT system
planning and designing for a time-sensitive and performance
demanding application like disaster management. The aim
of this study is to contribute to the knowledge and guide
future research regarding the design and implementation
of BDA- and IoT-based disaster resilient smart cities. This
study proposed a conceptual architecture for a novel Dis-
aster Resilient Smart City concept by integrating BDA and
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IoT. It provides a thorough outline of how BDA and IoT
combined with some proposed parameters can effectively be
implemented to aggregate, pre-process, and analyze data to
provide updated and useful information for disaster man-
agers. Hadoop ecosystem with Spark is utilized to implement
the complete system for alert generation of disasters. Vari-
ety of datasets including IoT-based smarty city and twitter
datasets are analyzed for showing the validity and evaluation
of the proposed DRSC concept. The goal is to acquire full
benefits that BDA and IoT collaboratively offer so that an
improved disaster-resilient smart city concept equipped with
the strengths of both the technologies can be designed and
implemented. For future work, we anticipate the addition of
other applications such as evacuation, monitoring, and pre-
diction of disaster incorporating different data sources such
as remote sensing, UAV imaginary, online news media and
surveillance cameras formore in-depth analysis and better sit-
uational awareness. A Disaster Resilient Smart City (DRSC)
environment would allow rapid and effective analysis backed
with multi-sourced data for generating an early warning
to citizens and assisting in the prevention, monitoring, and
recovery from catastrophic situations. This study can provide
references for researchers and industries for future acquisi-
tions in the domain of smart cities and disaster management.

REFERENCES
[1] IFRC. (2018). Executive Summary World Disasters Report: Leav-

ing No One Behind. [Online]. Available: https://media.ifrc.org/ifrc/wp-
content/uploads/sites/5/2018/10/B-WDR-2018-EXECSUM-EN.pdf

[2] SwissRe. (2018). Natural Catastrophes and Man-Made Disasters
in 2017: A Year of Record-Breaking Losses. [Online]. Available:
http://media.swissre.com/documents/sigma1_2018_en.pdf

[3] V. Hristidis, S.-C. Chen, T. Li, S. Luis, and Y. Deng, ‘‘Survey
of data management and analysis in disaster situations,’’ J. Syst.
Softw., vol. 83, no. 10, pp. 1701–1714, 2010. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0164121210001329

[4] C. Baham, R. Hirschheim, A. A. Calderon, and V. Kisekka, ‘‘An agile
methodology for the disaster recovery of information systems under catas-
trophic scenarios,’’ J. Manage. Inf. Syst., vol. 34, no. 3, pp. 633–663, 2017.
doi: 10.1080/07421222.2017.1372996.

[5] N. Kapucu, ‘‘Interagency communication networks during emergen-
cies: Boundary spanners in multiagency coordination,’’ Amer. Rev. Pub-
lic Admin., vol. 36, no. 2, pp. 207–225, 2006. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/0275074005280605

[6] World Urbanization Prospects: The 2018 Revision, Dept. Econ. Social
Affairs Population Division, New York, NY, USA, 2019.

[7] B. N. Silva, M. Khan, and K. Han, ‘‘Towards sustainable smart cities:
A review of trends, architectures, components, and open challenges
in smart cities,’’ Sustain. Soc., vol. 38, pp. 697–713, Apr. 2018. doi:
10.1016/j.scs.2018.01.053.

[8] D. Zeng, S. Guo, and Z. Cheng, ‘‘The Web of things: A survey,’’ J. Com-
mun., vol. 6, no. 6, pp. 424–438, 2011.

[9] X. Huang, K. Xie, S. Leng, T. Yuan, and M. Ma, ‘‘Improving quality of
experience in multimedia Internet of Things leveraging machine learn-
ing on big data,’’ Future Gener. Comput. Syst., vol. 86, pp. 1413–1423,
Sep. 2018. doi: 10.1016/j.future.2018.02.046.

[10] B. Birregah, T. Top, C. Perez, E. Châtelet, N. Matta, M. Lemercier, and
H. Snoussi, ‘‘Multi-layer crisis mapping: A social media-based approach,’’
in Proc. Workshop Enabling Technol., Infrastruct. Collaborative Enter-
prises (WETICE), Jun. 2012, pp. 379–384.

[11] M. Goodchild, ‘‘Citizens as sensors: The world of volunteered geography,’’
GeoJournal, vol. 69, no. 4, pp. 211–221, 2007.

[12] B. Haworth and E. Bruce, ‘‘A review of volunteered geographic informa-
tion for disaster management,’’Geogr. Compass, vol. 9, no. 5, pp. 237–250,
2015.

[13] J. B. Houston, J. Hawthorne, M. F. Perreault, E. H. Park, M. G. Hode,
M. R. Halliwell, S. E. T. Mcgowen, R. Davis, S. Vaid, J. A. Mcelderry, and
S. A. Griffith, ‘‘Social media and disasters: A functional framework for
social media use in disaster planning, response, and research,’’ Disasters,
vol. 39, no. 1, pp. 1–22, 2015.

[14] T. Simon, A. Goldberg, and B. Adini, ‘‘Socializing in emergencies—A
review of the use of social media in emergency situations,’’ Int. J. Inf.
Manage., vol. 35, no. 5, pp. 609–619, 2015.

[15] S. A. Shah, D. Z. Şeker, and H. Demirel, ‘‘A framework for
enhancing real-time social media data to improve the disaster man-
agement process,’’ in Advances in Cartography and GIScience (Lec-
ture Notes in Geoinformation and Cartography), M. Peterson, Ed.
Cham, Switzerland: Springer, Jul. 2017, pp. 75–84. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-57336-6_6

[16] Z.Wang, S. Mao, L. Yang, and P. Tang, ‘‘A survey of multimedia big data,’’
China Commun., vol. 15, no. 1, pp. 155–176, Jan. 2018.

[17] J. Crowley, ‘‘Connecting grassroots and government for disaster
response,’’ Commons Lab, Wilson Center., Tech. Rep. SSRN 2478832,
2013.

[18] M. M. Rathore, A. Ahmad, A. Paul, and S. Rho, ‘‘Urban planning and
building smart cities based on the Internet of Things using big data
analytics,’’ Comput. Netw., vol. 101, no. 4, pp. 63–80, Jun. 2016. doi:
10.1016/j.comnet.2015.12.023.

[19] L. Rodríguez-Mazahua, C. A. Rodrîguez-Enríquez,
J. L. Sánchez-Cervantes, J. Cervantes, J. L. García-Alcaraz, and
G. Alor-Hernández, ‘‘A general perspective of big data: Applications,
tools, challenges and trends,’’ J. Supercomput., vol. 72, no. 8,
pp. 3073–3113, 2016.

[20] M. Chen, S. Mao, and Y. Liu, ‘‘Big data: A survey,’’ Mobile Netw. Appl.,
vol. 19, no. 2, pp. 171–209, Apr. 2014.

[21] A. Zaslavsky, C. Perera, and D. Georgakopoulos, ‘‘Sensing as a
service and big data,’’ 2013, arXiv:1301.0159. [Online]. Available:
https://arxiv.org/abs/1301.0159

[22] A. Meissner, T. Luckenbach, T. Risse, T. Kirste, and H. Kirchner,
‘‘Design challenges for an integrated disaster management communi-
cation and information system,’’ in Proc. 1st IEEE Workshop Disaster
Recovery Netw. (DIREN), vol. 24, 2002, pp. 1–7. [Online]. Available:
http://www.l3s.de/ risse/pub/P2002-01.pdf

[23] T. H. Davenport, P. Barth, and R. Bean, ‘‘How big data is different,’’ MIT
Sloan Manage. Rev., vol. 54, no. 1, p. 43, 2012.

[24] S. Mehrotra, X. Qiu, Z. Cao, and A. Tate, ‘‘Technological challenges
in emergency response,’’ IEEE Intell. Syst., vol. 28, no. 4, pp. 5–8,
Jul./Aug. 2013.

[25] S. Akter and S. F. Wamba, ‘‘Big data and disaster management: A sys-
tematic review and agenda for future research,’’ Ann. Oper. Res., pp. 1–21,
Aug. 2017. [Online]. Available: http://link.springer.com/10.1007/s10479-
017-2584-2

[26] H. Watson, R. L. Finn, and K. Wadhwa, ‘‘Organizational and societal
impacts of big data in crisis management,’’ J. Contingencies Crisis Man-
age., vol. 25, no. 1, pp. 15–22, 2017.

[27] L. Zheng, C. Shen, L. Tang, C. Zeng, T. Li, S. Luis, and S.-C. Chen,
‘‘Data mining meets the needs of disaster information manage-
ment,’’ IEEE Trans. Human-Mach. Syst., vol. 43, no. 5, pp. 451–464,
Sep. 2013.

[28] K. Neville, S. O’Riordan, A. Pope, M. Rauner, M. Rochford, M. Madden,
J. Sweeney, A. Nussbaumer, N. McCarthy, and C. O’Brien, ‘‘Towards
the development of a decision support system for multi-agency decision-
making during cross-border emergencies,’’ J. Decis. Syst., vol. 25,
pp. 381–396, Jun. 2016. doi: 10.1080/12460125.2016.1187393.

[29] J. Ortmann, M. Limbu, D. Wang, and T. Kauppinen, ‘‘Crowdsourcing
linked open data for disaster management,’’ in Proc. 10th Int. Semantic
Web Conf. Terra Cognita, Jan. 2011, pp. 11–22.

[30] F. Alamdar, M. Kalantari, and A. Rajabifard, ‘‘Towards multi-
agency sensor information integration for disaster management,’’
Comput., Environ. Urban Syst., vol. 56, pp. 68–85, Mar. 2016. doi:
10.1016/j.compenvurbsys.2015.11.005.

[31] J. P. de Albuquerque, B. Herfort, A. Brenning, and A. Zipf, ‘‘A geographic
approach for combining social media and authoritative data towards iden-
tifying useful information for disaster management,’’ Int. J. Geograph. Inf.
Sci., vol. 29, no. 4, pp. 667–689, 2015.

[32] S. Poslad, S. E. Middleton, F. Chaves, R. Tao, O. Necmioglu, and
U. Bugel, ‘‘A semantic IoT early warning system for natural environment
crisis management,’’ IEEE Trans. Emerg. Topics Comput., vol. 3, no. 2,
pp. 246–257, Jun. 2015.

VOLUME 7, 2019 91901

http://dx.doi.org/10.1080/07421222.2017.1372996
http://dx.doi.org/10.1016/j.scs.2018.01.053
http://dx.doi.org/10.1016/j.future.2018.02.046
http://dx.doi.org/10.1016/j.comnet.2015.12.023
http://dx.doi.org/10.1080/12460125.2016.1187393
http://dx.doi.org/10.1016/j.compenvurbsys.2015.11.005


S. A. Shah et al.: Towards Disaster Resilient Smart Cities: Can IoT and BDA Be the Game Changers?

[33] S. Fang, L. Da Xu, Y. Zhu, J. Ahati, H. Pei, J. Yan, and Z. Liu,
‘‘An integrated system for regional environmental monitoring and man-
agement based on Internet of Things,’’ IEEE Trans. Ind. Informat., vol. 10,
no. 2, pp. 1596–1605, May 2014.

[34] S. A. Shah, D. Z. Seker, S. Hameed, and D. Draheim, ‘‘The rising role
of big data analytics and IoT in disaster management: Recent advances,
taxonomy and prospects,’’ IEEE Access, vol. 7, pp. 54595–54614, 2019.
[Online]. Available: https://ieeexplore.ieee.org/document/8698814/. doi:
10.1109/ACCESS.2019.2913340.

[35] D. Draheim, M. Horn, and I. Schulz, ‘‘The schema evolution and data
migration framework of the environmental mass database IMIS,’’ in
Proc. 16th Int. Conf. Sci. Stat. Database Manage. (SSDBM), Jun. 2004,
pp. 341–344.

[36] Societal Security–Business Continuity Management Systems–Guidance,
Standard ISO 22313:2012, 2012.

[37] M. M. Rathore, A. Paul, W.-H. Hong, H. C. Seo, I. Awan, and S. Saeed,
‘‘Exploiting IoT and big data analytics: Defining smart digital city using
real-time urban data,’’ Sustainable Cities Soc., vol. 40, pp. 600–610,
Jul. 2018.

[38] M. Babar, A. Rahman, F. Arif, and G. Jeon, ‘‘Energy-
harvesting based on Internet of Things and big data analytics
for smart health monitoring,’’ Sustain. Comput., Informat.
Syst., vol. 20, pp. 155–164, Dec. 2018. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S2210537917302238. doi:
10.1016/j.suscom.2017.10.009.

[39] M. Babar and F. Arif, ‘‘Smart urban planning using Big Data ana-
lytics to contend with the interoperability in Internet of Things,’’
Future Gener. Comput. Syst., vol. 77, pp. 65–76, Dec. 2017. doi:
10.1016/j.future.2017.07.029.

[40] A. C. Onal, O. B. Sezer, M. Ozbayoglu, and E. Dogdu, ‘‘Weather data
analysis and sensor fault detection using an extended IoT framework with
semantics, big data, and machine learning,’’ in Proc. IEEE Int. Conf. Big
Data (Big Data), Dec. 2017, pp. 2037–2046.

[41] R. Arridha, S. Sukaridhoto, D. Pramadihanto, and N. Funabiki, ‘‘Classi-
fication extension based on IoT-big data analytic for smart environment
monitoring and analytic in real-time system,’’ Int. J. Space-Based Situated
Comput., vol. 7, no. 2, pp. 82–93, 2017.

[42] Y. Shibata, N. Uchida, and N. Shiratori, ‘‘Analysis of and proposal for
a disaster information network from experience of the Great East Japan
earthquake,’’ IEEE Commun. Mag., vol. 52, no. 3, pp. 44–50, Mar. 2014.

[43] Apache Software Foundation. Apache Flume. Accessed: Jan. 18, 2019.
[Online]. Available: https://flume.apache.org/

[44] The Apache Software Foundation.Apache Sqoop. Accessed: Jan. 18, 2019.
[Online]. Available: http://sqoop.apache.org/

[45] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, ‘‘The Hadoop
distributed file system,’’ in Proc. IEEE 26th Symp. Mass Storage
Syst. Technol. (MSST), May 2010, pp. 1–10. [Online]. Available:
http://www.alexanderpokluda.ca/coursework/cs848/CS848 Paper Presen-
tation - Alexander Pokluda.pdf

[46] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
‘‘Spark: Cluster computingwithworking sets,’’ inProc. 2ndUSENIXConf.
Hot Topics Cloud Comput. (HotCloud), 2010, p. 95.

[47] P. Zhang, Q. Deng, X. Liu, R. Yang, and H. Zhang, ‘‘Emergency-
oriented spatiotemporal trajectory pattern recognition by intelligent sensor
devices,’’ IEEE Access, vol. 5, pp. 3687–3697, 2017.

[48] L. Greco, P. Ritrovato, T. Tiropanis, and F. Xhafa, ‘‘IoT and semantic
Web technologies for event detection in natural disasters,’’ Concurrency
Comput., vol. 30, no. 21, p. e4789, 2018.

[49] R. McDermott, K. McGrattan, and S. Hostikka, ‘‘Fire dynamics simula-
tor (version 5) technical reference guide,’’ Nat. Inst. Standards Technol.,
Gaithersburg, MD, USA, Tech. Rep. NIST Special Publication, 1018-5,
2008.

[50] S. Bischof, A. Karapantelakis, C.-S. Nechifor, A. Sheth, A. Mileo,
and P. Barnaghi, ‘‘Semantic modelling of smart city data,’’ in
Proc. W3C Workshop Web Things Enablers Services Open Web
Devices, 2014, pp. 1–5. [Online]. Available: http://www.w3.org/2014/
02/wot/papers/karapantelakis.pdf

[51] Volkhin. Road Traffic Simulator and Signals Optimizer in CoffeeScript
& HTML5. Accessed: Mar. 14, 2019. [Online]. Available: https://github.
com/volkhin/RoadTrafficSimulator

[52] Archive Team. The Twitter Stream Grab: Internet Archive.
Accessed: Mar. 14, 2019. [Online]. Available: https://archive.
org/details/twitterstream

[53] S. B. Kotsiantis, D. Kanellopoulos, and P. E. Pintelas, ‘‘Data preprocessing
for supervised leaning,’’ Int. J. Comput. Sci., vol. 1, no. 2, pp. 111–117,
2006.

[54] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia, ‘‘Spark
SQL: Relational data processing in spark,’’ in Proc. ACM SIGMOD Int.
Conf. Manage. Data (SIGMOD), 2015, pp. 1383–1394. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=2723372.2742797

[55] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen, D. Xin,
R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar, ‘‘MLlib:
Machine learning in apache spark,’’ J. Mach. Learn. Res., vol. 17, no. 1,
pp. 1235–1241, 2016. [Online]. Available: http://arxiv.org/abs/1505.06807

[56] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, ‘‘GraphX:
A resilient distributed graph system on spark,’’ in Proc. 1st Int. Workshop
Graph Data Manage. Experiences Syst., 2013, Art. no. 2.

[57] AHA Center, ‘‘SITUATION UPDATE No. 15—Sulawesi Earthquake,’’
Sulawesi, Indonesia, Tech. Rep. 5, 2018. [Online]. Available:
https://ahacentre.org/situation-update/situation-update-no-15-sulawesi-
earthquake-26-october-2018/

[58] S. Wang, R. Sinnott, and S. Nepal, ‘‘P-GENT: Privacy-preserving geocod-
ing of non-geotagged tweets,’’ in Proc. 17th IEEE Int. Conf. Trust, Secur.
Privacy Comput. Commun., 12th IEEE Int. Conf. Big Data Sci. Eng.
Trustcom/BigDataSE, Aug. 2018, pp. 972–983.

[59] Z. Wang, X. Ye, and M.-H. Tsou, ‘‘Spatial, temporal, and content anal-
ysis of Twitter for wildfire hazards,’’ Natural Hazards, vol. 83, no. 1,
pp. 523–540, 2016.

[60] MAPD. GitHub Omnisci Mapd-Core. The MapD Core
Database. Accessed: Apr. 12, 2019. [Online]. Available:
https://github.com/omnisci/mapd-core

[61] K. Ravilious. Terrawatch: Why Did the Quake in Sulawesi Cause a
Tsunami? | World News | The Guardian. Accessed: Apr. 8, 2019. [Online].
Available: https://www.theguardian.com/world/2018/oct/02/terrawatch-
why-did-the-quake-in-sulawesi-cause-palu-tsunami

[62] O. Tene and J. Polonetsky, ‘‘Privacy in the age of big data: A time for
big decisions,’’ Stanford Law Rev. Online, vol. 64, pp. 63–69, Feb. 2012.
[Online]. Available: http://www.stanfordlawreview.org/sites/default/
files/online/topics/64-SLRO-63_1.pdf%5Cnpapers3://publication/uuid
/F1C87BD7-F850-4414-B368-BC6C2EB96091

[63] S. Hameed, F. I. Khan, and B. Hameed, ‘‘Understanding security require-
ments and challenges in Internet of Things (IoT): A review,’’ J. Com-
put. Netw. Commun., vol. 2019, Jan. 2019, Art. no. 9629381. [Online].
Available: https://www.hindawi.com/journals/jcnc/2019/9629381/. doi:
10.1155/2019/9629381.

[64] G.-H. Kim, S. Trimi, and J.-H. Chung, ‘‘Big-data applications in the gov-
ernment sector,’’ Commun. ACM, vol. 57, no. 3, pp. 78–85, 2014. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2566590.2500873

[65] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, ‘‘Security,
privacy and trust in Internet of Things: The road ahead,’’ Comput. Netw.,
vol. 76, pp. 146–164, Jan. 2015. doi: 10.1016/j.comnet.2014.11.008.

SYED ATTIQUE SHAH received the M.S. degree
in IT from the Balochistan University of Infor-
mation Technology, Engineering andManagement
Sciences, Quetta, Pakistan. He is currently pursu-
ing the Ph.D. degree from the Institute of Informat-
ics, Istanbul Technical University, Istanbul Turkey.
He was an Assistant Professor with the Depart-
ment of Information Technology, BUITEMS,
Quetta Pakistan. His research interests include big
data analytics, cloud computing, information man-

agement and the Internet of Things.

91902 VOLUME 7, 2019

http://dx.doi.org/10.1109/ACCESS.2019.2913340
http://dx.doi.org/10.1016/j.suscom.2017.10.009
http://dx.doi.org/10.1016/j.future.2017.07.029
http://dx.doi.org/10.1155/2019/9629381
http://dx.doi.org/10.1016/j.comnet.2014.11.008


S. A. Shah et al.: Towards Disaster Resilient Smart Cities: Can IoT and BDA Be the Game Changers?

DURSUN ZAFER SEKER received the
Ph.D. degree in geomatics from Istanbul Technical
University, Istanbul, Turkey, in 1993. Since 2004,
he has been a Full Professor with the Department
of Geomatics Engineering, Istanbul Technical
University. His expertise is on photogrammetry,
remote sensing, coastal zone management, water-
shed management and spatial data modelling and
analysis from both the theoretical and empirical
viewpoint. In these fields, he has been involved

with several research projects both national and international, where these
projects were interdisciplinary. He has authored more than 80 SCI interna-
tional papers and more than 250 conference proceedings.

M. MAZHAR RATHORE received the master’s
degree in computer and communication security
from the National University of Sciences and
Technology, Pakistan, in 2012. He received the
Ph.D. degree in computer science and engineer-
ing with Kyungpook National University, South
Korea in 2018. He is currently working as a Post-
doctoral Researcher with the College of Science
and Engineering, Hamad Bin Khalifa University,
Doha, Qatar. His research interests include big data

analytics, the Internet of Things, smart systems, network traffic analysis and
monitoring, remote sensing, smart city, urban planning, intrusion detection,
and computer and network security. He is ACM professional member. He is
serving as a Reviewer for various IEEE, ACM, Springer, and Elsevier
journals.

SUFIAN HAMEED received the Ph.D. degree in
networks and information security fromUniversity
of Göttingen, Germany. He was an Assistant Pro-
fessor with the Department of Computer Science,
National University of Computer and Emerging
Sciences, Pakistan. He also leads the IT Security
Labs at NUCES. The research lab studies and
teaches security problems and solutions for dif-
ferent types of information and communication
paradigms. His research interests include network

security, web security, mobile security and secure architectures, and proto-
cols for cloud and the IoTs.

SADOK BEN YAHIA received the habilitation
degree to lead researches in computer sciences
from the University of Montpellier, in 2009.
He has been a Professor with the Technology
University of Tallinn (TalTech), since 2019. His
research interests include on combinatorial aspects
in big data and their applications to different fields,
e.g., data mining, combinatorial analytics (e.g.,
maximum clique problem, minimal transversals),
smart cities (e.g., information aggregation &amp;

dissemination, traffic prediction). He is currently a member of the steering
committee of the International Conference on Concept Lattices and their
Applications (CLA) as well as the International French Spoken Conference
on Knowledge Extractions and Management.

DIRK DRAHEIM received the Ph.D. from Freie
Universität Berlin and a habilitation from Univer-
sität Mannheim, Germany. He is a Full Professor
in information system and the Head of the Infor-
mation Systems Group with Tallinn University of
Technology, Estonia. Under his supervision the
Information Systems Group conducts research in
large- and ultra-large-scale IT systems. He is an
initiator and a leader of numerous digital transfor-
mation initiatives.

VOLUME 7, 2019 91903


	INTRODUCTION
	MOTIVATIONS
	BDA- AND IOT-BASED DISASTER RESILIENT SMART CITY
	PROPOSED REFERENCE ARCHITECTURE OF BDA- AND IOT-BASED DRSC
	DATA RESOURCE LAYER
	DATA TRANSMISSION LAYER
	DATA AGGREGATION LAYER
	DATA ANALYTICS AND MANAGEMENT LAYER
	APPLICATION AND SUPPORT SERVICES

	IMPLEMENTATION MODEL
	DATA HARVESTING
	DATA AGGREGATION
	DATA PRE-PROCESSING
	BIG DATA ANALYTICS AND SERVICE PLATFORM


	DATA ANALYTICS: RESULTS AND DISCUSSION
	DEFINING THE CRITICAL THRESHOLD
	ANALYSIS RESULTS
	SYSTEM IMPLEMENTATION AND EVALUATION

	RESEARCH CHALLENGES
	FAULT TOLERANCE
	INTEROPERABILITY
	META DATA
	PRIVACY AND SECURITY
	TIME CONSTRAINT
	STANDARDIZATION
	GIS-BASED VISUALIZATION

	CONCLUSION
	REFERENCES
	Biographies
	SYED ATTIQUE SHAH
	DURSUN ZAFER SEKER
	M. MAZHAR RATHORE
	SUFIAN HAMEED
	SADOK BEN YAHIA
	DIRK DRAHEIM


