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ABSTRACT In this paper, we have investigated the effects of nanoparticles on the flow and heat transfer of
viscous fluid in a deformable porous channel. The mathematical model used for the nanofluid is Buongiorno
model, which combines the Brownian diffusion and thermophoresis effects. Water is used as a base fluid.
Mathematically, the problem is formulated for the flow of nanofluid generated by the expanding/contracting
walls of the channel and an analytic solution using homotopy analysis method for the field quantities is
presented. The numerical results are also calculated using parallel shooting method. A comparison is made
of the analytic results with the numerical one to ensure the correctness of the analytic results. The effects of
Brownian and thermophoresis diffusion due to nanoparticles and effect of deformation of boundaries on
various physical quantities are analyzed. It is observed that the velocity is higher for expansion of the
nanoparticles as compared to contraction. Also the nanoparticles increases the heat flux and decreases the
mass flux. The concentration flux is higher for thermophoretic diffusion in the expanding channel.

INDEX TERMS Nanofluid, heat and mass transfer, deformable channel.

I. INTRODUCTION
The study of channel flow was first initiated by Berman [1]
while studying two-dimensional steady flow of an incom-
pressible viscous fluid between parallel porous walls. The
analytic solution of this problem was presented using regu-
lar perturbation method. Subsequently, a number of studies
were carried out for large and small suction/injection on the
channel walls [2]–[4]. Axisymmetric flow in a deformable
tube was presented by Uchida and Aoki [5] while contracting
permeable wall was considered by Goto and Uchida [6].
Dauenhauer and Majdalani [7] discussed the flow between
contracting/expanding parallel porous walls. A phenome-
nal application of the deforming channel in bio mechan-
ics was given by Dauenhauer and Majdalani [8]. Later on
Majdalani et al. [9] solved [8] using double perturbation
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technique in cross flow Reynolds number and the wall expan-
sion ratio. Boutros et al. [10] presented the similarity solution
of the problem using lie-group method.

In recent years, nanoscale colloidal solutions which con-
tains fundamental condensed nano-particles are termed in the
literature as Nanofluids have gained lot of intension. With
the performance of a reliable model of nanofluid given by
Buongiorno [11], nanofluids has become a subject of great
interest for researchers and experimentalists in the last few
years. We would like to refer a few papers of interest appear-
ing in the literature; e.g, [12]–[21] and the references given
there in.

Srinivas et al. [22] has been studied the flow of nanofluid
within contracting/expanding porous pipe with chemical
reaction and heat source/sink and found the analytical solu-
tion. Vijayalakshmi and Srinivas [23] has been studied the
flow and heat transfer effects of a nanofluid inside expanding
or contracting walls with thermal radiation. There are number
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of applications of channels with contracting/expanding walls
in industry and technology. parallel walls. Therefore, it is
desirable to investigate the behavior of nanofluid for the
flow generated in channels with deforming walls Its future
extension for deforming tube that has a great relevance in
bio-mechanics will hopefully be in easier reach. The focus
of this study is thus to investigate the heat transfer effects of a
nanofluid in the channel with contracting/expanding porous
walls at uniform temperature. To be more precise, we intend
to examine the effects of deforming boundaries on the flow
in the presence of nanoparticles concentration and tempera-
ture fluxes. Mathematically, an approximate analytical solu-
tion for the velocity profile and pressure is obtained using
HAM [24]–[36]. This is perhaps the best available method
to find the analytical solution. Numerical results are also
obtained to add credibility to the analytical results. A detailed
analysis, physical aspects and important observations of this
study are elaborated in section 4.

NOMENCLATURE
u, v velocity components in x− and y− directions
T ,C temperature and concentration of the fluid
Tw,Cw upper wall temperature and concentration
T0,C0 lower wall temperature and concentration
x, y cartesian coordinates
t Time
vw suction/injection velocity
2a (t) channel width
DB,DT Brownian diffusion and Thermophoresis

diffusion coefficients
p Pressure
A suction/injection coefficient
k, cp thermal conductivity and specific heat
Pr, Sc Prandtl and Schmidt numbers
θ, φ non-dimensional temperature and concentration
Nu, Sh Nusselt and Sherwood number
β wall expansion ratio
ρ Density
η non-dimensional y− coordinate
υ kinematic viscosity
µ fluid viscosity

II. PROBLEM FROMULATION
We consider an incompressible water based nanofluid in a
two-dimensional channel of width 2a with x-axis along the
center line and y-axis aligned vertically upward. One end of
the channel is open and other end is closed with a stretch-
able solid membrane while the top and the bottom walls are
bounded by two porous plates that allow the fluid to enter or
leave during the expansion or contraction. At the upper wall
the temperature and the concentration of nanoparticle fraction
takes the constant values Tw and Cw respectively while at the
center of channel the values are T0 and Co respectively. The
geometry of the channel is shown in Fig.1.

FIGURE 1. Geometry of the problem.

By using the Oberbeck–Boussinesq approximations the
equations that governs the flow are [11]:

∂u
∂x
+
∂v
∂y
= 0, (1)(
∂u
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+ u

∂u
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∂u
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)
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ρ
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)
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(
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∂C
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∂C
∂x
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∂C
∂y

= DB

(
∂2C
∂x2
+
∂2C
∂y2

)
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(
∂

∂x

(
1
T0

∂T
∂x

)
+
∂

∂x

(
1
T0

∂T
∂y

))
, (5)

A two phase nanofluid model of Buongiorno [11] is
adopted to incorporate the Brownian motion and ther-
mophoresis effects [31]. The walls of the channel are con-
tract or expand in the normal direction so that the width
of the channel is a function of time. The injection/suction
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velocity vw is positive/negative according to the injection or
suction which takes place due to porous walls. The appropri-
ate boundary conditions describing the problem are:

u(x, a) = 0, v(x, a) = −vw = −Aȧ,

T (x, a) = Tw, C(x, a) = Cw,
∂u
∂y

(x, 0) = 0, v(x, 0) = 0,

T (x, 0) = To, C(x, a) = Co (6)

where (u, v) are the axial and normal velocity components,
p is the pressure, ρ is the fluid density, k is the thermal
conductivity of thematerial, cp is the specific heat,DB andDT
are the Brownian diffusion coefficient and thermophoresis
diffusion coefficient and A is the injection coefficient which
corresponds to the porosity of the walls. The following simi-
larity variable and transformations will be used [9]:

ψ =
υx
a (t)

F (η), T = T0 + (Tw − T0) θ (η),

C = C0 + (Cw − C0) φ (η) , η =
y

a (t)
,

u =
υx
a2
F ′ (η) , v =

−υ

a
F (η),

F ′ =
dF
dη
, F = Re f , (7)

where υ = µ
ρ
and a (t) is so far arbitrary. Using Eq. (7),

Eqs. (1) - (6) becomes:

f (iv) + β
(
3f ′′ + ηf ′′′

)
+ Re

(
ff ′′′ − f ′f ′′

)
−λθ ′ = 0, (8)

1
Pr
θ ′′ + βηθ ′ + Re f θ ′ + Nbθ ′φ′

+Nt
(
θ ′
)2
= 0, (9)

1
Sc
φ′′ + βηφ′ + Re f φ′

+
1
Sc

Nt
Nb
θ ′′ = 0. (10)

f = 0, f ′′ = 0, θ = 0,

φ = 0 at η = 0

f = 1, f ′ = 0, θ = 1,

φ = 1 at η = 1 (11)

where β = aȧ
υ
is the deformation parameter which is positive

for expansion and negative for contraction. In order to write
a self- similar equation we require

a = a0

(
1+

2υβt

a20

)1/2

.

The boundary value problem is fully characterized by the
following dimensionless parameters:

Re =
avw
υ
, Pr =

µcp
k
, Sc =

µ

ρD
,

TABLE 1. Comparison of the present values of velocity with numerical
results and results of Majdalani et al. [9] and Boutros et al. [10].

VOLUME 7, 2019 102429



A. Ali et al.: Flow of a Nanofluid and Heat Transfer in Channel With Contracting/Expanding Walls

TABLE 1. (Continued.) Comparison of the present values of velocity with
numerical results and results of Majdalani et al. [9] and Boutros et al. [10].

Nb =
ρcpDB (Cw − C0)

κ
, Nt =

ρcpDT (Tw − T0)
κT0

,

λ =
gβT (Tw − T0) a4

υ2x
,

where, Re,Pr, Sc,Nb,Nt and λ are the non-dimensional per-
meation Reynolds number (Re > 0 for injection and Re < 0
for suction), the Prandtl number, the Schmidt number, the
Brownian diffusion parameter, the thermophoresis diffusion
parameter and mixed convection parameters. The magnitude
of the Brownian and the thermophoretic diffusion parame-
ters is very small for nanoparticles [10], for example Nb ≈
1.4 × 10−10 and Nt ≈ 1.6 × 10−7 for copper nanoparticles.
By substituting the velocity components into Eqs. (2) and (3)
we get the axial and normal pressure gradient respectively.
The axial pressure is:

∂p
∂x
=
ρν2x
a4

(
F ′′′ + β

(
2F ′ + ηF ′′

)
− F ′2 + FF ′′

)
(12)

Normalizing Eq. (12) by Re, we have:

∂p
∂x
= x

(
Re−1f ′′′ + Re−1β

(
2f ′

+ηf ′′

)
− f ′2 + ff ′′

)
(13)

FIGURE 2. Effects of β on velocity profile when Re = 2.

FIGURE 3. Effects of Nb and Nt velocity profile when Re = 2 and β = 0.5.

The pressure distribution, for any x in the channel, can now
be obtained by integrating Eq. (13), between the center line
pressure pe and the pressure at any position x.

1pa =

x∫
0

x
(
Re−1f ′′′

+Re−1β
(
2f ′ + ηf ′′

)
− f ′2 + ff ′′

)
(14)

Similarly, the normal pressure gradient is:

∂p
∂y
= −

ρν2

a3
[
F ′′ + β

(
F + ηF ′

)
+ FF ′

]
(15)

and the normal pressure distribution is:

1pn = −

η∫
0

(
Re−1f ′′ + Re−1β

(
f + ηf ′

)
+ ff ′

)
(16)

Eqs. (8) – (10) are coupled non-linear ordinary differential
equations and are solved analytically by using Homotopy
analysis method (HAM) [28]–[30]. To validate the analytic
results, numerical solutions are also calculated using parallel
shooting method and a comparison is made with the analytic
results. Table 1 present the comparison of the analytical
results obtained for velocity with the numerical solution and
available results in the literature.

102430 VOLUME 7, 2019



A. Ali et al.: Flow of a Nanofluid and Heat Transfer in Channel With Contracting/Expanding Walls

FIGURE 4. Effects of β on temperature profile.

FIGURE 5. Temperature profile for various values of (a) Nb when Nt = 0.1
and (b) Nt when Nb = 0.2.

III. RESULTS AND DISCUSSION
We propose nanofluid in deforming channels and analyze the
effects ofNb,Nt and the deformation parameter β on the flow
generated by deforming channel. To begin with, we observe
the effects of deformation parameter β on the velocity profile
in Fig. 2. The velocity near the boundary η = 1 decreases for
increasing value of β while it increases in the center of the
channel which confirming that the inertia is controlled by the

FIGURE 6. Concentration profile for various values of β.

FIGURE 7. Concentration profile for various values of (a) Nb when
Nt = 0.2 and (b) Nt when Nb = 0.2.

deformation of the channel. The rate at which the velocity is
changes is higher when the channel is expanding (β > 0) as
compared to when it is contracting (β < 0). The combined
effects of Brownian diffusion and thermophoresis diffusion
parameters on the velocity profile are presented in Fig. 3.
It is observed that the velocity is increasing near the wall
while it is decreasing in the center of the channel when we
increase the values of Brownian diffusion and thermophoresis
diffusion parameters.
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FIGURE 8. Normal pressure gradient for various values of β (a) when
Re = 1.0 and (b) when Re = −1.0.

Dependence of temperature on the deformation is shown
in Fig. 4 taking the values Re = 2.0,Pr = 0.7, Sc = 0.6,
Nt = Nb = 0.2 and λ = 2. It is observed that the tem-
perature across the channel increases for expanding channel
and decreases for contracting channel. The temperature of
the fluid is increased or decreased with the gap between the
heated walls is increased for expanding and decreased for
contracting channel.

In Fig. 5 the effects of nanoparticles on the temperature dis-
tribution is examined by taking β = 0.5,Re = 1,Pr = 1.2,
Sc = 1 and λ = 2. The temperature of the fluid will
increase by increasing the magnitude of the Brownian dif-
fusion parameter. This effect can be seen from Fig. 5 (a) in
which the curvewith lower temperature corresponds to lowest
value of Brownian diffusion parameter. The effects of Nt on
the temperature of the nanofluid are shown in Fig. 5 (b). It is
observed that an increase in the values of Nt increases the
temperature of the fluid because Nt increases the thermal dif-
fusivity of the nanoparticles that accelerates the temperature
of the nanofluid.

Fig. 6 shows the concentration profile for various values of
deformation parameter fixing Re = 2.0,Pr = 1.2, Sc = 1,
Nt = 0.1,Nb = 0.2 and λ = 1. Further the concentration

of nanoparticles is observed to be higher within the channel
while it is expanding i.e. β increasing from zero to positive
values whereas concentration reduces for contraction.

In Fig. 7 the behavior of nanoparticles concentration for
varying Brownian and thermophoresis diffusion parameters
is shown. Increase in Brownian diffusion parameter Nb refers
to increase in number of nanoparticles causing an increase
Brownian diffusion. Thus higher concentration of nanoparti-
cles corresponds to higher Nb which can also be seen from
Fig. 7 (a). Fig. 7 (b) describes the effect of thermophore-
sis diffusion on nanoparticles concentration. It is observed
that a higher concentration profile correspond to lower
thermophoresis diffusion.

In Fig. 8 we show the normal pressure gradient for various
values of deformation parameter β for (a) injection and for
(b) suction. For the case of injection the pressure gradient
decreases with increasing β while it increases for the case of
suction, i.e. the normal pressure gradient drops for positive
values and rises for negative values of Re independent of β.

TABLE 2. Numerical Values of Skin Friction Coefficient for Different Re, β,
Nb and Nt .

Table 2 shows the numerical values of heat transfer for vari-
ous values of Reynolds number Re, deformation parameter β,
Brownian diffusion parameter Nb and thermophoresis diffu-
sion parameterNt . It is observed that the value of skin friction
coefficient decreases for increasing values of the deformation
parameter, the Brownian diffusion and thermophoresis diffu-
sion parameters while it is increasing for increasing Reynolds
number.

In Fig. 9 Nusselt number Nu is plotted for varying Brown-
ian diffusion and thermophoretic diffusion parameters against
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FIGURE 9. Nusselt number against β for (a) Nb (b) Nt .

deformation parameters showing the behavior of heat flux
at the upper plate. It is observed that heat flux at the sur-
face is a decreasing function of nanoparticle properties.
In other words, heat flux at the surface decreases in the
presence of nanoparticles and can be controlled by varying
the quantity and quality of nanoparticles. It is obvious from
Fig. 5 (a) and (b) that the temperature is increasing function
of nanoparticles so heat flux must be a decreasing function.
Themost interesting observation comes through the effects of
nanoparticles onNusselt number for deforming channel. Nus-
selt number is independent of the deformation of boundaries
i.e. Nu is an increasing function of Nb and Nt for contracting
(β < 0), expanding (β > 0) as well as fixed wall (β = 0)
channels.

In Fig. 10, Sherwood number Sh i.e. nanoparticles con-
centration flux at the upper plate of the channel is plotted
for varying Brownian diffusion and thermophoretic diffu-
sion parameters against deformation parameter. It is observed
Sherwood number is a decreasing function of Brownian
diffusion parameter while it is an increasing function of
thermophoretic diffusion parameter for all values of β. The
reason for this behavior can be verified fromFig. 7 (a) and (b).
A worth mentioning observation is that the rate of change of
Sherwood number with respect to thermophoretic diffusion

FIGURE 10. Sherwod number against β for (a) Nb (b) Nt .

parameter Nt is higher for expanding channel as compared to
contracting channel.

IV. CONCLUSION
In this study, we have investigated the heat and mass trans-
fer analysis of a Nanofluid inside parallel walls which are
deforming. The effects of nanoparticles and contraction/
expansion of channel walls on the flow of nanofluid is
investigated through analytical considerations. The important
observations are:

1. The velocity is higher at the center for expanding chan-
nel as compared to contracting.

2. Presence of nanoparticles enhances the heat flux at the
surface and can be controlled by varying the quantity
and quality of nanoparticles.

3. Concentration flux decreases for increasing ther-
mophoretic diffusion parameter and increases for
Brownian diffusion parameter.

4. Heat transfer rate at the surface increases for increas-
ing thermophoretic diffusion parameter is higher for
expanding channel as compared to contracting channel.

5. mass transfer rate at the surface increases for increasing
Brownian diffusion parameter is higher for expanding
channel as compared to contracting channel.
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APPENDIX
HOMOTOPY ANALYSIS METHOD (HAM)
The initial guesses and auxiliary linear operators for the
dimensionless Eqs. (8) – (10) subject to boundary condi-
tions (11) are denoted by f0, θ0, φ0, and Lf ,Lθ ,Lφ and are
defined as:

f0 (η) =
1
2
η
(
3− η2

)
θ0 (η) = φ0 (η) = η (A1)

and

Lf =
d4f
dη4

, Lθ =
d2θ
dη2

, Lφ =
d2φ
dη2

. (A2)

with

Lf
[
c1 + c2η + c3η2 + c4η3

]
= 0,

Lθ [c5 + c6η] = 0,

Lφ [c7 + c8η] = 0 (A3)

where ci, (i = 1− 8) are the arbitrary constants. The zeroth
and mth – order deformation problems are:

A. ZEROTH-ORDER PROBLEM

(1− p)Lf [f (η, p)− f0 (η)]

= p}f =f [f (η, p) , θ (η, p) , φ (η, p)],

(1− p)Lθ [θ (η, p)− θ0 (η)]

= p}θ=θ [f (η, p) , θ (η, p) , φ (η, p)],

(1− p)Lφ [φ (η, p)− φ0 (η)]

= p}φ=φ [f (η, p) , θ (η, p) , φ (η, p)], (A4)

with

f (0, p) = 0, f ′′ (0, p) = 0, f (1, p) = 1,

f ′ (1, p) = 0, θ (0, p) = 0, θ (1, p) = 0,

φ (0, p) = 0, φ (1, p) = 0, (A5)

and

=f [f (η, p) , θ (η, p) , φ (η, p)]

=
∂4f (η, p)
∂η4

+β

(
3
∂2f (η, p)
∂η2

+ η
∂3f (η, p)
∂η3

)

+Re
(
f (η, p)

∂3f (η, p)
∂η3

−
∂f (η, p)
∂η

×
∂2f (η, p)
∂η2

)
, (A6)

=θ [f (η, p) , θ (η, p) , φ (η, p)]

=
∂2θ (η, p)
∂η2

+ Pr η
∂θ (η, p)
∂η

+Pr Re f (η, p)
∂θ (η, p)
∂η

+Pr Nb
∂θ (η, p)
∂η

∂φ (η, p)
∂η

+Pr Nt
(
∂θ (η, p)
∂η

)2

, (A7)

=φ [f (η, p) , θ (η, p) , φ (η, p)]

=
∂2φ (η, p)
∂η2

+ Scη
∂φ (η, p)
∂η

+ Sc Re f (η, p)
∂φ (η, p)
∂η

+
Nt
Nb
∂2θ (η, p)
∂η2

, (A8)

where p ∈ [0, 1] represents the embedding parameter and
}f , }θ and }φ are the non-zero auxiliary parameters.

B. mth-ORDER PROBLEM

Lf [fm (η)− χ fm−1 (η)] = }f =fm (η),
Lθ [θm (η)− χθm−1 (η)] = }θ=θm (η),
Lφ [φm (η)− χφm−1 (η)] = }φ=φm (η), (A9)

with

fm (0) = 0, f ′′m (0) = 0,

fm (1) = 0, f ′m (1) = 0,

θm (0) = 0, θm (1) = 0,

φm (0) = 0, φm (1) = 0, (A10)

and

=
f
m (η) = f (iv)m−1 + β

m−1∑
k=0

(
3f ′′m−1 + ηf

′′′

m−1
)

+Re
m−1∑
k=0

k∑
l=0

(
fm−l−k f ′′′k − f

′
m−l−k f

′′
k
)
, (A11)

=
θ
m (η) = θ

′′

m−1 + Pr η
m−1∑
k=0

θ ′m−1

+Pr
m−1∑
k=0

k∑
l=0

(
Refm−l−kθ ′k + Nbθ

′
m−l−kφ

′
k

+Ntθ ′m−l−kθ
′
k
)
, (A12)

=
φ
m (η) = φ

′′

m−1 + Scη
m−1∑
k=0

φ′m−1

+ Sc
m−1∑
k=0

k∑
l=0

(
Re fm−l−kφ′k +

Nt
Nb
θ ′′m−l−kθ

′′
k

)
,

(A13)
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for p = 0 and p = 1, we can write

f (η, 0) = f0 (η) , f (η, 1) = f (η),

θ (η, 0) = θ0 (η) , θ (η, 1) = θ (η),

φ (η, 0) = φ0 (η) , φ (η, 1) = φ (η), (A14)

where p varies from 0 to 1, f (η, p) , θ (η, p) and φ (η, p)
varies from the initial solution f0 (η) , θ0 (η) and φ0 (η) to the
final solutions f (η) , θ (η) and φ (η). By Taylor’s series we
have:

f (η, p) = f0 (η)+
∞∑
m=1

fm (η) pm, fm (η)

=
1
m!

∂mf (η, p)
∂pm

∣∣∣∣
p=0

,

θ (η, p) = θ0 (η)+
∞∑
m=1

θm (η) pm, θm (η)

=
1
m!

∂mθ (η, p)
∂pm

∣∣∣∣
p=0

,

φ (η, p) = φ0 (η)+
∞∑
m=1

φm (η) pm, φm (η)

=
1
m!

∂mφ (η, p)
∂pm

∣∣∣∣
p=0

, (A15)

the values of auxiliary parameter is chosen in such a way that
the series (A15) converge at p = 1, i.e.

f (η) = f0 (η)+
∞∑
m=1

fm (η),

θ (η) = θ0 (η)+

∞∑
m=1

θm (η),

φ (η) = φ0 (η)+

∞∑
m=1

φm (η). (A16)

The general solutions fm, θm and φm of Eqs. (8) – (10) in terms
of special solutions f ∗m , θ

∗
m and φ∗m and are given by:

fm (η) = f ∗m (η)+ c1 + c2η + c3η
2
+ c4η3,

θm (η) = θ
∗
m (η)+ c5 + c6η,

φm (η) = φ
∗
m (η)+ c7 + c8η, (A17)

where the constants ci (i = 1− 8) through the boundary
conditions (11).
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