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ABSTRACT Lack of sleep causes many sleep disorders such as nocturnal frontal lobe epilepsy, narcolepsy,
bruxism, sleep apnea, insomnia, periodic limb movement disorder, and rapid eye movement behavioral
disorder. Out of all, bruxism is a common behavior, which is found in 8-31% of the population. Bruxism
is a sleep disorder in which individuals involuntarily grinds and clenches the teeth. The main aim of this
work is to detect sleep bruxism by analyzing the electroencephalogram (EEG) spectrum analysis of the
change in the domain of different stages of sleep. The present research was performed in different stages
such as collection of the data, preprocessing of the EEG signal, analysis of the C4-P4 and C4-A1 channels,
comparison between healthy humans and bruxism patients, and classification using decision tree method.
In this study, the channels C4-P4 and C4-A1 of the EEG signal were combined for the detection of bruxism
by using Welch technique, which mainly focused on two sleep stages such as S1 and rapid eye movement.
The total number of EEG channels of healthy humans and bruxism patients analyzed in this work were 15
and 18, respectively. The results showed that the individual accuracy of the C4-P4 and C4-A1 channels was
81.70% and 74.11%, respectively. The combined accuracy of both C4-P4 and C4-A1 channels was 81.25%.
The specificity of combined result was higher than individual. In addition, the value of theta activity during
detection is consistent throughout the period, and the accuracy of S1 stage is better than rapid eye movement
stage. We proposed that the theta activity of S1 could be taken for the detection of bruxism. The proposed
approach in the detection of the bruxism is negligible in noise as it is in mathematical form and has taken
very less time as compared with the traditional systems. The present research work would provide a fast and
effective detection system of the sleep bruxism with high accuracy for medical big data applications.

INDEX TERMS Decision tree, machine learning classifier, neurological disorder, scalp EEG, sleep bruxism.

I. INTRODUCTION

Sleep has a crucial role in the life of zoological species such
as animals, amphibians, birds, humans, mammals, and rep-
tiles [1]. Some species complete their sleep by closing their
eyes such as human beings and most of the animals. Some
of them complete it by opening their eyes such as insects,
reptiles and amphibians [2]. The phenomenon of sleeping
with one eye was closed discovered in Wahlberg’s epauletted
fruit bat [3]. There are two stages of sleep such as non-rapid
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eye movement (NREM) and rapid eye movement (REM) [2].
If sleep does not complete properly in humans, it leads
to several diseases such as bruxism [4], [5], sleep apnea,
insomnia [6]-[10], rapid eye movement behavioral disor-
der (RBD) [11], nocturnal frontal lobe epilepsy (NFLE) [12],
narcolepsy [13], and periodic limb movement disorder
(PLMD). In addition, the lack of sleep also affects genes
and proteins in human body [14]. It damages several organs
including the heart, brain and other organs.

The main signs of the bruxism are flattened, fractured,
chipped teeth, and fractured with worn tooth enamel exposing
deeper layers of teeth. Other symptoms include Jaw, neck,
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face pain, and headache [5]. The bruxism is mainly found in
male children. The factors that increase the risk of bruxism
are smoking of tobacco, drinking of alcohol, and side effect
of the psychiatric medicines [15]. Moreover, the bruxism was
associated with some neurological disorders such as episodes
of screaming, intense fear and flailing while still asleep,
epileptic seizure, and sleep apnea. Many attempts have been
made to identify symptom of sleep bruxism by investigating
various characteristics of the mental state or different prop-
erties of the bioelectrical signal. The significance of sub-
threshold symptoms of anxiety in the etiology of bruxism
were studied in details by Basson et al. [16]. Bruxism is
an under-recognized cause of caregiver concern in patients
with Alzheimer’s disease [17]. The interhemispheric brain
switching of sleep disordered breathing problem in obstruc-
tive sleep apnea patients were correlated by Li et al. [18]. The
fuzzy entropy was used to estimate a laterality index from
C3-A2 and C4-A1 EEG channels. They suggested that inter
hemispheric asymmetry of brain activity is more obvious than
healthy. Reducing orofacial pain and improving sleep may
improve the patient’s quality of life to promote healing and
optimizing their health [19]. Furthermore, bruxism has been
related to sleep disturbances as in case of migraine. Sleep
disturbances are common in postmenopausal women and
contribute to increased morbidity and mortality. It is related
to anatomical, hormonal, metabolic and psychological factors
that can interfere with restorative sleep [20].

The bioelectrical signals generated from human body
such as the electroencephalogram (EEG), the electromyo-
gram (EMG), and the electrocardiogram (ECG) commonly
used as beneficial tools for the brain, the muscles, and the
heart, respectively [21]. Chai et al. studied that systematic
method to select optimal EEG channels for three mental
tasks-based brain-computer interface classifications [22]. Itis
used in different EEG channels such as C3, C4, P3, P4, Ol1,
02 to P3, O1, C4, 02, with Ol and C4 for the dominant
features, which is referenced as the clinic standard 10-20 EEG
recording system [23]. Chen et al. proposed the technique
to achieve the muscular artifact cancellation for the single-
channel EEG event [23]. It is design by the combination of
the ensemble empirical mode decomposition and the joint
blind source separation techniques. Kuriyama et al. studied a
single channel snooze EEG for detection of major depressive
syndrome [24]. Additionally, a decision support system for
automated identification of sleep stages from single channel
of EEG signals was proposed [25]. Similarly, a framework for
the spatial temporal EEG and functional magnetic resonance
imaging fusion (STEFF) were proposed [26]. Despite, they
have low accuracy and poor diagnoses on the more affected
stages of sleep during various disease conditions.

On the basis of the complex -electrophysiological
mechanism of sleep bruxism [27], a common limitation of
individually using the above mentioned single EEG channel
or recording electrodes far away from the corresponding
brain area is that they may not provide a high enough
sensitivity, specificity, or either both of them. Thus, our
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further hypothesis is that, if such channels reflect part of
underlying physiological phenomena of jaw movements, they
might add complementary information to each other. In the
present study, a novel diagnostic system by combing the
channels of the C4-P4 and the C4-Al extracted from EEG
signal is proposed to improve accuracy of the detection of
bruxism. The combinations of these two channels were more
informative and could cover more brain area related sleep
bruxism. Specifically, The C electrodes in higher primates
are near the central sulcus of the cerebral hemispheres, hence
their name. The analogous structure in the domestic species,
the cruciate sulcus, is much smaller, much more rostral and
much closer to the frontal electrodes than to the C electrodes.
The A electrodes deviate from standard terminology in that
they are positioned in the low temporal region, rostral to the
ear canal. The P electrodes were placed in parietal region of
the brain [23], [28]. For distinguishing between sleep bruxism
and health subject, the proposed work includes such four
steps as below. Initially, both the C4-P4 and the C4-A1 were
pre-processed by using a hamming window, followed by a
low pass filter for the removal of noise in both healthy humans
and bruxism patients. Second, the power spectral density for
the both healthy humans and bruxism patients were estimated
using the Welch method. Third, the corresponding average
normalized values of both bruxism patients and health sub-
jects in two sleep stages such as the S1 and the REM were fed
into machine learning based classification for an automatic
detection. The results suggested that the average normalized
value of healthy humans is higher than bruxism patients in
both channels (C4-P4 and C4-Al) of the theta activity. The
REM stage is very easy to differentiate the healthy and brux-
ism. The generalized approach for detection of sleep bruxism
is high beneficial. With the proposed approach by combing
the signals of C4-P4 and C4-A1, the more affected stages of
sleep during various disease conditions could be identified
by using theta activity only. the trigeminal somatosensory
evoked potential.

Il. SUBJECT AND METHODOLOGY

In the present work, the methods proposed for the detection
of bruxism are the data collection, preprocessing of the EEG
signal, analysis of the C4-P4 and C4-Al channels of the
EEG signal, calculation of the normalized values, compar-
ative analysis of healthy humans and bruxism patients, and
classification of the system. The details of methodologies
including low pass filter, hamming window, Welch method
for the feature extraction and classification using decision tree
method of the research are explained as following.

A. DATASET

The EEG data was collected from bruxism patients and
healthy individuals from the cyclic alternating pattern (CAP)
sleep database of physionet, which offers a free data access
for collections of recorded brain signals physio bank, and
related open-source software physio toolkit [29]. The wave-
form of CAP sleep database of physionet includes at least
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TABLE 1. Dataset of the proposed work.

Name of the Subjects Age of the Subjects

Sleep Stages

Time of the Data  Location of the Location of the

(Years) (Sec) C4-P4 Channel C4-Al Channel
S1 780 03 13
Bruxism Patient 01 34
REM 1800
S1 2400 03 13
Bruxism Patient 02 23
REM 3420
S1 600 05 11
Healthy Human 01 37
REM 300
S1 420 03 05
Healthy Human 02 34
REM 420
S1 420 03 13
Healthy Human 03 35
REM 420
S1 420 04 06
Healthy Human 04 25
REM 420
S1 420 03 13
Healthy Human 10 23
REM 420
S1 420 03 13
Healthy Human 11 28
REM 360
Mean =+ Standard Deviation 29.8£5.39 - 840 + 872.58 - -

EEG, EMG, EOQG, respiration signals and EKG [30]. Lai et al.
used the physionet database for the prognosis of bruxism.
Their proposed scheme gives high detection accuracy for
sleep stages S1 and REM [31]. In this work, a total number
of 224 EEG recordings from eight subjects of two sleep
stages such as S1 and REM were collected. The S1 and REM
stage is very helpful in the accuracy of the system [32]-[34].
The ages of subjects were 23-37 for healthy humans and
23-34 for bruxism patients (mean age =+ standard deviation,
29.8 £ 5.39 year), respectively. The total 224 minutes data per
channel (mean time = standard deviation, 840 4 872.58 sec)
are used in the proposed research, as shown in Table 1.
Importantly, the two channels of the EEG signal such as
C4-P4 and C4-A1l and two sleep stages such as the S1 and
the REM were exacted and analyzed.

B. PRE-PROCESSING OF THE EEG SIGNAL USING LOW
PASS FINITE IMPULSE RESPONSE FILTER AND

HAMMING WINDOW TECHNIQUE

The low pass filter passes the low frequency signals, and
blocks the high frequency signals. The low pass filters can
be designed either using resister with inductor or resister
with capacitor. Both the models are used for passing low
frequency and blocking the high frequency. The low pass
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finite impulse response (FIR) filters [35] were used for this
purpose, which is used for finite duration and operated in
the discrete time signal. The filtering was done to overcome
aliasing effect in the EEG signals [36]. The other purpose of
using filter is to remove undesirable oscillations that are not
part of EEG signal [37]. The window based linear phase low
pass FIR filter of cut off frequency of 25 Hz were used in this
study [5]-[9], [11]. This window based linear phase low pass
FIR filter has been normalized to obtain a magnitude response
with pass band center frequency of 0 dB [38]. The low pass
FIR used in this work is present by equations (1).

M
yn) = bex(n — k) ()
k=0

where, y (n) is the output signal, M is the order of the filter,
by is the value of the response for 0 < k < M and x (n-k) is
the unit delay of the signal.

The Hamming window technique was applied on the col-
lected EEG signals in this work to reduce the side lobe
compared to the main lobe. So less artificial long distance
spread making the noise free result Richard W. Hamming dis-
covered hamming window techniques [7], [39], [40]. It was
recommended for smoothing the truncated auto covariance
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function in the time domain. In place of each constants being
same to half within the hann window. Approximation of the
constants to two decimal locations notably lowers the extent
of side-lobes, to a nearly equi-ripple condition. Inside the
equi-ripple sense, the most reliable values for the coefficients
are @ = 0.53836 and 8 = 0.46164. The zero segment models
are explained by equations (2) and (3), respectively.

) B 2nn )
wn) =o—pcos| —
N
where,« = 0.54,and B =1 —a = 0.46
2nn
Whe (1) = 0.54 — 0.46 cos (T) 3)

where, wpc(n) is hamming window, N is the number of sam-
ples each frame and n is the real number.

C. FEATURES EXTRACTION USING WELCH TECHNIQUE
The most important part of EEG signal processing is feature
extraction. Welch techniques for the measurement of power
spectral density were used for feature extraction of the EEG
signal. The renowned scientists P.D. Welch discovered the
Welch technique for the estimation of power spectral density
of the signal [41]. It is way to evaluate the control phantom
thickness. This strategy is utilized as a part of assessing
the intensity of a signal at various frequencies. The average
periodogram tends to decrease the variance, and to esti-
mate relative to a single periodogram of the entire data.
Although overlap between segments introduces redundant
information, this effect is diminished by the use of a non-
rectangular window. The combined use of short data records
and nonrectangular windows results in reduced resolution
of the estimator [42]. There is a tradeoff between variance
reduction and resolution. One can manipulate the parameters
in Welch’s method to obtain improved estimates relative to
the periodogram, especially when the signal to noise ratio
is low [43]. Equations (4), (5), and (6) can estimate the
periodogram spectral.

L—-1
i 1 a2
Py () = 75 2 [whe (x (n+iD) ey
n=0

1 L—-1
U= 22 Iwie@P 5)
n=0
1 K—1
Psw (f) = = D Psy () 6)
i=0

The discrete random vibration signals with length N are
[x(0), x(1), x(2), x(3), ..., x (N - 1)]. The segment i with
length L data are xj(n) = x(n+iD). The equation (5) is power
parameter factor of window function wpc(n) in order to ensure
the estimation no bias intimately. The periodogram of the
each segment windowed is proportional to the square of the
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Fourier transform of the signal.

K—1
Py (f) =y D _HXIY + (X' @)
m=0
where, y = ﬁ is constant, X" and Xg" are real and

imaginary parts, respectively of fourier transform for the m'
segment and LDis the data of segment.

D. DECISION TREE (DT) CLASSIFIER

Moreover, the decision Trees are classifiers that offer inter-
pretable results. Since training the algorithm and selecting
the features are performed simultaneously, the DT method
is characterized as an implanted method. The classifier of
DT is used to distinguish between the normal human and
bruxism patients in this work. The decision tree classification
algorithm is an instance-based induction learning method,
which can extract the tree classification model from a given
disordered training sample. The decision tree classification
algorithm is relatively simple [44], [45].

IIl. RESULTS

A. ANALYSIS OF THE EEG CHANNELS

The total number of EEG channels of healthy humans and
bruxism patients were fifteen and eighteen, respectively.
Specifically, the EEG signals of healthy humans have Fp2-F4,
F4-C4, C4-P4, P4-O2, C4-Al, ROC-LOC, EMGI1-EMG2,
ECGI1-ECG2, DX1-DX2, SX1-SX2, SAO2, HR, PLETH,
STAT and MIC channel (Fig. 1(A)). Moreover, the EEG
signals of bruxism patients were found to have various
channels such as Fp2-F4, F4-C4, C4-P4, P4-02, F8-T4,
T4-T6, FP1-F3, F3-C3, C3-P3, P3-O1, F7-T3, T3-T5, C4-
Al, ROC-LOC, EMGI-EMG2, ECGI-ECG2, DX1-DX2,
and SX1-SX2 channel (Fig. 1(B)). Additionally, the C4-P4
and C4-Al channels extracted from EEG signal for the
both healthy humans and bruxism patients (Fig. 1(C) and
Fig. 1(D)), respectively. The healthy humans and bruxism
patients for the C4-P4 and C4-A1 channels are represented by
black and red color, respectively. As shown in Figs. 2 and 3,
the low pass filter of hamming window with the cutoff
frequency 25 Hz shows a good capability with less noise
[4]-[8], which passed both the C4-P4 and C4-A1 channels
of the healthy humans and bruxism patients, and simul-
taneously blocked the high frequency of the EEG signal.
Moreover, the estimation of the power spectral density of
the healthy humans and bruxism patients of the C4-P4 and
C4-Al channels of the EEG signal were performed by the
Welch methods, which converts the signal from time domain
into the frequency domain. This method was used for the esti-
mation of the power signal at different frequencies (Fig. 4).

B. NORMALIZED VALUES OF THE C4-P4 AND

C4-A1 CHANNELS OF THE EEG SIGNAL

The normalized values specify the percentage of a particular
EEG activity out of whole power. It gives a better indica-
tion of measurements of prognostic of features instead of
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FIGURE 1. The EEG signals of the healthy humans and bruxism patients. (A) The EEG channels of the healthy humans are included such as
Fp2-F4, F4-C4, C4-P4, P4-02, C4-A1, ROC-LOC, EMG1-EMG2, ECG1-ECG2, DX1-DX2, SX1-SX2, SAO2, HR, PLETH, STAT and MIC. (B) The EEG channels
of the bruxism patients are included such as Fp2-F4, F4-C4, C4-P4, P4-02, F8-T4, T4-T6, FP1-F3, F3-C3, C3-P3, P3-01, F7-T3, T3-T5, C4-Al,
ROC-LOC, EMG1-EMG2, ECG1-ECG2, DX1-DX2, and SX1-SX2. (C) Extracted C4-P4 channel colored in black and C4-A1 channel colored in red for the
healthy humans. (D) Extracted C4-P4 channel colored in black and C4-A1 channel colored in red for the bruxism patients. In the healthy humans
and bruxism patients total fifteen and eighteen channels was found, respectively.

TABLE 2. Normalized value of the C4-P4 Channel of the electroencephalogram signal.

Theta Activity Alpha Activity Beta Activity
Subjects Sleep Stages
Max. Min. Avg. Max. Min. Avg. Max. Min. Avg.
Healthy Humans 0361710  0.099102  0.254422  0.791074  0.103621 0.366204  0.08919  0.002911  0.026485
Bruxism Patients St 0.365649  0.071120 0.158845 0.751676  0.119723  0.488041 0.056630 0.010397  0.034400
Healthy Humans 0.401503  0.228289  0.335529  0.363270  0.055881  0.155609  0.035448 0.001070  0.008987
Bruxism Patients REM 0.358595  0.149363  0.282709 0.318959 0.072971 0.147224  0.014241 0.001231  0.004477

taking average power of specific EEG activity [46]. The
comparative analysis of the normalized values of the C4-P4
and C4-A1 channels for the healthy humans and bruxism
patients in the S1 and REM sleep stages were presented
in Table 2 and Table 3. In Table 2, the normalized value of
healthy humans and bruxism patients for C4-P4 channels
of the theta activity in the S1 sleep stage are in the range
0f 0.099102 - 0.36171 and 0.07112 - 0.365649, respectively.
While, the normalized value of healthy humans and bruxism
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patients for C4-P4 channels of the theta activity in the REM
sleep stage are in the range of 0.228289 - 0.401503, and
0.149363 - 0.358595, respectively. The normalized value of
healthy humans and bruxism patients for C4-P4 channels
of the alpha activity in the S1 sleep stage are in the range
of 0.103621 - 0.791074, and 0.119723 - 0.751676, respec-
tively. While, the normalized value of healthy humans and
bruxism patients for C4-P4 channels of the alpha activity in
the REM sleep stage are in the range of 0.05588 - 0.36327,
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FIGURE 2. The filtered EEG channels of the healthy humans and bruxism patients. (A) Healthy humans for C4-P4,
(B) bruxism patients for C4-P4, (C) healthy humans for C4-A1, and (D) bruxism patients for C4-A1. The low pass finite
impulse response filter was used in the work.

FIGURE 3. (A) Healthy humans for C4-P4, (B) bruxism patients for C4-P4, (C) healthy humans for C4-A1, and
(D) bruxism patients for C4-A1. The hamming window was used in the work to obtained results with negligible noise.

and 0.072971 - 0.318959, respectively. The normalized value 0.002911 - 0.08919, and 0.010397 - 0.05663, respectively.
of healthy humans and bruxism patients for C4-P4 channels While, the normalized value of healthy humans and bruxism
of the beta activity in the S1 sleep stage are in the range of patients for C4-P4 channels of the beta activity in the REM
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FIGURE 4. The estimation of the power spectral density using Welch method for EEG channels for the bruxism
patients and normal humans. (A) Healthy humans for C4-P4, (B) bruxism patients for C4-P4, (C) healthy humans for
C4-A1, and (D) bruxism patients for C4-A1. This method converts the signal time into frequency domain.

TABLE 3. Normalized value of the C4-A1 channel of the electroencephalogram signal.

Theta Activity Alpha Activity Beta Activity
Subjects Sleep Stages
Max. Min. Avg. Max. Min. Avg. Max. Min. Avg.
Healthy Humans 0.348288  0.128995  0.266235  0.302043  0.115432  0.195376  0.058768  0.001259  0.016861
S1
Bruxism Patients 0.371894  0.139708 0.214213  0.582068 0.114305 0.389380 0.035648 0.006976  0.022301
Healthy Humans 0.394262  0.202071  0.320878  0.326502  0.047994  0.129919  0.027218  0.000793  0.006801
Bruxism Patients REM 0.356066  0.194454  0.284903 0.287076  0.064385  0.124461 0.010795 0.001268  0.004649

sleep stage are in the range of 0.00107 - 0.035448, and
0.001231 - 0.014241, respectively.

It has been found that the average normalized values
of the C4-P4 channel of theta, alpha and beta activity for
healthy humans during S1 were 0.254422, 0.36620 and
0.026485, respectively. The average normalized values of the
C4-P4 channel of theta, alpha and beta activity for healthy
humans during REM stage were found to be 0.335529,
0.155609 and 0.008987, respectively. While, the average
normalized values of the C4-P4 channel of theta, alpha
and beta waves for bruxism patients during S1 were found
to be 0.15884, 0.488041 and 0.0344, respectively. The
average normalized values of the C4-P4 channel of theta,
alpha and beta waves for bruxism patients during REM
stage were found to be 0.282709, 0.147224 and 0.004477,
respectively.

Furthermore, as shown in Table 3, the normalized value
of healthy humans and bruxism patients for C4-A1 channels
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of the theta activity in the S1 sleep stage are in the range
of 0.128995 - 0.348288 and 0.139708 - 0.371894, respec-
tively. While, the normalized value of healthy humans and
bruxism patients for C4-A1l channels of the theta activity in
the REM sleep stage are in the range of 0.202071 - 0.394262,
and 0.194454 - 0.356066, respectively. The normalized value
of healthy humans and bruxism patients for C4-A1 channels
of the alpha activity in the S1 sleep stage are in the range of
0.115432 - 0.302043, and 0.114305 - 0.582068, respectively.
While, the normalized value of healthy humans and bruxism
patients for C4-A1 channels of the alpha activity in the REM
sleep stage are in the range of 0.047994 - 0.326502, and
0.064385 - 0.287076, respectively. The normalized value of
healthy humans and bruxism patients for C4-A1 channels of
the beta activity in the S1 sleep stage are in the range of
0.001259 - 0.058768, and 0.006976 - 0.035648, respectively.
While, the normalized value of healthy humans and bruxism
patients for C4-A1 channels of the beta activity in the REM
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FIGURE 5. perio The comparative chart of normalized value of the healthy humans and bruxism patients for the C4-P4 channel were
deduced from Table 2. (A) Theta activity of the EEG signal for the healthy humans and bruxism patients for the C4-P4 Channel. (B) Alpha
activity of the EEG signal for the healthy humans and bruxism patients for the C4-P4 Channel. (C) Beta activity of the EEG signal for the

healthy humans and bruxism patients for the C4-P4 Channel.

sleep stage are in the range of 0.000793 - 0.027218, and
0.001268 - 0.010795, respectively.

It has been found that the average normalized values of
the C4-Al channel of theta, alpha and beta activity for
healthy humans during S1 were 0.266235, 0.195376 and
0.016861, respectively. The average normalized values of the
C4-A1 channel of theta, alpha and beta activity for healthy
humans during REM stage were found to be 0.320878,
0.129919 and 0.006801, respectively. While, the average
normalized values of the C4-Al channel of theta, alpha
and beta waves for bruxism patients during S1 were found
to be 0.214213, 0.38938 and 0.022301, respectively. The
average normalized values of the C4-A1 channel of theta,
alpha and beta waves for bruxism patients during REM
stage were found to be 0.284903, 0.124461 and 0.004649,
respectively. In brief, the calculated average normalized value
for healthy human is smaller than that in bruxism patient
of the theta EEG activity in S1 and REM sleep stages
(Figs. 5 & 6).

C. EVALUATION OF C4-P4 AND C4-A1 CHANNELS

USING DECISION TREE CLASSIFIER

The performance of this work is evaluated with 224 data
segments for two channels of C4-P4 and C4-Al. There are
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84 EEG recording from healthy humans and 140 EEG record-
ing from bruxism patients for each channel. The evaluation
of the classification is process in three conditions such as
C4-P4, C4-Al and combination of C4-P4 and C4-Al chan-
nels. The data segments are dividing into random halves.
One part is for training and the other is for testing, and then
revises the training data and testing data. The decision tree
methods [44], [45] were used for classification of the system.
Standard performance measures namely sensitivity, speci-
ficity and accuracy are described in equations (8), (9) and (10).

TP
Sensivity = m x 100 (8)
TN
Specificity = ————— x 100 &)
(TN + FP)
. (TN +TP)
Accuracy = 100  (10)

(IN + TP+ FP+ FN)

where, TP is the true positive, TN is the true negative, FP is
the false positive and FN is the false negative.

IV. DISCUSSION

In the present study, 224 data from eight subjects were
studied. It has been found that the EEG amplitude for healthy
humans and bruxism patients were around -200 to 200 uV and
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FIGURE 6. perio The comparative chart of normalized value of the healthy humans and bruxism patients for the C4-A1 channel were
deduced from Table 3. (A) Theta activity of the EEG signal for the healthy humans and bruxism patients for the C4-A1 Channel. (B) Alpha
activity of the EEG signal for the healthy humans and bruxism patients for the C4-A1 Channel. (C) Beta activity of the EEG signal for the

healthy humans and bruxism patients for the C4-A1 Channel.

-400 to 400 uV, respectively (Fig. 1). The amplitude of EEG
signals of the bruxism patients was higher than those were
the healthy humans. Additionally, amplitude of C4-P4 and
C4-Al channels of the bruxism patients were higher than
those were the healthy humans. However, in the both two
channels, the amplitude of the C4-P4 channel is less as com-
pare to the C4-Al.

Previously, sleep disorder from healthy and affected person
using time frequency analysis of power spectral density
approach applied on EEG signals using right of central — left
of central channels were applied. The analysis and calculation
were performed in all stages of sleep of power spectral density
of each EEG segment. The results indicated the possibility of
recognizing insomnia events based on delta, theta, alpha and
beta segments of EEG signals [11]. A further clarification and
comparative analysis between healthy humans and bruxism
patients are required for better analysis. In the present work,
healthy humans and bruxism patients were analyzed and
presented. We have calculated normalized value of both
subjects for the C4-P4 and C4A1 channels for the S1 and
REM sleep stages. It is easy to analyze and compare the
bruxism patients using present approaches.

102550

A. PERFORMANCE OF THE C4-P4 AND C4-A1 CHANNEL
OF THE EEG SIGNAL
The performances of the proposed work were mention
in Table 4, 5 and 6. In the table 4, the sensitivity of the
C4-P4 channel in the S1, REM and combined both stages
(S1 and REM) are 95.99, 94.94 and 96.93%, respectively.
The specificity of the C4-P4 channel in the S1, REM and
combined both stages are 96.43, 82.15 and 77.07%, respec-
tively. While, the accuracy of the C4-P4 channel in the S1,
REM and combined both stages are 84.78, 79.55 and 81.70%,
respectively. Importantly, the S1 stage is more accurate than
REM and combines both stages. In the table 5, the sensi-
tivity of the C4-Al channel in the S1, REM and combined
both stages (S1 and REM) are 86.96, 94.05 and 93.29%,
respectively. The specificity of the C4-A1 channel in the S1,
REM and combined both stages are 91.30, 88.13 and 93.29%,
respectively. While, the accuracy of the C4-Al channel in
the S1, REM and combined both stages are 89.13, 83.33
and 74.11%, respectively. Importantly, the S1 stage is more
accurate than REM and combines (S1 and REM) stages.

In the table 6, the sensitivity of the combination of both
channels such as C4-P4 and C4-Al in the S1, REM and
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TABLE 4. Performance of the C4-P4 channel.

. S1 Stage REM Stage Combination of the both S1 and REM stage
Testing Fold
Sensitivity ~ Specificity ~Accuracy | Sensitivity = Specificity =~ Accuracy Sensitivity Specificity Accuracy
1 96.15% 100% 91.30% 95.00% 92.31% 75.76% 97.14% 85.71% 87.50%
2 95.83% 92.86% 78.26% 94.87% 72.00% 83.33% 96.72% 68.42% 75.89%
Mean 95.99% 96.43% 84.78% 94.94% 82.15% 79.55% 96.93% 77.07% 81.70%
TABLE 5. Performance of the C4-A1 channel.
. S1 Stage REM Stage Combination of the both S1 and REM stage
Testing Fold
Sensitivity ~ Specificity =~ Accuracy | Sensitivity — Specificity — Accuracy Sensitivity Specificity Accuracy
1 93.55% 90.91% 92.23% 100% 81.82% 84.85% 94.12% 79.31% 77.68%
2 84.62% 91.67% 88.14% 88.10% 94.44% 81.82% 92.45% 75.00% 70.54%
Mean 86.96% 91.30% 89.13% 94.05% 88.13% 83.33% 93.29% 77.16% 74.11%
TABLE 6. Performance for the combination of C4-P4 and C4-A1 channels.
S1 Stage REM Stage Combination of the both S1 and REM stage
Testing Fold . ) . ) .
Sensitivity ~ Specificity ~Accuracy | Sensitivity — Specificity =~ Accuracy Sensitivity Specificity Accuracy
1 96.55% 100% 86.96% 97.30% 85.71% 81.82% 90.48% 75.00% 80.36%
2 86.96% 86.36% 84.78% 97.30% 88.89% 78.79% 88.41% 81.58% 82.14%
Mean 91.75% 93.18% 85.87% 97.30% 87.30% 80.30% 89.44% 78.29% 81.25%
TABLE 7. Comparison of classification results between proposed work and previous works.
Authors Year Detection Major Name of the Classifier ~ Accuracy
Neuromuscular Self-Organizing Map
Christodoulou et al. [47] 2012 ) EMG 60.00%
Disorder (SOM)
Castroflorio et al. [48] 2015 Sleep Bruxism EMG and ECG - 62.20%
) K-Nearest Neighbors
Tushar et al. [49] 2018 Sleep Disorder EEG 71.75%
(KNN)
Combination of C4-P4 and C4-Al Decision Tree
Proposed work Present Sleep Bruxism 81.25%

Channels of the Scalp EEG

(DT)

combined both stages (S1 and REM) are 91.75, 97.30 and
89.44%, respectively. The specificity of the combination of
both channels such as C4-P4 and C4-Al in the S1, REM
and combined both stages are 93.18, 87.30 and 78.29%,
respectively. While, the accuracy of the combination of both
channels such as C4-P4 and C4-A1 in the S1, REM and com-
bined both stages are 85.87, 80.30 and 81.25%, respectively.
Importantly, the S1 stage is more accurate than REM and
combines both stages. It has found the accuracy of S1 stage
in all channels (C4-P4, C4-A1 and combine of C4-P4 and
C4-A1l) is better than REM and combination of S1 and
REM sleeps stages. As shows in table 7, the performance
of the proposed method is more accurate than that of other
methods [47]-[49].

B. APPLICATONS AND LIMITATIONS OF THE

PROPOSED WORK

The present work showed potential applications in the detec-
tion of bruxism by using the C4-P4 and C4-A1l channels
of the EEG signal. The research work would provide a fast

VOLUME 7, 2019

and effective detection system of the bruxism with high
accuracy for medical applications, especially for the more
affected stages of sleep during various disease conditions.
The main application of the current research is to detect the
psychological patients in short time with high accuracy. The
big data techniques play main role in sleep research. It has
important role in the sleep such as performance, prediction
of the effect and risk, signal detection and detection of sleep
disorders for scrutiny purposes [50]. It is also used in med-
ical polysomnography, wearable sensors, self-quantification
systems, and longitudinal studies.

It has certain limitations that the data from the Physionet
database used in this paper was relatively small for statistical
evaluation. Further work could be required to collect a great
number of clinical data to evaluate the proposed approach
for a higher accuracy. Another limitation includes the care-
ful interpretations of results from EEG recording, since the
C4-P4 and C4-Al channels of the EEG signal were not be
able to record the all channels of the neuron. Additionally,
the third limitations are related to filter used in this work.
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The low pass finite impulse response filters were used for
finite range. In order to design a better filter, both the finite
impulse response and the infinite impulse response in the
same time should be implemented in both continuous and
discrete time signals. In future we will use the proper channels
such as A1-T3 and A2-T4 because now it’s not available in
present data base.

V. CONCLUSION

Bruxism is a sleep disorder, in which individual involuntarily
crushing and clenching the teeth. In the present work, we have
developed a detection system of the bruxism using C4-P4 and
C4-A1 channels of EEG signal. The results obtained from the
theta activity have consistency, while alpha and beta showed
slightly variations. Additionally, the accuracy of S1 stage is
better than REM in the C4-P4, C4-A1 and combination of
C4-P4 and C4-Al channels. We summarized that the theta
activity of the S1 stage can be utilized in the detection of
bruxism. This will ease the detection of bruxism. The future
prospects of the research to easily detect the neurological
disorder with high accuracy.

ABBREVIATIONS

Continuous Positive Airway Pressure (CPAP); Decision Tree
Method (DT); Electroencephalogram (EEG); Electrocardio-
gram (ECG); Finite Impulse Response (FIR); K-Nearest
Neighbors (KNN); Low Pass Finite Impulse Response Filter
(LPFIRF); Non Rapid Eye Movement (NREM); Nocturnal
Frontal Lobe Epilepsy (NFLE); Proton Pump Inhibitor (PPI);
Power Spectral Density (PSD); Rapid Eye Movement
(REM); Rapid eye movement Behavioral Disorder (RBD);
Sleep Bruxism (SB); Spatial Temporal Electroencephalo-
gram and Functional magnetic resonance imaging Fusion
(STEFF); Self-Organizing Map (SOM).
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