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ABSTRACT Predicting real-time spatial information from data collected by the mobile Internet of
Things (IoT) devices is one solution to the social problems related to road traffic. The mobile IoT devices
for real-time spatial information prediction generate an extremely high volume of data, making it impossible
to collect all of it through mobile networks. Although some previous works have reduced the volume of
transmitted data, the prediction accuracy of real-time spatial information is still not ensured. Therefore, this
paper proposes an IoT device control system that reduces the amount of transmitted data used as input for
real-time prediction while maintaining the prediction accuracy. The main contribution of this paper is that
the proposed system controls data transmission from the mobile IoT devices based on the importance of data
extracted from the machine learning model used for the prediction. Feature selection has been widely used
for extracting the importance of data from the machine learning model. Feature selection methods were also
used to reduce communication overhead in distributed learning. Unlike the conventional usage of feature
selection methods, the proposed system uses them to control the data transmission of the mobile IoT devices
with priority. In this paper, the proposed system is evaluated with a real-world vehicle mobility dataset in two
practical scenarios using the random forest model, which is an extensively used machine learning model. The
evaluation results show that the proposed system reduces the amount of transmitted input data for real-time
prediction while achieving the same level of prediction accuracy as benchmark methods.

INDEX TERMS Real-time spatial information, vehicular IoT, data prioritization, machine learning, feature
selection.

I. INTRODUCTION
The increasing impact of social problems related to road
traffic is a major concern facing our future society. Traffic
accidents are still a major problem in many societies today.
According to a report on road safety by the World Health
Organization (WHO), road traffic injuries are currently esti-
mated to be the ninth leading cause of death across all age
groups globally and are predicted to become the seventh
leading cause of death by 2030 [1]. It also states that 3% of
the global GDP is estimated to be lost as a result of road
traffic deaths and injuries. Road traffic congestion is another
serious problem in many countries. A report by the Centre
for Economics and Business Research suggests that the total
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economy-wide cost across four advanced countries (the UK,
France, Germany, and the USA) was $200.7 billion in 2013,
and is forecasted to rise to $293.1 billion by 2030 [2].

Predicting real-time spatial information from data col-
lected by mobile Internet of Things (IoT) sensors is one solu-
tion to solve the social problems related to road traffic [3].
Mobile IoT devices such as smart cars (including autonomous
cars), smartphones, wearable devices, and unmanned aerial
vehicles (UAVs) play a major role in such an application:
namely, they work to collect data. Some studies have dis-
cussed algorithm design for collecting data from sensors on
vehicles using mobile crowdsensing [4], [5]. The data col-
lected by mobile IoT devices are uploaded to edge servers,
which process the uploaded data and apply machine learning
techniques to predict real-time spatial information such as
road-traffic volume, optimal travel path, and precise positions
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of pedestrians and cyclists. Real-time spatial information pre-
diction is in demand for many services. An example service
is the autonomous driving support system, which gathers
real-time data from onboard sensors and provides exact loca-
tion and relation to other road users [6]. The cyber-physical
system (CPS), in which the real-time spatial information
prediction system is included, is increasingly in demand. The
market was worth $18 billion in 2017 and is likely to grow by
8.7% annually for the next ten years [7].

However, mobile IoT devices for real-time spatial informa-
tion prediction collect an enormous amount of upstream data
—much more than can be collected through the uplink band-
width inmobile networks.Mobile IoT devices collect images,
videos, or light detection and ranging (LiDAR) [8] data con-
tinuously, and it is impossible to collect all of such data
through the uplink bandwidth of long term evolution (LTE)
or LTE-Advanced (LTE-A) networks today. Even with 5G
networks, it is impossible to collect all of the high-resolution
images, videos, and LiDAR data.

Cluster-based data aggregation reduces data transmis-
sion by clustering wireless sensors and aggregating raw
data from each cluster before transmitting them to destined
targets [9]–[12]. Sensors clustered into one cluster are usually
located nearby each other, so collected data from these sen-
sors are correlated and thus redundant to some extent. Cluster-
based data aggregation eliminates this redundancy, thereby
reducing the volume of data transmission. This approach
focuses mainly on redundancy in data; no previous work has
successfully reduced the volume of transmitted data used as
input for real-time prediction while maintaining the predic-
tion accuracy of real-time spatial information.

This work proposes an IoT device control system that
reduces the volume of transmitted data used as input for
real-time prediction while maintaining the prediction accu-
racy of real-time spatial information. The main contribution
of this paper is that the proposed system prioritizes the
transmissions of data collected by mobile IoT devices on
the basis of the ‘‘importance of data’’ extracted from the
machine learning model for prediction. The importance of
data is a metric of how much the data collected by mobile
sensors will contribute to the prediction accuracy of real-time
spatial information. Feature selection has been widely used
to extract the importance of data from the machine learning
model. Feature selection methods were originally used to
reduce computation time, improve prediction performance,
or provide a better understanding of the data in machine
learning or pattern recognition applications. Feature selection
methodswere also used to reduce communication overhead in
distributed learning [13]. Unlike those conventional usages,
the proposed system uses feature selection methods to control
the data transmission of mobile IoT devices with priority. In
this work, two performance evaluations are performed using
real-world datasets, with each one assuming a different sce-
nario. These evaluations use a Random Forest regressor [14]
as the machine learningmodel for prediction and the impurity
method [15] and perturb method [16] as feature selection

methods. The results of these evaluations show that the pro-
posed system reduces the volume of input data transmission
for real-time prediction compared with benchmark methods
while achieving the same prediction accuracy.

The rest of this paper is organized as follows. Section II
reviews the prior efforts on data reduction in wireless sensor
networks (WSNs). In Section III, existing feature selection
methods that can be used to extract the importance of data
from machine learning models are introduced. Section IV
presents the problem formulation of this study and the details
of the proposed system. Sections V and VI provide per-
formance evaluations with scenarios of road-traffic volume
prediction and mobility demand prediction, respectively. We
conclude in Section VII with a brief summary and mention
of future work.

II. RELATED WORK
This section reviews the prior efforts on data reduction in
WSNs as the related work. In simple terms, data reduction
in WSNs aims to reduce the volume of data to be delivered to
the sink. Data reduction leads to increased energy efficiency
of WSNs because less data transmission means less energy
consumption in many WSNs. Data reduction techniques can
be placed into four categories [17]: 1) aggregation, 2) adap-
tive sampling, 3) network coding, and 4) data compression.
Aggregation, network coding, and data compression focus
mainly on reducing data but do not pay much attention to
the application after the data aggregation. Although adaptive
sampling techniques reduce data considering the application
requirements, this work differs in that the proposed system
reduces data according to the importance of the data calcu-
lated directly from the machine learning model.

A. AGGREGATION
Data aggregation is defined as the process of aggregating the
data from multiple sensors for the purpose of eliminating
redundant transmission and providing aggregated informa-
tion to the base station (BS) [18]. In aggregation techniques,
nodes along a path towards the BS perform data aggrega-
tion to reduce the volume of data forwarded towards the
BS. Aggregation techniques can be roughly categorized into
cluster-based and non-cluster-based.

Cluster-based aggregation techniques construct sensor
clusters where sensors transmit data to a local aggregator or
cluster head (CH) and the CH aggregates data from all the
sensors in its cluster and transmits the aggregated data to
the sink. Ma et al. presented an algorithm that constructs a
dominating set by using the spatial correlation between data
measured by different sensors [10]. Yue et al. presented an
algorithm called energy efficient and balanced cluster-based
data aggregation (EEBCDA) [11]. This algorithm assumes
that sensor data in the same cluster are highly correlated so
that each CH is able to aggregate some data and reduce the
overall volume of the data.

Non-cluster-based aggregation techniques are basi-
cally data aggregation without clustering. Azim et al.
presented a technique called smart aggregation (SAG)
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for continuous-monitoring applications [19]. Jiang et al.
presented a data aggregation technique designed on the basis
of statistical information extraction [20].

B. OTHER METHODS
Adaptive sampling methods adjust the sampling rate at each
sensor while preserving the application requirements such
as coverage or information precision. For example, a super-
vision application can reduce data by using low-power and
low-precision detectors under a normal condition and switch-
ing on power-consuming and high-precision cameras only
when an event is reported [21]. Yan et al. presented an activity
recognition application that adjusts the sampling rate of user
activity to reduce the redundant data when the user is sitting
or running [22].

Network coding (NC) reduces the traffic in broadcast sce-
narios by sending a linear combination of several packets
instead of sending a copy of each packet. NC takes advan-
tage of the fact that communications are slow compared to
computations and more power-consuming. Wang et al. com-
bined network coding with a connected dominating set [23].
Hou et al. presented adapted network coding in which a node
sends one message for every N messages received when
broadcasting, saving up to (N − 1)/N of bandwidth [24].

Data compression reduces the number of bits needed to
represent the message by applying sophisticated encoding
methods. Since most existing compression algorithms cannot
be applied to WSNs due to the resource limitation of sensor
nodes, Kimura et al. reviewed compression algorithms specif-
ically designed for WSNs [25].

III. FEATURE SELECTION
Feature selection was originally considered as a method for
selecting a set of variables (features) from the input that can
efficiently describe the input data while reducing effects from
noise or irrelevant variables and still provide good prediction
results [26]. Feature selection methods can reduce computa-
tion time, improve prediction performance, and provide a bet-
ter understanding of the data in machine learning or pattern
recognition applications. Feature selection differs from other
dimension reduction methods such as principal component
analysis (PCA) in that it does not create new features since it
uses the input features themselves to reduce their number.

The proposed system prioritizes the transmissions of data
collected by mobile IoT devices on the basis of the impor-
tance of data extracted from the machine learning model for
prediction using feature selection. The importance of data
extracted from the machine learning model using feature
selection is ametric of howmuch the collected data bymobile
sensors will contribute to the prediction accuracy of real-time
spatial information. Reducing transmission of less important
data according to the importance of data obtained from fea-
ture selection methods enables the proposed system to reduce
the volume of transmitted data used as input for real-time
prediction while maintaining the prediction accuracy. Details
on how feature selection is used in the proposed system in
specific scenarios are described in Sections V and VI.

IV. PROPOSED SYSTEM DESIGN
A. APPLICATION SCENARIO
The overview of the proposed system is shown in Fig. 1. We
assume a system that provides users with real-time spatial
information based on data collected frommobile IoT devices.
The proposed system prioritizes data on mobile IoT devices
on the basis of data importance extracted from the machine
learning model for prediction, which enables it to reduce the
total data traffic for real-time prediction while maintaining
prediction accuracy.

FIGURE 1. System overview.

The proposed system consists of two main components:
mobile IoT devices and an edge server. Mobile IoT devices
(such as probe vehicles, smartphones, and UAVs) prioritize
collected data and send high importance input data for pre-
diction to the edge server. The edge server aggregates the data
received from mobile IoT devices, complements the missing
parts of the data, and performs prediction.

Note that the machine learning model has been trained
in advance with all the available data collected by mobile
IoT devices. This assumption is acceptable because our work
aims to reduce the volume of data used as input for real-time
prediction. Furthermore, since the time requirement of train-
ing data is not strict, they can be collected as a background
process through mobile networks during the off-peak period
or through other communication networks with sufficient
bandwidth.

B. SYSTEM MODEL
A detailed view of the proposed system is shown in Fig. 2.

1) MOBILE IoT DEVICE
Mobile IoT devices (such as probe vehicles, smartphones,
and UAVs) continuously collect data at a specific sampling
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FIGURE 2. System design.

interval. Part of the collected data is sent to an edge server for
prediction. To decide whether a data should be sent or not,
the controller fetches the importance of the block where the
mobile IoT device is currently located. The controller orders
the transmitter to send the data or not based on the importance
of the current block received from the edge server.

2) EDGE SERVER
The edge server receives collected data from mobile IoT
devices, aggregates and preprocess the data, and predicts the
real-time spatial information of the next time slot. The aggre-
gator and pre-processor on the edge server receive data from
the transmitters of several mobile IoT devices, pre-process the
data, and complete themissing parts of the data. The predictor
predicts real-time spatial information. The importance extrac-
tor extracts the importance of blocks from the pre-trained
machine learning model for prediction. The responder sends
the importance of blocks to each mobile IoT device.

C. CONTROL METHODS
The control procedure of the proposed system consists of
five processes: 1) pre-training of the machine learning model,
2) calculation of the importance of blocks, 3) control of data
transmission, 4) aggregation of transmitted data, and 5) pre-
diction. 1) and 2) are preprocessing, which is performed once
before the first time slot begins. 3), 4), and 5) are performed
in each time slot. Table 1 lists the notations in this paper.

TABLE 1. Notations.

1) PRE-TRAINING OF MACHINE LEARNING MODEL
The machine learning model is trained on the edge server in
advance before the first time slot begins.

The proposed system considers the prediction of future
real-time spatial information as a regression task. Regression,
in general, is a type of task that estimates a numerical value
given some input [27]. To solve the task, the learning algo-
rithm is asked to learn a function that maps an input variable
to an output variable. The proposed system uses a supervised
machine learningmodel to solve the task. Supervised learning
algorithms, in general, deal with a training dataset that con-
tains a set of data and a label or target associated with each of
the data [27].

In the proposed system, the machine learning model for
prediction receives the aggregated past sensor data collected
from mobile IoT devices in each block as an input and cal-
culates the future real-time spatial information as output. The
machine learning model for prediction receives an input vari-
able X , which consists of aggregated sensing data collected in
the last few time slots, and predict output variable y, which is
the real-time spatial information of each block in the next time
slot. The input variable X of the machine learning model for
prediction is a T ×NB matrix, where T is the number of time
slots used in one prediction and NB is the number of blocks.
Each row of the input matrix represents the aggregated sensor
data collected in NB blocks at T ,T − 1, . . . , 1 slots ago,
respectively. The output y of the machine learning model for
prediction is a vector of NB elements. Each element of the
output vector represents the real-time spatial information of
each block in the next time slot.

As mentioned in Section 4.1, to train a machine learning
model for prediction, an adequate amount of past sensing data
should be collected from mobile IoT devices as training data,
but it does not necessarily need to be collected in real time.
Thus, the training data can be collected when the network is
off-peak, such as at night or when cars or drones are stopped
in parking lots or depots.

2) CALCULATION OF IMPORTANCE OF BLOCKS
The importance of a block is calculated from the pre-trained
machine learning model for prediction on the edge server
using a feature selection method. The importance of block
Ib is defined as Ib =

∑T
t=1 Ft,b, where Ft,b is the feature

importance of the (t, b) element of the input matrix. Ft,b
is calculated from the pre-trained model using the feature
selection method.

3) CONTROL OF DATA TRANSMISSION
In each time slot, mobile IoT devices decide whether to
transmit the data observed in the time slot based on the
importance of the data. The importance of data corresponds
to the importance of the block where the data was observed.
Mobile IoT devices transmit the data if Ib ≥ Ī , where Ib is
the importance of the block that includes the current location
of the device and Ī is a constant that defines the minimum
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importance for the data to be transmitted. Ib and Ī are obtained
from the edge server.

The proposed system can control the volume of the trans-
mitted data and prediction accuracy through Ī . The volume
of the transmitted data in a single time slot can be described
as ∑

d∈D(Ī )

S(d), (1)

where D(Ī ) is the set of transmitted data from mobile IoT
devices and S(d) is the size of data d .D(Ī ) includes data from
a mobile IoT device if and only if Ib ≥ Ī , where Ib is the
importance of the block in which that device is located. The
prediction accuracy in a time slot can be described as

A(D(Ī )), (2)

whereA(·) is the prediction accuracywhen given a set of sens-
ing data from mobile IoT devices. The prediction accuracy
depends on the data received from mobile IoT devices in the
time slot.

4) AGGREGATION OF TRANSMITTED DATA
The data collected from mobile IoT devices are aggregated to
form an input matrix X for the machine learning model for
prediction. The aggregation is needed because the proposed
system does not always collect exactly one data from each
block. The number of data collected from each block varies
depending on the importance of the block and the number of
mobile IoT devices in the block. An example of the aggrega-
tion process can be found in Section V-B.

5) PREDICTION
The proposed system uses the pre-trained model to predict
future spatial-information. In each time slot, the model takes
the aggregated sensing data as an input X and predicts the
real-time spatial information of the next time slot as an out-
put y.

V. PERFORMANCE EVALUATION BY ROAD-TRAFFIC
VOLUME PREDICTION
A. EVALUATION SCENARIO
An evaluationwas performed to verify the effectiveness of the
proposed system described in Section IV, which reduces the
total traffic for real-time prediction transmitted from mobile
IoT devices while maintaining the prediction accuracy. This
evaluation examines the relationship between the amount of
transmitted data and prediction accuracy described in Eqs. (1)
and (2) respectively for several Ī .
This performance evaluation focuses on a specific applica-

tion that provides human or robotic drivers with road-traffic
information predicted from sensing data collected by onboard
cameras or LiDARs on probe vehicles. Parameters used in
this evaluation are listed in Table 2.

TABLE 2. Parameters for performance evaluation by road-traffic volume
prediction.

B. EVALUATION MODEL
Figure 3 shows the evaluation model used for this evaluation.
It consists of mobile IoT devices and an edge server.

FIGURE 3. Evaluation model for performance evaluation by road-traffic
volume prediction.

1) PRE-TRAINING OF MACHINE LEARNING MODEL
The Random Forest regressor model in the scikit-learn
library [28] is used as the machine learning model for predic-
tion for this evaluation. The input X of the model is T × NB
matrix, where T is the number of data samples in one time
slot and NB is the number of blocks. Each element xij in the
matrix represents the aggregated road-traffic in block j at time
slot t−i, where t is the current sampling time. The output y of
the model is the road-traffic of each block at sampling time t .
The model is trained with road-traffic data of all 536 taxies

before the evaluation. The road-traffic data of all 25 days is
split into the first 20 days and the last five days for training
and evaluation, respectively. The details on the dataset are
described in Section V-C.

2) CALCULATION OF IMPORTANCE OF BLOCKS
Two feature selection methods are used to calculate the
importance of blocks: the impurity method and the perturb

VOLUME 7, 2019 93615



Y. Inagaki et al.: Prioritization of Mobile IoT Data Transmission Based on Data Importance

method. The impurity method calculates feature importance
on the basis of the ‘impurity’ index used in decision tree
models [15]. The impurity method in this evaluation is imple-
mented by the feature_importances_ function of the
Random Forest regressor of scikit-learn. By applying this
function, the importance of each input feature, i.e., the impor-
tance of each element xij, is obtained. To simplify the evalua-
tion, we calculate the importance of blocks by taking the sum
for i. The perturb method calculates feature importance by
adding noise to the subset of input features and examining
the increase of error [16]. The perturb method calculates the
importance of block j by

(RMSE(ŷ′, y)− RMSE(ŷ, y))2, (3)

where y is the number of cars in blocks, ŷ is the predicted
value of y, and ŷ′ is the predicted value when the input values
of block j in the training data are multiplied by 1.5.

3) CONTROL OF DATA TRANSMISSION
In each time slot, probe vehicles transmit the collected sens-
ing data if and only if Ib ≥ Ī , where Ib is the importance of
the block in which a probe vehicle is currently located. Probe
vehicles know the Ib of each block in advance.
The number of cars can be detected from sensing data

collected by onboard cameras or LiDARs using an object
detection algorithm at the pre-processor on the edge server.
In this evaluation, we streamlined this process and obtained
directly the number of cars from an existing dataset.

4) AGGREGATION OF TRANSMITTED DATA
It is assumed that an aggregator on the edge server receives
raw sensing data from probe vehicles and a pre-processor on
the edge server identifies cars that are running around each
probe vehicle. The number of detected cars in the block at
the sampling time is defined as the size of the set plus 1. If
multiple probe vehicles are in the block at the sampling time,
this number is defined as the size of the union of sets of cars
plus the number of probe vehicles. If no probe vehicles are in
the block at the sampling time, zero-filling is used to complete
the missing parts of data.

5) PREDICTION
Prediction is performed in each time slot using the pre-trained
model described in Section V-B.1.

C. DATASET
A trace set of the mobility data of taxi cabs in
San Francisco [29] is used in this evaluation. The dataset
includes the location logs of 536 taxies for 25 days.NB blocks
in total are positioned in a rectangle area, as shown in Fig. 4.
Since the logs are not necessarily recorded every1T minutes,
taxies are assumed to travel straight with constant velocity,
and locations at every 1T minute are interpolated. Probe
vehicles are selected randomly from a total of 536 taxies at a
ratio of P. The number of cars detected by probe vehicles in

FIGURE 4. Layout of blocks (1B = 1000× 1000 (m2)).

each block at each sampling time is calculated as described in
the previous section. A block that contains the taxi company
depot is ignored because the block does not seem to generate
data appropriate for evaluation. Figure 5 shows the average
number of detected cars in each block.

FIGURE 5. Average no. of detected cars in each block.

D. METRICS AND BENCHMARKS
This evaluation verifies that the proposed system reduces
the amount of transmitted data used as input for real-time
prediction compared with three benchmark methods when
they achieve the same prediction accuracy by examining
the relationship between the amount of transmitted data and
prediction accuracy described in Eqs. (1) and (2) respectively.
The prediction error and the total amount of data transmission
are calculated for each Ī .
To evaluate the prediction error, the root mean squared log

error (RMSLE) [30] function is used. RMSLE is given by

RMSLE =

√√√√ 1
NB

NB∑
b=1

(log(yb + 1)− log(ŷb + 1))2, (4)

where yb is the number of cars running in block b and ŷb is
the predicted value of yb.

To evaluate the total amount of data transmission,
the normalized total amount of transmitted data is used.
The normalized total amount of transmitted data r is the ratio
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of the total amount of sensing data transmitted to the total
amount of sensing data collected by probe vehicles.

This evaluation uses three benchmark methods: random,
uniform, and volume-based. The random method selects
which block to use at random. This is a reasonable method
because, in general, the data transmitted by mobile IoT sen-
sors are usually dropped randomly when network capacity is
limited. The uniformmethod selects nB blocks out of the total
NB blocks uniformly. To select blocks uniformly, the uniform
method spirally assigns numbers 0 ≤ k < NB to each
block. The set of numbers of selected blocks is decided by
{k = b(nNB)/nBc | 0 ≤ ∃n < nB}. The volume-based method
selects blocks with the top nB largest average road-traffic
volume in the training dataset.

E. RESULTS
Figures 6 and 7 show the importance of each block extracted
from the Random Forest regressor by using the impurity and
perturb feature selection methods, respectively. Compared
with the average number of detected cars in each block
in Fig. 5, blocks with a large road-traffic volume tend to
be important. However, the blocks whose adjacent blocks
have large road-traffic volume (e.g., a, b) tend to be less
important compared to their own road-traffic volume. This
is because the data from two adjacent blocks are redundant
to some extent. In general, the road-traffic volumes of two
adjacent blocks correlate with each other. The impurity and
perturb methods reflect this principle and avoid assigning
high importance to two adjacent blocks in order to eliminate
that redundancy.

Figure 8 shows the prediction error against the normal-
ized total amount of transmitted data when the block size

FIGURE 6. Extracted importance of each block for road-traffic volume
prediction (impurity).

FIGURE 7. Extracted importance of each block for road-traffic volume
prediction (perturb).

is 1B = 1000 × 1000. RMSLE is larger as r is smaller
for all the methods. This describes the trade-off between the
amount of data available for prediction and the accuracy of
prediction. RMSLE of the random and uniformmethods fluc-
tuates as r changes. This is because only a small number of
blocks mainly contribute to the prediction accuracy, and thus
RMSLE of the random and uniform methods depends greatly
on whether those blocks are selected or not. In contrast,
RMSLE of the impurity and perturb methods is stably small
for a wide range of r . This is because the proposed system
with the impurity or perturb methods always prioritizes the
data from probe vehicles in important blocks, which con-
tributes to the prediction accuracy. RMSLE of the impurity
and perturb methods is better than that of the volume-based
method for a wide range of r . This is because, as observed
in Figs. 5 – 7, blocks with high average road-traffic volume
do not always have high importance. Prioritizing the trans-
missions on the basis of the average road-traffic volume of
each block leads to redundant data transmission. By using the
importance of blocks, the impurity and perturbmethods avoid
redundant data transmission, and thus the proposed system
can achieve better RMSLE than that of the volume-based
method.

FIGURE 8. Prediction error vs. normalized total amount of transmitted
data for road-traffic volume prediction (1B = 1000× 1000 (m2)).

Figure 9 shows the prediction error against the normalized
total amount of transmitted data when the block size is 1B =

500× 500. The same observations can basically be obtained
as in Fig. 8, while the scale of RMSLE of Fig. 9 is smaller
as a whole than that of Fig. 8. This is because, in general,
the prediction error tends to be small when the scale of
predicted values is small. The scale of predicted values in this
evaluation was smaller when 1B = 500 × 500 than when
1B = 1000 × 1000 because smaller blocks have smaller
road-traffic volume.

VI. PERFORMANCE EVALUATION BY MOBILITY DEMAND
PREDICTION
A. EVALUATION SCENARIO
This evaluation focuses on a specific application in which
the system predicts the number of pickups by taxis on the
basis of people detection from sensing data collected by probe
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FIGURE 9. Prediction error vs. normalized total amount of transmitted
data for road-traffic volume prediction (1B = 500× 500 (m2)).

vehicles. The purpose of this evaluation is the same as that
of performance evaluation in Section V. Parameters used are
listed in Table 3.

TABLE 3. Parameters for performance evaluation by mobility demand
prediction.

B. EVALUATION MODEL
1) PRE-TRAINING OF MACHINE LEARNING MODEL
The Random Forest regressor model in the scikit-learn
library [28] is used as the machine learning model for predic-
tion for this evaluation. The shape of input X of the model is
the same as the input described in Section V, except that each
element xij in the matrix represents the number of pickups in
block j at time slot t− i, where t is the current sampling time.
The output y of the model is the number of pickups of each
block at sampling time t .

The Random Forest regressor is trained with the pickup log
data of 536 taxies before the evaluation. The data is split into
the first 20 days for training and last five days for evaluation.
The details of the dataset are described in Section VI-C.

2) CALCULATION OF IMPORTANCE OF BLOCKS
The impurity and perturb methods described in Section V-B
are also used as feature selection methods for the proposed
system in this evaluation.

3) CONTROL OF DATA TRANSMISSION
The number of pickups by taxis can be detected from sensing
data collected by onboard cameras or LiDARs using an object
detection algorithm at the pre-processor on the edge server.
In this evaluation, we streamlined this process and obtained
directly the number of pickups from an existing dataset as in
Section V.
The same as in Section V-B, probe vehicles decide whether

or not to transmit the collected data in each time slot.

4) AGGREGATION OF TRANSMITTED DATA
It is assumed that an aggregator on the edge server receives
raw sensing data and pickup logs from taxies and a
pre-processor on the edge server extracts useful information
to predict mobility demand. From the extracted information
and pickup logs, the aggregator counts the number of pickups
in each block at each time slot. If no probe vehicles are in the
block at the sampling time, zero-filling is used to complete
the missing parts of data.

5) PREDICTION
Prediction is performed in each time slot using the pre-trained
model described in Section VI-B.1.

C. DATASET
A trace set of the mobility data of taxi cabs in San Francisco
is used in this evaluation, the same as in V. The mobility log
includes occupancy data that represents whether or not a taxi
has passengers. This evaluation uses the occupancy of taxies
as well as the mobility traces of taxies included in the dataset.
This evaluation considers that a pickup occurred when the
occupancy value of the log changed from 0 (not-occupied)
to 1 (occupied).

The evaluation area is split into NB blocks, as described in
Section V, and the location of taxies is interpolated every 1T
minute. Figure 10 shows the average number of pickups in
each block.

FIGURE 10. Average no. of pickups in each block per minute.

D. METRICS AND BENCHMARKS
This evaluation uses the samemetrics and benchmarkmethod
as Section V.

E. RESULTS
Figures 11 and 12 show the importance of each block
extracted from the Random Forest regressor by using the
impurity method and the perturb method, respectively. As
observed in Section V-E, there is a difference between the
number of pickups in Fig. 10 and the importance of blocks
in Figs. 11 and 12.

Figures 13 and 14 show the prediction error against the
transmission rate when the block size is 1B = 1000 ×
1000 and 1B = 500 × 500, respectively. RMSLE is larger
when the transmission rate is smaller for all the methods,
which is the same as the trend observed in Figs. 8 and 9.
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FIGURE 11. Extracted importance of each block for mobility demand
prediction (impurity).

FIGURE 12. Extracted importance of each block for mobility demand
prediction (perturb).

FIGURE 13. Prediction error vs. transmission rate for mobility demand
prediction (1B = 1000× 1000 (m2)).

In Figs. 13 and 14, when r < 0.2, RMSLE of the proposed
system has a relatively larger value than RMSLE in other
ranges of the transmission rate r . In contrast, in Figs. 8 and 9,
when r < 0.1, RMSLE of the proposed system has a rel-
atively larger value than RMSLE in other ranges of r . This
is presumably because the number of relatively important
blocks is smaller in the road-traffic volume dataset compared
to the mobility demand dataset. In the road-traffic dataset
in Section V, only a small number of blocks have high
importance and many other blocks have low importance. In
the road-traffic dataset, RMSLE has a large value especially
when r < 0.1 because those small numbers of important
blocks are dropped when r < 0.1. In contrast, in the mobility
demand dataset, since the number of relatively important
blocks is larger, RMSLE of the proposed system has a rel-
atively large value when r < 0.2.

FIGURE 14. Prediction error vs. transmission rate for mobility demand
prediction (1B = 500× 500 (m2)).

VII. CONCLUSION AND FUTURE WORK
To reduce the volume of transmitted data used as input for
real-time spatial information prediction while maintaining
the prediction accuracy, this paper proposed an IoT device
control system that uses the importance of data extracted from
the machine learning model used for prediction. Importance
of data is obtained by measuring how much the collected
data by mobile sensors will contribute to the prediction accu-
racy of real-time spatial information. The proposed system
extracts the importance of data by applying feature selection
methods. This enables the mobile IoT devices in the proposed
system to avoid transmitting less important data (in terms of
how much the data contributes to the prediction accuracy)
to an edge server. Performance evaluations with road-traffic
and mobility-demand prediction scenarios demonstrated that
the proposed system reduces the volume of data transmission
for real-time prediction while achieving the same level of
prediction accuracy as the benchmark methods.

For a more practical evaluation, in future work, other
machine learningmodels alongwith suitable feature selection
methods for the models should be considered. Future work
will also include an evaluation with other applications than
the ones discussed in this paper.
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