
Received June 30, 2019, accepted July 5, 2019, date of publication July 11, 2019, date of current version July 30, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2928221

More Accurate Estimation of Working
Set Size in Virtual Machines
AHMED A. HARBY, SHERIF F. FAHMY , (Member, IEEE), AND AHMED F. AMIN
Computer Engineering Department, Arab Academy for Science, Technology and Maritime Transport, Cairo, Egypt

Corresponding author: Sherif F. Fahmy (fahmy@aast.edu)

ABSTRACT Accurate working set size estimation is important to increase the consolidation ratio of data
centers and to improve the efficiency of live migration. Thus, it is important to come up with a technique
that provides an accurate estimation of the working set size of virtual machines that can respond to changes
in memory usage in real-time. In this paper, we study the problem of working set size estimation in virtual
machines and come upwith amethod that allows us to better estimate the working set size of virtual machines
in Linux. Toward that end, we design a finite state machine that can be used to accurately estimate the
working set size and that is responsive to changes in workload. We then implement the algorithm on Linux
using QEMU-KVMas our hypervisor. The system is tested using the sysbench benchmark for memory, CPU,
and database workloads. The results indicate that our algorithm provides better results in terms of average
working set size estimations and is competitive with existing techniques in terms of page faults.

INDEX TERMS WSS, virtual machines, memory management.

I. INTRODUCTION
Virtualization of computing resources is an important topic
that is expected to become more relevant as we move towards
an increase in the virtualization of everything – from the
virtualization of standard machines in data centers [1] to
the virtualization of networking functions in the form of
NFVs (network function virtualization) [2] that can be used
to compose networking components as required.

This paper covers an important topic related to virtual-
ization. Specifically, it studies how we can more accurately
estimate the size of the working set of virtualized machines.
This is important for two reasons, namely

• To reduce memory pressure on host machine(s)
• To improve migration performance

We shall now elaborate on these items. First, by estimating
the working set size accurately, a host operating system can
reclaim memory from the guest OS and either use it for its
own purposes or allocate it to other virtual machines, there-
fore increasing the consolidation ratio of virtual machines in
data centers. This is important as it allows the data center to
host more virtual machines and hence increases its efficiency
and its profit margin.

In addition, there is currently a trend in the live migration
research domain to only migrate hot pages and maintain cold

The associate editor coordinating the review of this manuscript and
approving it for publication was Tae Hyoung Kim.

pages on a distributed memory layer across the entire data
center. The idea behind this is to bring down the time required
for live migration by only migrating a subset of the memory
footprint of the virtual machine [3]. In order to be able to do
this, the host OS needs to have an accurate estimation of the
size and identify of the hot pages – estimating the working
set size is an important first step in order to achieve this.

Therefore, it is extremely important to design an algorithm
that can accurately determine the size of the working set of
a machine. If the algorithm over-estimates the size of the
working set, it will not be possible to get themaximumbenefit
in terms of reclaiming memory and faster migration.

On the other hand, if the algorithm under-estimates the
working set size, this will result in an increase in page faults
and a consequent drop in performance as we pay the price of
handling this increase. Thus, the algorithm needs to carefully
track the size of the working set without erring too much in
one direction or the other.

Also, it is important to note that the working set size
changes as the mix of programs executing on an operating
system changes. Even if the same set of applications is exe-
cuting, the working set size will change based on the stage
of execution of the programs. Thus, the developed algorithm
needs to adapt quickly to changes in memory requirements in
order to accommodate the changing needs of the system.

In this paper, we propose a newworking set size estimation
algorithm that allows us to accurately track the size of the

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 94039

https://orcid.org/0000-0001-7330-0694


A. A. Harby et al.: More Accurate Estimation of Working Set Size in Virtual Machines

working set of each virtual machine running on a host by
adaptively estimating the number of pages needed by the vir-
tual machines and then reclaiming additional memory from
the virtual machine using ballooning [4].

Our algorithm improves on the state of the art by attempt-
ing to more accurately estimate the size of the working set
size and being less pessimistic when interpreting changes in
the memory consumption pattern of virtual machines. This
paper describes the algorithm and its implementation of a
Linux system with a QEMU-KVM hypervisor.

The results of our research indicate that the proposed
algorithm performs better in terms of estimating tighter work-
ing set sizes, at little to no effect on the number of incurred
page faults. The rest of the paper is organized as follows.
In section II, we review the literature. Section III presents the
proposed solution, section IV contains some theoretical anal-
ysis, section V presents the experimental result and sectionVI
discusses the overhead of the algorithm. We conclude the
paper in section VII.

II. LITERATURE REVIEW
There are multiple papers that attempt to address the issue
of determining the working set size of virtual machines.
In this section of the paper, we discuss some of the methods
present in the literature. The first method for determining the
working set size of virtual machines is referred to as self-
ballooning [5]. In this method, the host operating system
assumes that the working set size of an application is equal to
the virtual memory requests it makes.

Therefore, self-ballooning assumes that the value of
committed_AS, a variable that Linux increments every time an
application calls malloc and decrements every time memory
is freed, is equal to the working set size of the virtual machine.
The host then inflates or defaults a balloon driver [6], [7] to
enforce this estimate of the working set size in the guest OS.

This technique uses values that Linux already provides,
and so does not require modification to the codebase.
However, it has two disadvantages that may seem contradic-
tory at first. The first is that committed_AS only takes into
account anonymous memory, and thus may underestimate the
memory requirements of applications that have a large page
cache – as would occur in disk I/O intensive applications.

The second is that the anonymous memory requested
by an application, as reported by Linux in committed_AS,
is typically much larger than the working set size of the
application in terms of anonymous memory. Therefore,
this method would overestimate the amount of anonymous
memory needed.

In order to solve this problem, a solution, zballoond, was
proposed in [8], [9]. This solution assumes that the working
set size of a system is equal to the value of committed_AS
initially, and then incrementally increases and decreases this
estimate based on the number of observed page faults and
refaults – thus, even if the algorithm starts with a value that
is too small or too large, it incrementally approaches the true
size of the working set of the system.

The algorithm resets the estimate of the working set size
calculated so far back to comitted_AS any time the value
of commited_AS changes. This occurs because zballoond
interprets such a change as a complete change in the memory
usage pattern of the system, and thus invalidates any calcula-
tions made so far. The algorithm that is presented in this paper
is based on the core ideas of zballoond.

Another method used for estimating the working set size of
virtual machines is employed by VMware [7]. The algorithm
works by periodically invalidating a subset of the memory
pages of a virtual machine. When any of these pages are
swapped back in, this event is trapped in the hypervisor. The
hypervisor then calculates the percentage of the invalidated
pages that were swapped back in and uses this percentage
as an indication of the system-wide percentage of allocated
pages that are actually in the working set.

For example, if a guest OS has 1000 pages allocated,
the algorithm may choose 100 pages as the sample to test.
It would then invalidate these 100 pages, and count the num-
ber of pages from among those 100 that are swapped back
into memory. If this value is, for example, 80 pages. It would
conclude that 80% of the allocated pages are part of the
working set – this amounts to about 800 pages in the example
used here.

While the implementation of this technique is non-
intrusive to the codebase of the guest OS, its implementation
has an impact on the performance of the virtual machine
depending on which pages are selected for invalidation.
Page faults are expensive, and deliberately inducing them to
calculate the percentage of pages that constitute the working
set may be an expensive operation.

The second issue with this technique is, since it selects
a sample of already allocated pages to invalidate, it cannot
estimate a working set size larger than the currently allo-
cated pages. In the best case, all the invalidated pages will
be swapped back in and the hypervisor would calculate the
percentage of allocated pages that constitute the working set
size as 100%, thus setting the working set size to be equal to
the total number of pages currently allocated – when in fact
it is larger.

Another technique that can be used to calculate theworking
set size is Geiger, presented in [10]. This algorithm monitors
the pages that are swapped out of memory, and then, if they
are swapped back, calculates how much space would be
needed to prevent their swapping out in the first place.

Unfortunately, the main problem with this technique is
it only works if the initial memory allocated to the virtual
machine is less than its working set size. If it were larger,
there will be no swapping activity and the working set size
will be maintained equal to the current memory allocation.

In [11], another method for computing the working set
size is presented. In this technique, each virtual machine is
only allocated a small amount of memory and the rest of
the memory requirements of the guests are managed in the
hypervisor as an Exclusive Cache. When the small amount of
memory that is assigned to the guests is used up, the virtual

94040 VOLUME 7, 2019



A. A. Harby et al.: More Accurate Estimation of Working Set Size in Virtual Machines

machine sends memory to the exclusive cache rather than to
swap space. Thus, the hyervisor is fully aware of the memory
requirements of all guests. Like Geiger [10], this algorithm
only works if the current allocation is less than actual needs
of the virtual machine.

Finally, in [12], a new approach that is a combination of
both Geiger and the VMware technique, BADIS, is presented.
The rationale is that each of these component algorithms only
address one of the following issues

• Handle the case in which VM is wasting memory
• Handle the case in which VM needs memory

The VMware technique handles the first point very well,
while the Geiger algorithm handles the second. Thus the
authors combine them into one and called it BADIS.

It should be noted, that self-ballooning and zballoond
handle both issues at the same time out of the box. While
self-ballooning does not track the actual working set accu-
rately since it relies on committed_AS only, zballoond uses
committed_AS as a starting point and incrementally changes
its estimate of the working set size based on the realtime
behavior of the system. Thus, we asked ourselves if zballoond
could be modified to produce even better results. This led to
the following question:
Is it absolutely necessary for zballoond to reset the esti-

mated value of the working set size each time committed_AS
changes?

And the following follow-up question
If we do not reset the working set size every time the value

of committed_AS changes, but rather incrementally respond
to the changes, will there be a price to pay in terms of page
faults?

In this paper, we attempt to answer the above two
questions.

III. PROPOSED SOLUTION
The proposed solution is based on zballoond [8]. The idea
is to smooth the spikes introduced into the estimation of
the working set size by the algorithm proposed in [8], thus
we propose a number of changes to the finite state machine
presented in that work.

In order to present the proposed solution, we will first
quickly review the algorithm proposed in [8]. The algorithm
presented in [8] relies on the fact that if the physical memory
assigned to a virtual machine is larger than its working set,
the number of page faults and refaults should be near zero.

Therefore, the algorithm proposes incrementally decreas-
ing the amount of memory available to a virtual machine by
using ballooning. The rate at which the memory is decreased
varies, with a fast state reducing the memory available at a
fast rate and a slow state reducing the memory available at a
lower rate. The proposed algorithm also has a mechanism for
increasing the memory available – by deflating the balloon
from the guest OS – when the number of page faults and
refaults rises, this state is referred to as the CoolDown state
in the paper.

FIGURE 1. Zballooning FMS [8].

The algorithm described above should converge around
the actual size of the working set of the virtual machine
by increasing and decreasing the size of the balloon driver
inside the guest OS based on the number of page faults that
occur in the system. The initial size of the working set size is
assumed to be committed_AS, which is exposed by the Linux
proc filesystem. At the start of the algorithm, the size of the
working set is decreased at a fast rate of 5% every one second
if no page faults or refaults occur during that interval.

Whenever a page fault or refault occurs, it is taken as an
indication that the working set size estimate is too small for
the actual needs of the guest, therefore it is increased by the
size of the page faults and refaults in order to go back to a
value that accommodates the actual needs of the guest – this
is the CoolDown state. The algorithm remains in this state
until there are no more page faults or refaults. The number
of page faults and refaults are checked every eight seconds
while in this state.

The algorithm exists the above state when eight seconds
pass without a page fault or refault occurring. However, since
the algorithm has just left a state in which the working set size
was too tight for the virtual machine, the algorithm does not
go back to aggressively decreasing the size of the working
set by 5%, instead, it decreases the size of the working set
size by 1% for every one second during which no page
faults or refaults occur.

If at any time the value of committed_AS changes, the
algorithm assumes that the entire memory usage pattern of
the system has changed and therefore resets the working set
size back to committed_AS. The finite state diagram below
depicts the algorithm.

It is this last part of the algorithm that we attempt to
optimize in our proposed algorithm. Instead of resetting the
working set size when committed_AS changes, we modify
the working set size to reflect the change in committed_AS.
After making this change, we go to either the fast state or the
slow state based on the size of the increase in committed_AS.
The idea is not to lose all the work done so far by resetting
the working set size each time the value of committed_AS
changes, but rather to respond incrementally to such changes.
The diagram below depicts the finite state machine of our
algorithm.

The idea of our proposed algorithm is to add another
state to the finite state machine proposed in [8]. We refer
to this state as the Recovery state, this state is entered when
the committed_AS changes – specifically, when it increases.

VOLUME 7, 2019 94041



A. A. Harby et al.: More Accurate Estimation of Working Set Size in Virtual Machines

FIGURE 2. Our FMS.

Instead of resetting the estimate of the working set size and
losing all the work done so far, the Recovery state simply
adjusts the current working set size by the amount of change
that occurred in the value of committed_AS.
Once this is done, the algorithm transitions to either the

fast or slow state depending on the value of the change that
occurred to committed_AS. If the value increases by more
than 5%, the algorithm exits the Recovery state and goes to
the fast state, otherwise it goes to the slow state.
If the value of committed_AS decreases, our algorithm does

not decrease the estimated size of the working set since it is
already as tight as possible, rather, it responds incrementally
to the change in the state of the system, triggered by changes
in the page fault behavior, in order to bring back the algorithm
to a steady state. Note that the algorithm developed in [8]
would reset the estimated working set size to the new com-
mitted_AS even if it decreases – further note that the value
of committed_AS is expected to be larger than the working
set size in most cases, so this would still usually result in
an increase in the estimated size of the working set until the
system stabilizes.

Using this modified finite state machine, we expect to
minimize the number of spikes in the size of the esti-
mated working set that would occur every time the finite
state machine is reset to the start based on a change in
committed_AS.

IV. THEORETICAL DISCUSSION
In this section of the paper, we attempt to make some claims
about the properties of the proposed algorithm. The claims
are a way for us to clarify our thought process regarding the
algorithm. They are not a rigorous mathematical framework,
but just a way for us to semi-formalize our thinking about
the proposed algorithm. We will now present our claims
regarding the algorithm.
Claim 1: The proposed algorithm is expected to produce

a smaller average working set size, averaged over time, than
zballoond.

Proof: Zballoond interprets each change in the value of
committed_AS as a complete change in thememory consump-
tion pattern of the system and therefore resets the estimated
size of the working set. This means that the working set
size will continuously spike when there is a change in com-
mitted_AS. This happens even if the value of committed_AS

decreases, as it is expected that the estimated size of the
working set will be smaller than this value.

On the other hand, the algorithm proposed in this paper
does not interpret a change in committed_AS as a complete
change in the memory consumption pattern of the entire
system, but rather as an incremental change in the system –
therefore, it attempts to incrementally change the working set
size estimate calculated so far in order to accommodate this
incremental change. Therefore, it will not always reset to the
value of committed_AS thus retaining all the work done so
far in estimating the working set size resulting in a smaller
average working set size averaged over time. �
Corollary 1: A corollary of the above claim is that the

standard deviation, calculated over time, of the size of the
working set size of the proposed algorithm will also be
smaller than of zballoond.
Claim 2: We claim that because the average estimated

working set size of the proposed algorithm is smaller than
other algorithms in the literature, the number of reported
page faults should be slightly higher. We make no claim about
how higher it is expected to be, or even that it will always be
higher, but in general we expect the number of page faults to
be higher due to the tighter range of values that the algorithm
keeps for the working set size.

Proof: The algorithm presented in this paper incremen-
tally responds to changes in memory consumption patterns of
the system. Specifically, it does not reset the value of the esti-
mated working set size each time the value of committed_AS
changes. Therefore, it is expected to respond more slowly –
and thus provide a tighter range for the working set size –
to changing memory consumption patterns. This incremental
response and tighter range of values for the working set size
may mean that there is an increase in the number of page
faults as the algorithm responds to changes in the memory
consumption environment of the system. �
Corollary 2: A corollary of the above claim is that the

standard deviation, calculated over time, of the number of
page faults of the proposed algorithm should be larger than
that reported by zballoond.

V. EXPERIMENTAL RESULTS
In order to determine if our algorithm functions as expected,
we tested it on the following setup: The guest OS is a two
core Intel(R) Atom CPU n270 @1.6GHz machine with 2GB
of RAM and Ubuntu 16.04 32 bit installed. The host machine
is an Intel i7 machine with 8GB of RAM running Ubuntu
16.04. We used QEMU-KVM version 3.1 as our hypervisor
and managed the virtual machine using virt-manager version
1.3.2.

We tested the proposed algorithm and compare its result
to the algorithm proposed in [8] using the sysbench [13],
[14] benchmark. In order to ensure that we obtain consistent
results across different workloads, we tested the CPU, Mem-
ory and MySQL suites of sysbench v1.0.17. We record the
number of page faults that occurred during the experiment
and the estimated size of the working set.

94042 VOLUME 7, 2019



A. A. Harby et al.: More Accurate Estimation of Working Set Size in Virtual Machines

FIGURE 3. Working set size–average.

Each benchmark was run ten times and the values men-
tioned in the previous paragraphwere collected. An important
thing to note, is that to prevent continuous resets of the
working set size by the algorithm described in [8], we only
consider changes in committed_AS that are greater than 1%,
reducing the threshold results in numerous resets in zbal-
loond. The rest of this section contains a description of the
results that we obtained.

A. SUMMARY STATISTICS
In this section of the paper, we present the mean and standard
deviation of the number of page faults and the estimated
working set size of both zballoond and the proposed algo-
rithm. Recall that we run each benchmark ten times, thus for
each algorithm we have thirty values for the number of page
faults and the size of the working set, below are the charts that
depict the result of this part of our work.

As can be seen, on average, the working set size estimated
by the zballoond algorithm is larger than the one we propose
in this paper. This is to be expected given the fact that we
do not continuously reset the estimated working set size
whenever there is a change in the value of committed_AS but
attempt to incrementally change its value based on the change
that occurred. This confirms claim 1.

This variability is also reflected in the standard deviation
of the working set size of the two algorithms as depicted
in Figure 4, and this confirms corollary 1. We now report
the average and the standard deviation of the number of page
faults reported by the two algorithms. The idea is to see if the
tighter estimate of working set size exhibited by our algorithm
will lead to a larger number of page faults. First, we present
the average number of page faults of each algorithm.

As can be seen, there is one benchmark, the CPU bench-
mark, inwhich the proposed algorithm has a higher number of
page faults than zballoond. But for the other two benchmarks,
it has a lower number of page faults. In general, we believe
that the tighter bound on working set size provided by our
algorithm may result in a larger number of page faults as the
system incrementally adjusts to a change in committed_AS as
expressed in Claim 2.

But the results appear to show that this is not always
the case. This may be due to the fact that changes in

FIGURE 4. Working set size–standard deviation.

FIGURE 5. Page fault–average.

FIGURE 6. Page fault–standard deviation.

committed_AS may really be orthogonal to memory usage
patterns in most cases. In any case, part of the results,
the result for the CPU benchmark, confirm Claim 2, but the
rest of the results appear to show that the proposed algorithm
performs as well as, and sometimes better than, the algorithm
proposed in [8].

We now present the standard deviation of the page faults
of both algorithms to see whether ours exhibits greater vari-
ability.

The results follow the trend exposed by the average chart
presented above, the CPU test presents the largest variability
in the number of page faults in our algorithm. Similar to the
discussion above pertaining to Claim 2, part of the results here
appear to confirm corollary 2, while the rest of the results
appear to show the proposed algorithm outperforming the
algorithm described in [8].

VOLUME 7, 2019 94043



A. A. Harby et al.: More Accurate Estimation of Working Set Size in Virtual Machines

FIGURE 7. Proposed algorithm time series (CPU).

FIGURE 8. Zballoond time series (CPU).

B. BEHAVIOR OF ALGORITHM OVER TIME
In this section of the paper, we discuss the behavior of the
algorithm over time. In the last section, we summarized the
behavior by calculating the average and standard deviation
over time, in this section we provide the entire time series
of the behavior of the algorithm in order to elucidate more
information about the behavior of the algorithm.

As previously mentioned, we ran each benchmark ten
times for a total of thirty results. To conserve space and to
avoid unnecessary repetition, we present one representative
result from each benchmark. The overall pattern of behavior
of these algorithms is the same, so we do not find it necessary
to include all results or to provide a time series of the average
values at each point in time.

For each benchmark, we provide four time-series plots.
The first two plots contain two time-series, one for the size of
the working set, and the other for the number of page faults
experienced over time for each of the algorithms individually.
We then provide two plots that combine the time behavior
of the working set size estimation and page faults of both
algorithms on the same charts for comparison. We now
present the result for the CPU benchmark.

Figure 7 depicts the results of the time series describing the
behavior of the proposed algorithm, while figure 8 depicts
the results of the time series describing the behavior of the
algorithm in [8]. Figure 9 depicts the combined working set

FIGURE 9. WSS combined (CPU).

FIGURE 10. PF combined (CPU).

size estimation time series of both algorithms in the same plot,
while figure 10 does the same for the number of page faults.

Note the spike in the working set size that occurs in
figure 8, this corresponds to a period in time during which
committed_AS has changed. Note also, that both algorithms
exhibit higher page faults towards the end of the experiment,
because at this time the size of the working set has become
tight, and is driven to either increase or decrease based on the
number of page faults – so it is expected that the number of
page faults will increase at this time.

Another thing to notice, is that after the working set size
is reset in the algorithm described in [8], the number of page
faults abates for a bit. This occurs because the algorithm has
over-estimated the effect of the change in committed_AS on
the value of the working set size. Therefore, it resulted in a
large increase in the value of the estimated working set size,
this caused the number of page faults to drop. Notice that
the page faults pick up again when the increased size of the
working set is brought down again by the algorithm. Note
also that in this particular case the value of committed_AS
has actually decreased as can be seen in the fact that the spike
that occurred with the reset is smaller in value than the value
the algorithm started with.

The combined charts, figures 9 and 10, show the same trend
described in the summary statistics section of the paper. Both
algorithms converge to the same values of working set sizes
at the end, but the proposed algorithm does this faster by

94044 VOLUME 7, 2019



A. A. Harby et al.: More Accurate Estimation of Working Set Size in Virtual Machines

FIGURE 11. Proposed algorithm time series (memory).

FIGURE 12. Zballoond time series (memory).

FIGURE 13. WSS combined (memory).

not spiking every time the value of committed_AS changes.
It also shows that, at least in this particular benchmark,
the proposed algorithm has higher page faults. It should be
noted, as explained earlier, the higher page faults are present
only in the CPU benchmark, for the rest of the benchmarks
the algorithms behavior similarly in terms of page faults –
this can be seen in figures 14 and 18.

The results for the memory and SQL benchmarks are
similar, we include them here for completeness, but they do
not offer any further insight into the relative behaviors of the
algorithms.

As can be seen, when the proposed algorithm meets a
change in committed_AS, it interprets it as an incremental
change in memory behavior and responds correspondingly,

FIGURE 14. PF combined (memory).

FIGURE 15. Proposed algorithm time series (SQL).

FIGURE 16. Zballoond time series (SQL).

whereas the algorithm proposed in [8] considers this a com-
plete change in memory behavior and resets the working set
size. This is the main difference between the two algorithms,
and is what causes their different behavior. We believe the
incremental approach will provide tighter values for the esti-
mate of the working set size – we also believed, as stated in
section IV, that this will come at the expense of an increase in
page faults, however the experimental results appear to show
that the algorithm is competitive with that proposed in [8]
with respect to the number of page faults.

VI. ALGORITHM OVERHEADS
In this section of the paper, we discuss the overheads of the
proposed algorithm. The overheads of the algorithm can be

VOLUME 7, 2019 94045



A. A. Harby et al.: More Accurate Estimation of Working Set Size in Virtual Machines

FIGURE 17. WSS combined (SQL).

FIGURE 18. PF combined (SQL).

divided into two categories, the first is the complexity of
the code that decides on which states to transition to, and
the second is the overhead associated with implementing the
changes in the working set size using the balloon driver.

The transition code, the code that decides which state the
algorithm should go to, is a series of if statements. Thus,
the complexity of this code is O(1). We, therefore, do not
expect that the code that determines the transition paths in
the algorithm will have significant overhead.

On the other hand, the part of the proposed system that
enforces the estimated working set size on the guest OS is
expected to have measurable overhead. The reason for this is
twofold, first, the estimation of the working set size occurs on
the guest OSes, and this needs to be communicated to the host
OS since the host OS is the entity that triggers the balloon
driver. Second, the balloon driver itself will introduce over-
head while allocating memory on the guest for reclamation.

Naturally, the values of these overheads will depend on
the method used to communicate between the host and guest
OS – for example, using shared memory to communicate
between the host and guest would be very fast. However,
this method would be disruptive in terms of modifications to
the code base to allow guest and host OSes to see the same
memory locations. Therefore, we decided to communicate
between the guest and host OS using socket programming.
This causes minimum disruption to the code base, maintains
memory isolation and leaves the balloon driver unmodified,
but is expected to be more time consuming. Please note that

FIGURE 19. Overhead of algorithms.

the complexity of this communication is still O(1), but the
constant term is not negligible.

A final overhead that needs to be considered is that which
occurs due to the increase in page faults as the working set
size shrinks and the algorithm becomes driven by page fault
events. As the working set size becomes tighter, more page
faults will occur and thus more CPU time will be consumed
to handle them.

To measure the effect of all these overheads combined,
we measured the CPU consumed when the proposed method
and zballoond are run and compare them to the CPU con-
sumed when no working set size estimation algorithm is used
using the three benchmarksmentioned in sectionV. Figure 19
depicts the results of this experiment.

Figure 19 contains two subplots, the top subplot depicts the
total CPU usage for the proposed algorithm, zballoond, and
the no working set estimation algorithm (No WSS Est) case.
As can be seen, the proposed algorithm and zballoond behave
similarly, they both have higher overheads than the baseline
case.

It should also be noted that they differ most from the
baseline case in the CPU and SQL benchmarks. A quick
revisit of section V will show that these are the two bench-
marks in which the most number of page faults occur – thus,
a large part of this CPU overhead is probably attributable to
the page fault management code in the OS.

The second subplot further clarifies this by depicting the
difference between the working set size estimation algo-
rithms’ CPU usage and the baseline’s – i.e., the CPU usage
of the baseline is subtracted from the CPU usage of each of

94046 VOLUME 7, 2019



A. A. Harby et al.: More Accurate Estimation of Working Set Size in Virtual Machines

the algorithms and the result is plotted in this graph. As can
be seen, in the best case, the algorithms consume 6% more
CPU than the baseline, and at worst 11% more. It should also
be noted that the proposed algorithm has less than a single
percentage point more overhead than zballoond – they are
virtually identical in terms of overhead.

VII. CONCLUSION AND FUTURE WORK
In this paper, we designed an algorithm that attempts to more
accurately estimate the size of the working set of virtual
machines. The algorithm does this by incrementally decreas-
ing the estimated size of the working set size according to
a finite state machine, and enforcing this working set size
by inflating and deflating a balloon device in the guest OS.
We attempt to improve on existing techniques by not resetting
the working set size every time the memory consumption of
the machine changes.

Our results indicate that the algorithm provides a tighter
bound on the working set size while not suffering any signif-
icant performance penalty in terms of number of page faults
incurred. The overhead of the proposed algorithm is also very
similar to the state of the art. To summarize:

• The proposed algorithm provides better estimates of
working set size

• The proposed algorithm has similar behavior in terms of
page faults as the state of the art

• The proposed algorithm has similar overheads as the
state of the art

In the future, we propose to build on this algorithm in
order to minimize the downtime of live migration of virtual
machines by only migrating the hot pages in the working
set size and offloading cold pages to a system-wide virtual
memory system (e.g., memcached [15]), as well as studying
the effect of the algorithm on the consolidation ratios in data
centers. We will also attempt to improve the algorithm to
further optimize its behavior. We would also like to study
in greater detail the behavior of page faults under tighter
estimates of working set size.

REFERENCES
[1] Geeta and S. Prakash, ‘‘Role of virtualization techniques in cloud com-

puting environment,’’ in Advances in Computer Communication and
Computational Sciences, S. K. Bhatia, S. Tiwari, K. K. Mishra, and
M. C. Trivedi, Eds. Singapore: Springer, 2019, pp. 439–450.

[2] E. Jacob, J. Astorga, J. J. Unzilla, M. Huarte, D. García, and
L. N. López-De-Lacalle, ‘‘Towards a 5G compliant and flexible connected
manufacturing facility,’’ Dyna, Spain, vol. 93, no. 6, pp. 656–662, 2018.

[3] U. Deshpande, D. Chan, T.-Y. Guh, J. Edouard, K. Gopalan, and N. Bila,
‘‘Agile live migration of virtual machines,’’ inProc. IEEE 30th Int. Parallel
Distrib. Process. Symp. (IPDPS), May 2016, pp. 1061–1070.

[4] J. H. Schopp, K. Fraser, and M. J. Silbermann, ‘‘Resizing memory with
balloons and hotplug,’’ in Proc. Linux Symp., 2006, pp. 313–319.

[5] Xen 3.3 Feature: Memory Overcommit—Xen Project. Accessed:
May 18, 2019. [Online]. Available: https://xenproject.org/2008/08/27/xen-
33-feature-memory-overcommit

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, ‘‘Xen and the art of virtu-
alization,’’ in Proc. 19th ACM Symp. Oper. Syst. Principles (SOSP).
New York, NY, USA: ACM, 2003, p. 164. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=945445.945462

[7] C. A. Waldspurger, ‘‘Memory resource management in VMware ESX
server,’’ ACM SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 181–194, 2002.

[8] J.-H. Chiang, H.-L. Li, and T.-C. Chiueh, ‘‘Working set-based physical
memory ballooning,’’ in Proc. 10th Int. Conf. Autom. Comput. (ICAC),
2013, pp. 95–99.

[9] J.-H. Chiang, T.-C. Chiueh, and H.-L. Li, ‘‘Memory reclamation and
compression using accurate working set size estimation,’’ in Proc. IEEE
8th Int. Conf. Cloud Comput. (CLOUD), Jun./Jul. 2015, pp. 187–194.

[10] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
‘‘Geiger: Monitoring the buffer cache in a virtual machine
environment,’’ ACM SIGARCH Comput. Archit. News, vol. 40,
no. 5, pp. 14–24, Oct. 2006. [Online]. Available: http://portal.acm.org/
citation.cfm?id=1168857.1168861

[11] L. Pin and K. Shen, ‘‘Virtual machine memory access tracing with hyper-
visor exclusive cache∗,’’ in Proc. USENIX Annu. Tech. Conf. (ATC), 2007,
pp. 29–43.

[12] V. Nitu, A. Kocharyan, H. Yaya, A. Tchana, D. Hagimont, and
H. Astsatryan, ‘‘Working set size estimation techniques in virtualized
environments: One size does not fit all,’’ ACM SIGMETRICS Perform.
Eval. Rev., vol. 46, no. 1, pp. 62–63, 2018.

[13] Ubuntu Manpage: SysBench—A Modular, Cross-Platform and Multi-
Threaded Benchmark Tool. Accessed: Apr. 26, 2019. [Online]. Available:
http://manpages.ubuntu.com/manpages/trusty/man1/sysbench.1.html

[14] How to Benchmark Your System (CPU, File IO, MySQL) with Sysbench.
Accessed: May 25, 2019. [Online]. Available: https://www.howtoforge.
com/how-to-benchmark-your-system-cpu-file-io-mysql-with-sysbench

[15] V. Chidambaram and D. Ramamurthi, ‘‘Performance analysis of
memcached,’’ Univ. Wisconsin-Madison, Madison, WI, USA, Tech.
Rep., 2010. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.409.411

AHMED A. HARBY was born in Egypt, in 1988.
He received the B.Sc. degree from the Computer
Engineering Department, Arab Academy for Sci-
ence, and Technology and Maritime Transport
(AAST), Egypt, in 2015, where he is currently a
Teaching Assistant. He has been with the AAST
for four years. His main areas of research interest
include virtualization and operating systems.

SHERIF F. FAHMY was born in Egypt, in 1981.
He received the B.Sc. degree and the M.Sc. degree
from the Computer Engineering Department, Arab
Academy for Science, and Technology and Mar-
itime Transport, Cairo, Egypt, in 2002 and 2005,
respectively, and the Ph.D. degree from Virginia
Tech., USA, in 2010. He is currently the Depart-
ment Chair of the Computer Engineering Depart-
ment, Arab Academy for Science, and Technology
and Maritime Transport. He has been in academia

for 17 years. His main areas of research interest include concurrency control
mechanisms, virtualization, and distributed systems.

AHMED F. AMIN received the Ph.D. degree in
electronics and communications from Cairo Uni-
versity, in 1981, and the Ph.D. degree in com-
puter engineering from NPS, CA, USA, in 1987.
He was the Head of the Department of Engineer-
ing, Air Force Academy, Egypt, from 1987 to
1989. From 1989 to 1993, hewas a facultymember
in Saudi Arabia. Since 1993, he has been with
Arab Academy for Science, and Technology and
Maritime Transport. During this time, he was the

Head of the Department of Computer Engineering with the Qatar and Egypt
branches of the AAST, until 2015. His research interests include micropro-
cessor design, operating systems, VHDL design, and embedded systems.

VOLUME 7, 2019 94047


	INTRODUCTION
	LITERATURE REVIEW
	PROPOSED SOLUTION
	THEORETICAL DISCUSSION
	EXPERIMENTAL RESULTS
	SUMMARY STATISTICS
	BEHAVIOR OF ALGORITHM OVER TIME

	ALGORITHM OVERHEADS
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	AHMED A. HARBY
	SHERIF F. FAHMY
	AHMED F. AMIN


