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ABSTRACT Bridging nodes are critical for maintaining information, material, and energy exchanges
throughout a complex network. However, the importance of bridging nodes has often been ignored in
previous studies, which have instead focused on hub nodes. Here, we propose a novel approach named
Bridging Node Centrality (BNC) to identify bridging nodes. BNC is a method based on different levels of
network paths, and it combines traffic flow and positional properties of nodes, which greatly diminishes
the effect of node degree. The performance of BNC was tested in many synthetic and real-world networks
including LFR benchmark networks, social networks, biological networks, collaboration networks, etc.
By comparing with other methods, and the results indicated that whether based on accuracy or approximate
accuracy, BNC could be accurate and robust all the time in different types of complex networks.

INDEX TERMS Node centrality; complex network; bridging-node centrality; hub nodes.

I. INTRODUCTION
A network node is an essential attribute of network topology.
In a real-world network, different nodes play different roles
or functions in order to control and maintain the complex
system. Thus, investigating the property of the crucial nodes
is very important to understand the topology and function
of a complex network. For example, study the lethality and
centrality in protein networks [1]. Crucial nodes of networks
mainly including hub nodes and bridging nodes (Figure 1a).
Until now, most research has focused on hub nodes, while
little work has been done to identify bridging nodes.

A hub node plays an important role in network topol-
ogy, and is normally located inside a module. In the last
decade many methods have been proposed to identify hub
nodes of networks. Several widely used methods utilize dif-
ferent centrality measures that are based on the concepts of
degree, shortest pathway or position information. For exam-
ple, degree centrality [2] is a metric based on the degrees
of nodes, and is the simplest method to identify hub nodes.
Betweenness centrality [3] is a metric that computes the
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FIGURE 1. Schematic of the identification of bridging nodes.
(a) Diagram of hub nodes and bridging nodes. (b) Routes in the network.
(c) Bridges and bridging nodes in the network. (d) Hierarchical
decomposition of the method for the identification of bridging nodes.

shortest path, and is used to quantify the capacity of a node
as a bridge to connect any node pair in a network. K-core
decomposition [4] is based on the positional information
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of nodes, and evaluates the importance of a location of a node
with its k-core scoring. In general, these centrality measures
can be classified as global and local methods based on their
topological properties. Information centrality [5], closeness
centrality [6] and Eigenvector centrality [7]–[12] are global
methods, while degree centrality, subgraph centrality [13]
and clustering coefficient [14] are local methods. While little
work has been done to identify bridging nodes.

Though there are several methods for identifying hub
nodes, bridging nodes in complex network are generally
ignored. However, bridging nodes play an important role in
maintaining information, material and energy exchanges of
crossing modules throughout a network. Bridging nodes are
partly overlapped with hub nodes, but there is still some
distinct difference between them, such as their topological
positions and their indices in the network. For a long time, few
studies focus on identifying bridging nodes [15]–[18], such
as bridging centrality proposed by Hwang et al [17], [18],
which combined betweenness centrality and bridging coef-
ficient together to predict bridging nodes. Although bridging
centrality took into account both global and local properties,
it is still dominated by the degrees of nodes which is similar
to the centrality measures for hub nodes.

In this study, we developed a definition of bridging nodes,
and proposed a novel ‘‘Bridging Node Centrality’’ (BNC)
metric for identifying bridging nodes. Bridging Node Cen-
trality combines the traffic and positional information of
each node, and significantly diminishes the influence of node
degree. Most of other centralities are based on a single factor,
while the idea of BNC is similar to Bridging Centrality
(BrC) [17], which also combines two factors. But the two
factors of BNC are completely different with that of Brc
(see the methods 2.2). We have tested the performance of
BNC in many different types of networks, including LFR
benchmark networks [19], social networks [20], [21], bio-
logical networks and collaboration networks [22], [23] etc.,
and found that in the priori networks, most of the bridging
nodes identified by BNC are consistent with our expectations,
while in the posterior networks, most of them are located in
between modules and mediate module-module communica-
tion. The comparison of BNC with other centrality measures
demonstrates its robustness and higher accuracy in differ-
ent network topologies. Furthermore, we used BNC in the
E.coli transcriptional regulation network, and found that all
the bridging nodes identified by BNC are located between
existing functional modules, based on network topology and
biological functional annotations. Thus, BNC offers us an
effective tool to predict crucial nodes that maintain material
and energy exchanges between modules in a network.

II. METHODS
Three steps are highlighted here to define and evaluate
bridging nodes in a complex network. First, we propose a
hierarchical structure of network pathways. Then, based on
the hierarchical structure, a mathematic model is defined

to identify bridging nodes. Finally, an effective metric was
developed to assess the performance of the identification.

A. HIERARCHICAL ELEMENTS OF NETWORK PATHWAY
Some basic concepts of pathways are elaborated in the study
based on the shortest pathways in the network. The network
pathways are divided into five levels. The first level is the
shortest paths, the second level is routes, next is trunk routes,
then bridges, and the last is bridging nodes.

(1) Shortest path (level one): A path with the minimal
distance between two nodes in a network.

(2) Route (level two): The shortest path between a pair of
nodes excluding the start and ending vertices, whose distance
is larger than 1. For example, the colored paths in Figure 1b
are the routes in the network.

(3) Trunk route (level three): A kind of route that explains
most of the information-exchange within a complex network.
The trunk routes should be a subset of routes, for example,
those colored solid lines in Figure 1b are trunk routes.

(4) Bridge (level four): A kind of route that exp-
lains information-exchange across modules, for example,
in Figure 1c route ‘‘9-11-4’’ is a bridge between two colored
modules.

(5) Bridging nodes (level five): the vertices of bridges are
bridging nodes, for example, in Figure 1c nodes 4, 9 and
11 are corresponding bridging nodes.

B. BRIDGING NODE CENTRALITY
(1) Route-Betweenness (BeR): For each node i, its
route-betweenness is the sum of weights of routes that pass
through this node.

BeR(i) =
∑N

j=1
ωjδj

/
di (1)

where di is the degree of node i, δj is a Dirichlet function, and
N is the number of routes.

δj =

{
1, if node i in route j
0, if node i not in route j

and ωj is the weight of route j,

ωj = Pj
/
Lj (2)

where Pj is the probability of information flow through
route j, and Lj is the length of route j.

(2) Bridgeness-Coefficient (BrCoe): the bridgeness-
coefficient of node i is the reciprocal of sums of the distance
from it to all other nodes excluding its neighbors and indi-
rectly adjacent nodes (disik 6= 1, 2).

BrCoe(i) = 1
/∑n

k=1
disik (3)

where n is the number of nodes, and disik is the distance
between nodes i and k . The importance of node position
is measured by bridgeness-coefficient based on the shortest
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FIGURE 2. The algorithm flow chart of BNC.

pathway (at least longer than two). It is an important indicator
for evaluating node location centrality.

(3) Bridging Node Centrality (BNC): BNC is a novel
metric to identify bridging nodes, and it is defined as the
product of normalized route-betweenness shown in the for-
mula (1) and (2) and bridgeness-coefficient in formula (3).

BNC(i) = BeRNorm(i)× BrCoeNorm(i) (4)

and

BeRNorm(i) =
BeR(i)−min(BeR)

max(BeR)−min(BeR)
(5)

BrCoeNorm(i) =
BrCoe(i)−min(BrCoe)

max(BrCoe)−min(BrCoe)
(6)

Thus, based on the formula (4), (5) and (6), the bridging node
centrality score can be calculated for each node, and bridging
nodes can be identified based on a selected threshold. The
specific steps are shown in figure 1d.

C. ALGORITHM PROCEDURES
As shown in figure 2, the main procedures of BNC algorithm
are as follows:
Step1: Input the adjacency list of the complex network;
Step2: Calculating disik and BrCoe for each node;
Step3: Find all the routes and calculating corresponding

weights for each node;
Step4: Calculating BeR for each node;
Step5: Calculating BNC for each node;
Step6: Output bridging nodes based on the threshold.

D. EVALUATION METRICS
In the priori networks, accuracy can be calculated based on
known bridging nodes directly. However, in the posterior net-
works, due to the difficulty of identifying bridging nodes, it is
hard to find an effective metric to evaluate the performance of
the measures for identifying bridging nodes. In order to solve
this problem, we proposed a metric called approximation
accuracy, to assess these different measures. The approxi-
mation accuracy is an approximate value of true accuracy.

The approximation accuracy is calculated based on the com-
mon bridges nodes detected by five popular module iden-
tification algorithms (NeTA [24], LPA [25], Infomap [26],
Fastgreedy [27] and Walktrap [28]).

The formula for the accuracy and approximation accuracy
are showed as follows

Accuracy = Np
/
Nr (7)

where Np denotes the number of predicted bridging nodes,
and Nr denotes the number of real bridging nodes.

Accuracyapp = Np
/
Ne (8)

where Np denotes the number of predicted bridging nodes,
and Ne denotes the number of estimated bridging nodes, and
Accuracyapp denotes the approximation accuracy.
That is to say, we took the common bridges nodes as

an estimation of the real bridges ones, and then calculate
approximation accuracy based on common bridges nodes.
Approximation accuracy can be used to evaluate the per-
formance of different measures in the posteriori networks
instead of accuracy analysis.

III. RESULTS
We proposed an index named bridging node centrality (BNC)
to quantify the significance of a node in maintaining the con-
nectivity of the whole network. BNC is determined by mul-
tiple network properties, but here we only consider two main
factors: one is the traffic flow of each node, and the other is
its topology position. That is, we combined two main factors
including road betweenness and bridging coefficient together,
and calculated the BNC score for each node, and then took
those nodes with score larger than a particular threshold
as predicted bridging nodes. The BNC index can diminish
the effect of high degrees significantly, and improve the
prediction accuracy of bridging nodes. To evaluate BNC in
empirical networks, we compared its performance with seven
centrality measures: Degree centrality (DC) [2], Betweenness
Centrality (BC) [3], Closeness Centrality (CC) [6], K-Core
decompose (KC) [4], Eigenvalue Centrality (EC) [7]–[12],
Bridging Centrality (BrC) [17], [18] and Information Cen-
trality (IC) [5]

To further evaluate the performance of BNC in the
identification of bridging nodes, six priori networks were
used and analyzed, including two random synthetic net-
works (LFR benchmark networks [29]) and four empir-
ical real-world networks: karate (Zachary [30]), dolphins
(Lusseau, [31]), polbooks (Newman 32]) and jazz [33].

A. PERFORMANCE ANALYSIS ON SYNTHETIC NETWORKS
Two typical synthetic networks were shown as represen-
tative networks with or without overlapping modules. The
first synthetic network (bench_o) consists of 256 nodes
(Figure 3a) that belong to three modules without any over-
lapping nodes. All 16 bridging nodes identified by BNC are
accurate, and thus the accuracy of prediction is 100% in this
network (Figure 3b). Another benchmark network consists
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FIGURE 3. Performance in synthetic networks. Bridging nodes identified
by BNC in the network without (a) or with (c) overlapping modules. The
accuracy of different metrics presented in the network without (b) or with
(d) overlapping modules. Nodes marked with red color are bridging
nodes identified with BNC, and the bigger of the node is, the higher score
it gets in BNC.

of 128 nodes that separate into four overlapping modules
(Figure 3c). In total, there are eight overlapping nodes among
four different modules in this network. As shown in figure 3c,
11 out of 12 bridging nodes identified by BNC are cor-
rect, the accuracy is 91.7% in this network. Among all the
12 nodes, five of them are overlapping nodes amongmodules.
Furthermore, we compared the accuracy of BNC with other
seven centrality measures. As shown in figure 3b and 3d,
BNC had the best performance in all synthetic networks with
or without overlapping modules, which indicates that BNC
is an effective metric to identify bridging nodes in synthetic
networks.

B. PERFORMANCE ANALYSIS ON
REAL-WORLD NETWORKS
The Karate network is a classical real-world benchmark net-
work, and it is split into two factions for the conflict between
the club manager and coach. As shown in Figure 4a, there
are 10 bridges, including 13 bridging nodes. By checking
the top 13 bridging nodes identified by BNC, we find that
11 out of 13 nodes are correct. In addition, the top two nodes
with the highest centrality identified by other measures are
nodes 1 and 34, which indicates that these measures are dom-
inated by the topology property of node degree. By contrast,
the top n1/2 bridging nodes identified byBNC are nodes 32, 3,
20, 9, 14, 1 in turn, and they are all real bridging nodes, indi-
cating that BNC greatly diminish the effect of node degree.

Just like the Karate network, similar results were observed
on the dolphins, polbooks and Jazz networks. The dolphins
network consists of two larger groups, and the two groups
communicate with each other through several individuals
(bridging nodes). Figure 4b shows the eight bridging nodes
identified byBNC in this network, and 6 of them are real ones.

FIGURE 4. Performance in real-world networks. Bridging nodes identified
by BNC in the karate (a), dolphins (b), polbooks (c) and Jazz (d) network.
Those marked with red color are bridging nodes identified with BNC. The
larger the node is, the higher score it gets in BNC.

FIGURE 5. Accuracy in real-world networks. The comparison of accuracy
of BNC with other centrality measures on four real-world networks:
karate, dolphins, polbooks and jazz network.

The polbooks network has three kinds of books: liberty,
conservative and neutral. Here we only took liberty and con-
servative books into account. BNC identified 7 real bridging
nodes out of the top 10 predicted nodes (Figure 4c). Similarly,
between the two major modules of the Jazz network, BNC
identified 13 real bridging nodes out of the top 14 predicted
nodes. To better evaluate the performance and robustness,
we further compared the results of BNC with seven other
centrality measures. We found that BNC has the highest
accuracy (Figure 5) in all these empirical real-world net-
works, indicating that BNC is a powerful measure to identify
bridging nodes in real-world networks.
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TABLE 1. The table of analyzed networks.

C. APPROXIMATE EVALUATION
For the priori networks, we can analyze the accuracy of dif-
ferent measures as showed above. However, in the real world,
most networks are posteriori ones, and it is hard to know
their true topological structure, which means the accuracy
indicator is invalid. As a result, the approximate accuracy
(see Methods) is proposed to replace the accuracy as an
evaluation indicator.

The approximation accuracy is an effective approximation
to the true accuracy.With the approximate accuracy indicator,
we compared BNC with other centrality measures in both the
priori and posteriori networks. As Table 1 shows, 17 networks
were analyzed in total, including 11 priori networks and
6 posteriori networks. We compare the approximate accu-
racy with the accuracy based on the priori networks shown
above. More testing results were shown in the supplementary
materials.

1) VALIDITY OF APPROXIMATE ACCURACY
BASED ON PRIORI NETWORKS
In the synthetic networks shown above, the ranking of
approximation accuracy of different measures fits well with
the corresponding accuracy. For those networks with over-
lapping modules, by comparing the figure 6a with figure 3b,
we found that except for the approximation accuracy of IC,
which is abnormally higher than corresponding accuracy,
the ranking of approximation accuracy of other measures
coincides with that of corresponding accuracy. For those net-
works without overlapping modules, by comparing figure 6b
with figure 3d, we found that besides the approximation
accuracy of BrC, which performs worse than corresponding
accuracy, the ranking of approximation accuracy of other
measures consistent with that of corresponding accuracy.
We obtain similar results (see supplementary materials) from
other synthetic networks (see Table 1), which means that

FIGURE 6. Approximation accuracy in synthetic networks.
(a) Approximation accuracy of different methods in the network with
overlapping modules. (b) Approximation accuracy of different methods in
the network without overlapping modules.

FIGURE 7. Approximation accuracy in real-world networks.
(a) Approximation accuracy of different methods in karate network.
(b) Approximation accuracy of different methods in dolphins network.
(c) Approximation accuracy of different methods in polbooks network.
(d) Approximation accuracy of different methods in jazz network.

approximate accuracy is an effective tool to test the perfor-
mance of different methods in synthetic networks. The results
show that whether it is accuracy or approximation accuracy,
BNC always performs well to identify bridging nodes in
synthetic networks.

In the four real-world networks shown above, the ranking
of approximation accuracy of different measures is similar
to that of the corresponding accuracy as well. For the karate
network, by comparing the figure 7a with figure 5, we found
that except for the fact that the approximation accuracy of BC
and BrC are a little worse than their corresponding accuracy,
the ranking of approximation accuracy of other measures is
in agreement with that of corresponding accuracy.

For the dolphins network (figure 7b), polbooks network
(figure 7c) and jazz network (figure 7d), we got similar
results that the ranking of approximation accuracy of most
measures is agreement with that of corresponding accuracy.
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FIGURE 8. The bridging nodes of E.coli network. Different colors denote
modules with different function, and the red bigger nodes denote
bridging nodes. The larger the node is, the higher score it gets in BNC.

But by comparing these figures with the figure 5, some
abnormal fluctuations can be observed between accuracy and
corresponding approximation accuracy of some measures.
Such as, the approximation accuracy of DC, CC and EC
are abnormally higher than corresponding accuracy in the
dolphins network, the approximation accuracy of CC andBrC
are worse than corresponding accuracy in the polbooks net-
work, and the approximation accuracy of BC is abnormally
higher than corresponding accuracy in the jazz network. Sim-
ilar results (see supplementary materials) could be observed
from other real-world networks, which proved that approxi-
mate accuracy is an effective tool to test the performance of
different methods in real-world networks. In total, whether
it is evaluated with accuracy or approximation accuracy,
BNC always performs well in real-world networks.

2) PERFORMANCE ANALYSIS IN POSTERIORI NETWORK
The aim of developing BNC is to precisely identify bridging
nodes in complex networks, especially biological networks.
Therefore, we use the transcriptional regulation network of
E. Coli as an example to show the usability of BNC. The
E. Coli transcriptional regulation network [34] consists of
the vertices representing operons and the edges represent-
ing the regulation of a transcription factor to an operon.
As shown in Figure 8, 21 modules were detected in this
network with NeTA method [22]. The functional annotation
with DAVID [35], [36] indicated that all 21 modules have
significant biological functions. All bridging nodes identi-
fied by BNC are located between functional modules that
seems to intermediate their communication (Figure 8). For
example, node 155 is a bridging node connecting the pink
module and light cyan module. The genes of pink module are
enrichment with cellular macromolecule metabolic process
(BP: 1.80E-33), while the genes of light cyan module are
enrichment with xenobiotic metabolic process (BP: 9.1E-6),
which indicates that the importance of node 155 in connecting

these two functional modules. This shows that BNC is an
effective metric to identify bridging nodes based on the
approximate accuracy (see supplementary materials). Similar
results can be got in other posteriori networks (see supple-
mentary materials), which means BNC always performs well
whether in a priori or a posteriori network.

D. COMPLEXITY ANALYSIS
BNC consists of two factors: BeR and BrCoe. The calculating
of BeR cost time complexity is O(n3 + m + mn), and BrCoe
cost time is O(n2+n), where n is the number of nodes, andm is
the number of routes in this complex network. Thus, the total
time complexity of BNC is O(n(n2 + n + 2) + m(n − 1)).
Obviously, it is almost the same as BC, KC and BrC in which
time complexity is O(n3). Among these measures, DC has the
lowest only O(n) time complexity, while in most cases it gets
poor results.

IV. DISCUSSION AND CONCLUSION
Crucial nodes play important roles in the network [42]–[48].
For example, the failure of a hub node often leads to the
functional failure of a local module, and the cascading failure
of bridging nodes often leads to the communication failure of
the whole network. That is to say, bridging nodes are crucial
nodes to maintain the integrity of a network. The failure of
bridging nodes could be much more disruptive than expected.
Although bridging nodes and hub nodes are both crucial
nodes of networks and overlap with each other to a certain
extent, significant differences between them exist. Hub nodes
are always located inside a module, while bridging nodes
are normally located between modules. Moreover, bridging
nodes are important for traffic flow, while hub nodes maybe
not be.

Unlike hub nodes, little work has focused on identify-
ing bridging nodes. The reason is that bridging nodes are
harder to identify and evaluate than hub nodes. In this paper,
we defined hierarchical elements of network pathways, and
proposed an effective model named ‘‘Bridging Node Central-
ity’’ to identify bridging nodes. We tested BNC on synthetic
and real-world networks, including social networks, LFR
benchmark networks, biological networks and collaboration
networks. By comparing with seven other centrality mea-
sures, BNC always showed high robustness and good perfor-
mance in all the networks we tested, whether it is based on the
accuracy or approximation accuracy. Therefore, we conclude
that BNC is an effective method to identify bridging nodes in
complex network.

It is a hard problem to confirm the number of bridging
node in a posterior network. The usual approach is to select
a threshold, and take those nodes with score larger than
this threshold as destination nodes. However, how to take
a reasonable threshold is still a hard problem. By testing
in a large number of networks, we observed that in general
the number of bridging nodes is rapidly reduced below top
n1/2 (n is the number of nodes in a network) components.
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Therefore, the performance analysis of different measures is
mainly focused on the top n1/2 nodes in all above examples.

We have to figure out that the identification of bridging
nodes has its own limitation. If there are too many bridges
in a network, then it is nonsense to identify bridging nodes.
For example, in the US football network almost each node
has a link cross modules, which means most of nodes in this
network are potential bridging nodes. So it is meaningless to
explore bridging nodes in this network.
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