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ABSTRACT In this paper, a novel microscopic machine vision system is proposed to solve a degradation
monitoring problem of low-voltage electromagnetic coil insulation in practical industrial fields, where an
ensemble learning approach in a compound membrane computing framework is newly introduced. This
membrane computing framework is constituted by eight layers, 29 membranes, 72 objects, and 35 rules.
In this framework, multiple machine learning methods, including classical pattern recognition methods and
novel deep learning methods, are tested and compared. First, the most optimal feature extraction approaches
are selected. Then, the selected approaches are fused together to achieve an even better monitoring perfor-
mance. Third, a large number of experiments are used to evaluate and prove the usefulness and potential
of the proposed system, where a mean accuracy of 61.4% is achieved on 1035 validation images of six
degradation states with single state matching, and mean accuracies of 61.0% and 77.4% are achieved on
622 test images of six degradation states with single state matching and state range matching, respectively.
Finally, a mechanical device is designed to apply the system to real industrial tasks.

INDEX TERMS Low-voltage electromagnetic coil, insulation degradation monitoring, ensemble learning,
machine vision, membrane computing, microscopic image analysis, feature extraction.

I. INTRODUCTION
Electromagnetic coils are fundamental energy conversion and
transformation components of many systems, and they are
widely used in motors, transformers, and solenoids [1]. With
the increasing use of electric power in aircraft, the reliability
of the low-voltage coil insulation systems becomes a very
important issue. Many existing works, particularly [2]–[5],
report that stator-winding insulation is one of the weak-
est components in a drive, which contributes to around

The associate editor coordinating the review of this manuscript and
approving it for publication was Habib Ullah.

25% to 40% of motor failures. A study conducted by ‘Oak
Ridge National Laboratory’ [6] shows that over 50% of
solenoid valve failures (SOVs) in U.S. nuclear power plants
are attributed to electromagnetic coil faults (such as coil open
or coil short). ‘CIGRE Study Committee’ carries out an inter-
national survey, which shows that 56% of electric generator
failures are originated by electrical insulation damage [7], [8].
Considering that insulation failure usually occurs suddenly
and causes catastrophic effects (for example, it only takes
less than 2 seconds for a turn-to-turn fault to develop into a
completely winding insulation failure for a 15 KW induction
machine), methods to perform degradation monitoring for
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coil insulation are preferred to enable predictive maintenance
of the electromagnetic coils prior to development of a fault
that could cause catastrophic damage.

In order to solve the degradation monitoring problemmen-
tioned above, a novelMachine Vision based intelligent system
is proposed in this paper, which can monitor the degrada-
tion of low-voltage electromagnetic coil insulation in a rapid
and non-destructive way by directly analyzing microscopic
images. An example of the analyzed electromagnetic coil and
its microscopic images is shown in FIGURE 1.
This system considers the degradation monitoring work as

a material state matching task and address the following three
problems:
• The first is a classical pattern recognition methods based
overall state matching problem. To effectively match
the material states, prior knowledge from the practi-
cal domain is an important factor, where the classical
pattern recognition methods support an effective way
to obtain useful information to describe the properties
and characteristics of the material states. In this paper,
classical pattern recognition approaches are used step by
step, such as image denoising, normalization, color fea-
ture extraction, texture feature extraction, feature selec-
tion and feature fusion [9], [10]. Because in the clas-
sical pattern recognition methods, most of the feature
extraction approaches are designed manually, they gain
an impressive overall state matching result. Based on
lots of contrast tests, color features in the RGB color
space and Histogram of Orientation Gradient (HOG)
features obtain the first two overall state matching
results among ten classical feature extraction methods
(Sec. III-C1). Hence, RGB color features and HOG
features are selected for a further fusion.

• The second is a novel Deep Learning (DL) methods
based single state matching problem. Although, the clas-
sical pattern recognition methods can obtain a good
overall matching result, they are mainly manual craft
methods which are limited by the human imagination
and experiences, and easy to ignore the relations among
details of information. To this end, novel deep learn-
ing approaches introduce a more free way to discover
deeper features by machine itself [11]. Although the
deep learning methods are lack of prior knowledge
from the practical work, they can analyze data using
a layer-by-layer learning process, and have a powerful
discriminative ability within the inner relations among
the data. Hence, besides the classical pattern recogni-
tion methods, the deep learning methods are also cho-
sen to further enhance the matching performance in
each of the single state. Particularly, this paper focuses
on a Deep Convolutional Neural Network (DCNN)
method, due to its highly evaluated performance in a vast
number of machine vision tasks, including image pro-
cessing, segmentation, classification, video captioning,
object detection, tracking and action recognition [12].
However, even the degradation monitoring experiments

FIGURE 1. An example for different degradation cycles (states) of
low-voltage electromagnetic coil insulation. (a) to (c) show the visible
morphology and structure of the coil and its wire. (d) shows a
constant-temperature dry box, where the coil are treated by a 235◦C
temperature to speed up the degradation process using it. (e) to (j) are
the images taken under a 3500 magnification times microscopy in six
degradation states, respectively.

are always operated in manual simulated environments
to shorten the experimental period, it still takes a very
long time to collect the samples, resulting in a small
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FIGURE 2. A schematic diagram illustrating of the compound cell-like P system of membrane 1.

training data set problem [13]. This problem makes
it difficult to collect plenty of microscopic images to
train an optimized DCNN model. To this end, data aug-
mentation is first done to increase the size of the data
set. Then, a transfer learning strategy is selected and
applied by a ‘‘pre-training and fine-tuning’’ approach
that first trains a DCNN on a large auxiliary data set,
followed by domain-specific fine-tuning on the small
microscopic data set [14], [15]. Based on many contrast
tests, the DCNN models obtaining the optimal single
state matching results are selected for each degradation
state, respectively (Sec. III-C2).

• The third is a Membrane Computing based Ensem-
ble Learning problem. In machine learning domain,
because ensemble methods can fuse multiple learning
algorithms to obtain a better predictive performance
than any of the single learning algorithms [16]–[18],
this paper considers to use it to further improve the
matching results. In order to apply the ensemble learning
strategy effectively, the complementaries of the classical
pattern recognition and the novel deep learning based
matching methods are first analyzed. Then, based on the
analyzing results, a boosting strategy is chosen, which
can convert these single ‘‘weaker’’ matching methods
into an integrated ‘‘stronger’’ matching method [19],
[20]. Especially, because of the good performance of
membrane computing systems (P systems) in parallel
computing [21], [22], a compound P system framework

is proposed in this paper to integrate the advantages of
the weaker matching methods to obtain an even bet-
ter result. A schematic diagram shown in FIGURE 2
briefly demonstrates the structure of this framework by
a Venn diagram [23], where the outermost membrane
(skin membrane) is first defined as a cell-like P system
to represent the whole matching system (membrane 1 in
Sec. III-A). Then, the inside of membrane 1 is consti-
tuted by four main P systems: P system for the matching
model (membrane 2 in Sec. III-E), P system for test
data preparation (membrane 3 in Sec. III-D), P system
for ensemble learning (membrane 4 in Sec. III-C), and
P system for training data preparation (membrane 6 in
Sec. III-B). Furthermore, each of these four P systems
is a multi-layer cell-like P system, including the inner-
most membranes (elementary membranes) inside and
conducting the detailed operations on objects and rules
of the entire P system. The structure of membrane 1 is
briefly represented by Eq. (1) as shown in FIGURE 2.

µbrief = [ [ [ [ ]5]3 [ [ [ ]9
[ ]10]6 [ ]7 [ ]8]4]2]1. (1)

There are three main contributions in this paper:
• First, microscopic machine vision approaches are origi-
nally introduced to the practical industrial domain of the
degradation monitoring of low-voltage electromagnetic
coil insulation.
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• Second, a compound membrane computing framework
is creatively proposed to solve the ensemble learning
problem.

• Thirdly, based on the classical pattern recognition and
novel deep learning methods, the ensemble leaning
approach achieves successful outcomes.

This paper is structured as follows: Sec. II introduces
related works about this paper, Sec. III proposes the detailed
methodologies, Sec. IV carries out the experimental results
and analysis to attest the effectiveness of the proposed
method, Sec. V designs related hardware to apply the pro-
posed methods in practical domains, and finally, Sec. VI
closes this paper with a conclusion and future work.

II. RELATED WORK
In this section, related works about this paper are briefly
reviewed from six respects: The applications of degrada-
tion monitoring in practical industrial fields (Sec. II-A), the
usages of microscopic machine vision (Sec. II-B), the devel-
opment of membrane computing (Sec. II-C), the techniques
of ensemble learning (Sec. II-D), the methods of classical
pattern recognition (Sec. II-E) and approaches of novel deep
learning (Sec. II-F).

A. DEGRADATION MONITORING OF LOW-VOLTAGE
ELECTROMAGNETIC COIL INSULATION
Some previous studies address coil insulation degradation
monitoring in electrical machinery. The work in [24] per-
forms an accelerated ageing test on twisted pairs of magnet
wire and finds that the insulation capacitance increases as
breakdown voltage decreases. The phase shift between a
signal injects at the coil resonant frequency and the resulting
magnetic field is used as a health indicator for the insulation.
Thework in [25], [26] show that changes in the turn insulation
capacitance of the electromagnetic coil are reflected in the
resonant frequency. Thus, a monitoring system is developed
to detect slight variations of high-frequency resonances in the
winding of a working machine fed by an industrial inverter.
The work in [27], [28] also places twisted pairs under thermal
stress and find that the partial discharge inception voltage
decreases, which is an indication of insulation degradation,
while the turn-to-turn capacitance increases. Thus they claim
that the capacitance can be used as an aging indicator of
the self-bonding winding insulation. The work in [29]–[31]
propose a method for stator insulation defect detection in
traction drives machine windings by evaluating the current
response after a voltage step excitation, which is based on
the fact that parasitic winding capacitances changes as the
insulation degrades. The work in [32] introduces a method to
monitor changes in the insulation health state by evaluating
the machine high-frequency properties. The work in [33]
proposes a solenoid-operated valve (SOV) coil insulation
health monitoring method based on the impedance spectrum,
in which the accelerated degradation test of the SOV coil
is performed and Spearman correlation coefficient is used
to find frequency regions of interest within the impedance

spectrum. In essence, all the methods mentioned above use
high-frequency electrical parameter measurement (such as
impedance, capacitance, and resonance) based techniques for
insulation degradation monitoring. Therefore, other effec-
tive methods, like high-frequency signal generators, machine
vision and artificial intelligence approaches, should be devel-
oped and integrated into the devices under test and moni-
toring, which make a wider way for insulation degradation
monitoring in practical applications. As far as we know,
currently, only our previous work in [34] introduces machine
vision based method to this field, where color features in
different color spaces are extracted and compared. Based on
this work, we further carry out our new attempt in this paper.

B. MICROSCOPIC MACHINE VISION
Machine vision usually denotes the techniques and
approaches which are used to support imaging-based auto-
matic inspection and analysis for industrial and scientific
applications [35]–[37]. Due to the effectiveness of the
machine vision approaches, they are widely used in many
microscopic image analysis tasks, such as microbiological
analysis [38], cell analysis [39], pathology analysis [40], and
material analysis [41]. For example, in [42], machine vision
methods are applied to classify environmental microorgan-
isms into 15 categories, where image segmentation, global
feature extraction, local feature extraction, feature fusion,
classifier design techniques are continuously applied. In [43],
a DCNN based feature learning approach is proposed to
synchronously segment and classify epithelial and stromal
regions in microscopic histopathological images. A cell clus-
tering work is carried out in [44], where human pluripotent
stem cells are automatically grouped into different morpho-
logical styles to monitor the differentiation process. In the
work of [45], a machine vision method is proposed to match
the material of transparent objects using the background
distortions, where texture features and surrounding informa-
tion are jointly applied. However, as far as we know, except
our previous work in [34], there is no existing work in the
microscopic machine vision domain, which focuses on the
degradation monitoring tasks. Hence, this paper introduces
the microscopic machine vision methods into a brand-new
industrial application field.

C. MEMBRANE COMPUTING
Membrane computing, also known as membrane system or P
system, is an active and fast developing research domain
in natural computation area, focusing on the study of com-
puting models [46]. Membrane computing gains inspiration
from the organization of living cells and their biochemical
characteristics, properties, reactions and phenomena [47].
Currently, the membrane computing approaches are applied
in many industrial and scientific fields, referring to theo-
retical aspects [48], [49], applications in computer science,
computer graphics, natural language analysis [21], as well as
systems and synthetic biology research [22]. In [50], the main
research topics and developments are further surveyed with
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more detailed information. Since 1998 Păun proposed the
original idea of membrane computing till now [51], it is
applied in many practical fields, such as robot control [52],
electric power system fault diagnosis [47], ecological prob-
lem analysis [46], and image processing [53]. For example,
in the work of [54], a proportional-integral-derivative based
P system controller is proposed to solve a dynamic con-
troller problem of wheeled mobile robots, where artificial
neural networks and knowledge of experts are applied to tune
parameters. In [55], a fuzzy inference based spiking neural P
system is designed, which is applied to deal with an electric
power system fault diagnosis problem. In [46], probabilistic
P systems are used to analyze the breeding and migration of
animals, where the populations of giant pandas and scavenger
birds are modeled and predicted. In the work of [56], a family
of tissue P system is defined to approximate an intensity gra-
dient function of a 2-D image. In [57], a cell-like P system is
structured to optimize a multi-level thresholding criterion for
an image segmentation task. In [58], a modified membrane-
inspired algorithm based on particle swarm optimization with
hyperparameter is used to obtain a optimal image threshold-
ing for image segmentation. However, although membrane
computing shows very powerful abilities in many application
fields, it is not introduced to the ensemble learning domain
before this paper, leaving a huge research space with full of
potential.

D. ENSEMBLE LEARNING
Inmachine learning fields, ensemble learning approaches aim
to integrate multiple learning algorithms together for obtain-
ing a better predictive result than each of the original single
algorithms [16]–[18]. There are different ensemble learning
strategies, such as Bayes optimal classifiers [59], Bayesian
parameter averaging [60], bootstrap aggregating [61], and
boosting [20]. For instance, the Bayes optimal classifier is
an ensemble learning method for classification, and it con-
siders all of the hypotheses in the hypothesis space. Hence,
it should be the best ensemble learning method from the
theoretical point [59]. But, its performance in piratical work
is usually limited by the data size and applied statistical
approaches. To this end, Bayesian parameter averaging is
proposed, which can approximate the conditions of the Bayes
optimal classifier by a hypotheses sampling strategy [60].
Bootstrap aggregating (bagging) denotes an ensemble learn-
ing strategy that each learning method has an equal weight
in an ensemble voting process. In order to obtain the best
predictive result, a bagging approach trains each learning
method using a randomly drawn subset of the training set,
where the famous ‘random forest’ algorithm is a successful
example for the bagging strategy [61]. Boosting represents
an incremental ensemble learning process that can enhance
the classification result by training and integrate new sin-
gle learning methods [20]. In practical work, the boost-
ing method shows a very good classification performance.
However, to the best of our knowledge, there is no work
applying the powerful membrane computing methods in the

ensemble learning tasks. Hence, this paper attempts to struc-
ture a membrane computing framework to implement a novel
and feasible ensemble learning method.

E. CLASSICAL PATTERN RECOGNITION METHODS
Pattern recognition is an important application field of
machine learning, and it concentrates on identification,
recognition and classification tasks of different data
types [9], [10]. Especially, classical pattern recognition meth-
ods usually refer to image processing, feature extraction,
data post processing and classifier design techniques in many
microscopic machine vision tasks [62]. Because most of the
classical pattern recognition methods are manual designed
and include a lot prior knowledge summarized from human
experiences, they support highly evaluated performance. For
example, in the work of [63], a multi-scale conditional
random fields based image labeling approach is proposed,
in which each pixel is assigned to one of a finite set of labels
by its contextual features. In [64], a method for false positive
reduction in mammography is introduced, where multi-scale
wavelet and gray level co-occurrence matrix (GLCM) fea-
tures are extracted first, then particle swarm optimization is
used for feature selection, finally a support vector machine is
applied for classification.

F. DEEP LEARNING METHODS
Deep learning is a category of machine learning algo-
rithms [65], and most of the modern deep learning models
are based on artificial neural networks, such as deep recurrent
neural networks, deep residual networks, and DCNNs [66].
Especially, because the DCNNs can effectively find the inner
relations of the image data, they show very good performance
not only in daily life picture analyzing domains, but also in
special photo understanding fields, like microscopic images,
CT images, ultrasound images, remote sensing images [67].
In contrast to the classical pattern recognition methods,
the DCNN method combines image processing, feature
extraction, data post processing and classifier design steps
into one integral hierarchical model, where many compli-
cated and detailed information can be easily discovered by
the deep learning process. For example, in the work of [68],
a DCNN approach is introduced to classify different cate-
gories of alga, where a network with ten convolutional layers,
three fully connected layers and four spatial pooling layers is
built up. In [69], a novel DCNN structure is designed in a con-
ditional random field model, leading to a powerful classifier
that can do image segmentation and image classification in
microorganism images jointly. However, although the DCNN
method is effective, it needs a lot of data to train a high quality
parameter set, and the training process is always limited by
a small data problem [13], [70]. To address this problem,
the strategy of transfer learning is used, where a basic DCNN
structure is first pre-trained using a large auxiliary dataset
as the ImageNet dataset [71], and then this basic structure
is modify by a fine-tuning approach using a domain-specific
small dataset [14], [15]. For example, in the work of [72],
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a transfer learning based algorithm is proposed to iden-
tify retinal pathologies using optical coherence tomography,
whereGoogLeNet is used as the basic DCNN structure for the
pre-training process. Due to the impressive performance of
DCNN and transfer learning in microscopic machine vision
fields, it is selected for the degradation monitoring work in
this paper.

G. SUMMARY
In this section, the related works are reviewed from six points,
including degradation monitoring of low-voltage electromag-
netic coil insulation, microscopic machine vision, membrane
computing, ensemble learning, classical pattern recognition,
and novel deep learning. By this brief survey, the following
cases are found:
• Although degradation monitoring of low-voltage elec-
tromagnetic coil insulation is very important for practi-
cal industrial production, only traditional physical and
electrical methods are used.

• Because microscopic machine vision methods are very
effective, a technological opportunity is provided to the
degradation monitoring task above.

• Because membrane computing, ensemble learning, clas-
sical pattern recognition methods and novel deep
learning approaches are effective algorithms, they are
selected and further developed for the microscopic
machine vision work in this paper.

III. METHODS
In this section, the technical details of the proposed mem-
brane computing framework are illuminated by the following
order: In Sec. III-A, the structure, objects, and rules are inte-
grally defined and introduced; in Sec. III-B, III-C, III-D and
III-E, the details in the framework are proposed, respectively;
in Sec. III-F, the discussions in this section are summarized.

A. THE MATCHING SYSTEM
As an extension of FIGURE 2, the details of the membrane
computing framework is shown in FIGURE 3.
This matching system is designed as a compound cell-like

P system, namely membrane 1, and it is defined as Eq. (2):

Π = (Γ, Θ, µ, Ω, R, io), (2)

where:
• Γ = {{X∗}, {F∗}, {Acc∗}, {M∗}, {w∗}, {y∗}}, is a finite
alphabet, denoting the set of objects of the compound
P system:
(1) {X∗} = {X0,X1, . . . ,X7}, is the set of input
data (microscopic images). X0 represents a 3-D matrix
including all original images. As shown in FIGURE 4,
the horizontal direction denotes the length of the
images, the vertical direction represents the width of
the images, and the depth direction shows the included
images in X0. In X0, the images are denoted as
x(0,1), x(0,2), . . . , x(0,κ), where κ is the number of images.

Similarly, X1 is a 3-D matrix for standard images, X2
is for training images, X3 is for validation images, X4
is for training images after data augmentation, X5 is for
validation images after data augmentation, X6 is for test
images, and X7 is for test images after data augmenta-
tion. The detailed description of X0 to X6 is discussed in
Sec. III-B, and X7 is discussed in Sec. III-D.
(2) {F∗} = {F(S,RGB),F(V,RGB), . . . ,F(S,DLB)}, denotes
the set of all extracted features of the input images.
In this paper, each of the extracted features is represented
by a feature vector, and each element in {F∗} is a matrix
for the feature vectors. Here, the footnote of {F∗} is
a pair of functional operators like (S, GRB). The first
operator has two options, namely ‘S’ and ‘V’, where ‘S’
denotes the standard images in X1, and ‘V’ denotes the
validation images in X5. The second operator represents
the detailed feature extraction approaches in Sec. III-C,
including ‘RGB’, ‘HSV’ . . . , ‘DL’ in this paper.
(3) {Acc∗} = {AccRGB,AccHSV, . . . ,AccDL}, represents
the set of matching accuracies between the validation
images in X5 and the standard images in X1. Here,
the footnotes ‘GRB’, ‘HSV’, . . . ‘DL’ refer to different
extracted features of {F∗} in Sec. III-C.
(4) {M∗} = {MCPR,MDL,MDLA,MDLB,MDL1 , . . . ,

MDL6 , M1, . . . ,M6}, denotes the set of all selected
matching models. Here, the footnotes ‘CPR’, ‘DL’, . . . ,
‘DL6’ are related to the models using different fea-
ture extraction approaches in Sec. III-C. The footnotes
1, 2, . . . , 6 denote the final matching models of six
degradation states from ‘healthy’ to ‘failure’ as shown
in FIGURE 1, respectively.
(5) {w∗} = {w1,w2, . . . ,w6}, is the set of weight com-
binations of a late fusion approach [73], which is used to
integrate the advantages of the selectedmatchingmodels
in {M∗}, and find the optimal ensemble to enhance the
matching ability of the P system (Sec. III-C). Each {w∗}
is a three dimensional length vector with the format in
Eq. (3):

{w∗} = [w(∗,1),w(∗,2),w(∗,3)], (3)

where w(∗,1) + w(∗,2) + w(∗,3) = 1, and 0 6
(w(∗,1),w(∗,2),w(∗,3)) 6 1.
(6) {y∗} = {y1, y2, . . . , y9}, is the set of all test and
evaluation results (Sec. III-A and III-E).

• Θ = {1, 2, 3, . . . , 29}, is the set of labels of the
membranes, and the detailed information is shown in
TABLE 1.

• µ = [ [ [ [ ]5]3 [ [ [ ]9 [ [ ]13
[ ]14]10]6 [ [ [ ]15 [ ]16 [ ]17 [ ]18
[ ]19 [ ]20 [ ]21 [ ]22 [ ]23 [ ]24]11]7
[ [ [ [ [ ]28]26 [ [ ]29]27]25]12]8]4]2]1,
is demonstrated by an associated tree in FIGURE 5,
and it is the extension of µbrief in Eq. (1) in Sec. I,
showing the complete form of the membrane structure
in FIGURE 3. In µ, there are in total eight layers and
29 membranes, including 16 elementary membranes.
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FIGURE 3. The framework of the proposed compound P system. Different colors of the membranes are corresponding to
their existing layers, respectively.
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FIGURE 4. An example of the structure of X0.

FIGURE 5. The associated tree of the membrane structure µ. The colors in
different layers are corresponding to the same colors in FIGURE 3,
respectively. Membrane 5, 9, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
28 and 29 are elementary membranes.

• Ω = {ω1, ω2, ω3, . . . , ω29}, represents the finite mul-
tisets of objects associated with the compartments of µ
shown in FIGURE 3 and 5, called ‘initial multisets of
objects’, where:
(1) ω1 = {y1, y2, . . . , y6}.
(2) ω2 = {X1,X7,M1,M2, . . . ,M6}.
(3) ω3 = {X6}.
(4) ω4 = {X1,X5,M(CPR,1),M(CPR,2),MDL1 , . . . ,

MDL6 , {w∗}}.
(5) ω5 = {X0}.
(6) ω6 = {X1,X2,X3}.
(7) ω7 = {AccRGB,AccHSV, . . . ,AccHOG}.
(8) ω8 = {X4,X5,M(DL,1)}.
(9) ω9 = {X0}.
(10) ω10 = {X2,X3}.
(11) ω11 = {F(S,RGB),F(V,RGB), . . . ,F(V,HOG)}.
(12) ω12 = {AccDLA,AccDLB}.

(13) ω13 = {X0}.
(14) ω14 = {X0}.
(15) ω15 = {X1,X5}.
(16) ω16 = {X1,X5}.
(17) ω17 = {X1,X5}.
(18) ω18 = {X1,X5}.
(19) ω19 = {X1,X5}.
(20) ω20 = {X1,X5}.
(21) ω21 = {X1,X5}.
(22) ω22 = {X1,X5}.
(23) ω23 = {X1,X5}.
(24) ω24 = {X1,X5}.
(25) ω25 = {F(S,DLA),F(V,DLA),F(S,DLB),F(V,DLB)}.
(26) ω26 = {X1,X5,MDLA}.
(27) ω27 = {X1,X5,MDLB}.
(28) ω28 = {X4,X5}.
(29) ω29 = {X4,X5}.

• R = {R0,R1,R2, . . . ,R32, δ}, denotes the finite sets of
multiset rewriting and communication rules associated
with the 29 compartments in Ω , where the details of R
is shown in TABLE 1.

• io ∈ Θ , defines the output compartment in Θ .

TABLE 1. The labels of the membranes (P systems). The left column
shows the labels of each membrane. The right column describes the main
function of each membrane.

B. TRAINING DATA PREPARATION
In this section, the usages and details of membrane 6
(P system for training data preparation) are introduced.
Membrane 6 is a cell-like P system as shown in FIGURE 3,
and it is used to prepare standard data, training data and
validation data. Especially, all the data in this paper are
microscopic images as shown in FIGURE 1 (e) to (j).
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TABLE 2. Rules in the membrane computing framework. The left column shows the names of the rules. The middle column gives the definitions of the
rules. The right column is the descriptions for the rules.
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TABLE 2. (Continued.) Rules in the membrane computing framework. The left column shows the names of the rules. The middle column gives the
definitions of the rules. The right column is the descriptions for the rules.

Membrane 6 includes one skin membrane and three
elementary membranes, and it is represented as Eq. (12):

Π6 = (X∗, {6, 9, 10, 13, 14}, µ6, {ω6 ∪ ω9 ∪

ω10 ∪ ω13 ∪ ω14}, { R0, . . . , R4, r6}), (12)

where its structure µ6 is defined as Eq. (13):

µ6 = [ [ ]9 [ [ ]13 [ ]14]10]6. (13)

The working process of membrane 6 is shown in
Algorithm 1.
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Algorithm 1Workflow of Membrane 6
Input: The original microscopic image set X0.
Output: The standard image set X1, the training image set

X4, and the validation image set X5.
1: Initialize membrane 6, where S(6,0) = 1, and G6 =

[1, 1, 0, 0].
2: Run membrane 9, 13 and 14, synchronously.
3: Obtain X1,X2,X3 from membrane 9, 13 and 14, respec-

tively.
4: Dissolve membrane 9, 13, and 14 with δ, and release
X1,X2,X3 to their external environments, respectively.

5: Run and dissolve membrane 10, then release X2,X3 to
their external environments.

6: Run membrane 6.
7: Obtain X1,X4,X5 from membrane 6.
8: Activate membrane 7 and 8 using X1,X4,X5.
9: Update G6 to [0, 0, 0, 0].
10: return X1,X4,X5.

1) MEMBRANE 9 (P SYSTEM FOR DATA STANDARDIZATION)
Due to the prior knowledge from the degradation monitoring
experts and our previous work, standard images are necessary
to represent a general state of the material [34]. To this end,

the membrane 9 is designed in this paper, where X0
R1
−→ X1

is constituted with three steps: First, κs original images of
each degradation state are randomly selected from X0, where
2 6 κs 6 (κmin − 1) and κmin is the image number of
the degradation state with the minimum number samples.
Then, a classical image denoising approach, namely median
filter [78], is applied to these selected images to reduce the
impacts of noise and outlier pixels. Thirdly, in each state, the
selected images are summed up and averaged with κs. Finally,
all the averaged images are used as the standard image set X1.
After the computation above, membrane 9 is dissolved by the
rule of δ, and X1 is released to membrane 6. An example for
the image standardization is shown in FIGURE 6.

FIGURE 6. An example for the image standardization (at 0 hour).

2) MEMBRANE 10 (P SYSTEM FOR TRAINING DATA)
Because the proposed degradation monitoring system is
based on a series of supervised learning approaches, training
and validation images are necessary. Hence, membrane 10
(P system for training data) is introduced to generate the train-
ing and validation image sets, including two sub-membranes,
membrane 13 and 14.

(1) In membrane 13 (P system for training set), the oper-

ation of X0
R2
−→ X2 first works, where pTr original images

of each degradation state are randomly selected from X0, and
pTr ∈ (0, 1) is the sampling rate for training images. Then,
these selected images are used as the training image set X2.
Lastly, membrane 13 is dissolved by the rule of δ, and X2 is
released to membrane 10.

(2) In membrane 14 (P system for validation set), the oper-

ation of X0
R3
−→ X3 first works, where pV original images

of each degradation state are randomly selected from X0, and
pV ∈ (0, 1) is the sampling rate for validation images with
the following rules in Eq. (14):

0 < pTr + pV < 1,

If x(0,i) ∈ X2,

Then x(0,i) /∈ X3, (14)

where x(0,i=1,2,3,...,κ), is an image in theX0 (Sec. III-A). Then,
these selected images are used as the validation image set X3.
Lastly, membrane 14 is dissolved by the rule of δ, and X3 is
released to membrane 10.

(3) In membrane 10, the contents of X2 and X3 are kept by
the rule R0 first. Then membrane 10 is dissolved by δ, and X2
and X3 are released to membrane 6.

3) MEMBRANE 6 (P SYSTEM FOR TRAINING
DATA PREPARATION)

In membrane 6, the operation X1
R0
−→ X1 keeps the content

of X1 first. Synchronously, the operations X2
R4
−→ X4 and

X3
R4
−→ X5 conduct a data augmentation approach to the basic

training and validation image sets X2 and X3. Because deep
learning methods are used in this paper and they need a lot
of training data, data augmentation is applied as a data pre-
processing approach to the basic data to enhance the training
performance. There are many data augmentation techniques
for images [79], such as image rotation, image cropping and
image flipping. In this paper, based on a series of contrast
tests, the rule of R4 is finally designed with a brief 180◦ rota-
tion, so the amount of the original images is doubled. Finally,
membrane 6 outputs X1,X4,X5 and uses them to initialize
membrane 7 and 8. Till here, the work of membrane 6 is
finished.

C. ENSEMBLE LEARNING
In this section, the functions and methodologies of ensemble
leaning in membrane 4 are illuminated. Membrane 4 is a
cell-like P system as shown in FIGURE 3, and it is used
for the goal of ‘feature extraction’, ‘feature selection’ and
‘ensemble learning’. This P system includes one skin mem-
brane and 15 elementary membranes, and it is represented
as Eq. (15).

Π4 = (X∗, {4, 6, 7, 8, . . . , 29}, µ4, {ω4 ∪ ω6 ∪

ω7 ∪ ω8 ∪ . . . ∪ ω29}, {R0, . . . ,R22, r4}), (15)
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where its structure µ4 is defined as Eq. (16):

µ4 = [ [ [ ]9 [ [ ]13 [ ]14]10]6
[ [ [ ]15 [ ]16 [ ]17 [ ]18 [ ]19
[ ]20 [ ]21 [ ]22 [ ]23 [ ]24]11]7
[ [ [ [ [ ]28]26 [ [ ]29]27]25]12]8]4. (16)

As membrane 6 is introduced in training data preparation
in Sec. III-B, in this section, we focus on the contents of
membrane 7 and 8. The working process of membrane 4 is
shown in Algorithm 2.

1) MEMBRANE 7 (P SYSTEM FOR CLASSICAL PATTERN
RECOGNITION METHODS)
Membrane 7 is introduced to select the first two optimal
matching models M(CPR,1) and M(CPR,2) from multiple clas-
sical pattern recognition approaches using the rule of R16,
where these two models are corresponding to Acc(CPR,1) and
Acc(CPR,2). In this paper, based on our prior knowledge and
pre-tests [34], ten classical methods are considered and com-
pared due to their related properties and functions, and they
are introduced as follows:

(1) Membrane 15 is a P system associated with red, green,
blue (RGB) color space features. xi is a RGB image in a
given image set X , where i = 1, 2, . . . , n, and n is the
number of images. xi is constituted by red, green and blue
color channels, namely x(i,R) ranging from [0, 255], x(i,G)
ranging from [0, 255], and x(i,B) ranging from [0, 255] [80].
Furthermore, the overall intensity information of x is repre-
sented by its grey-level image x(i,Gr). Based on the definition
above, the rule of R5 is designed with following steps: First,
extract the intensity histogram of x(i,R), x(i,G), x(i,B), x(i,Gr),
and each of them is represented by a 256 dimensional feature
vector, f(i,R), f(i,G), f(i,B), f(i,Gr), respectively [78]. Finally, all
the obtained feature vectors are integrated into a 1024 dimen-
sional feature vector f(i,RGB) = [f(i,R), f(i,G), f(i,B), f(i,Gr)].
Hence,X1 andX5 are represented by featurematricesF(S,RGB)
and F(V,RGB) using R5, respectively, and the ith row denotes
the ith feature vector in a matrix. A demonstration of R5 is
shown in FIGURE 7.
(2) Membrane 16 is a P system associated with hue, satu-

ration, value (HSV) color space features. xi is a HSV image
in a given image set X , where i = 1, 2, . . . , n, and n is
the number of images. xi is constituted by hue, saturation
and blue channels, namely x(i,H) ranging from [0, 360], x(i,S)
ranging from [0, 1] and x(i,V ) ranging from [0, 255] [81].
Based on the definition above, the rule of R6 is designed with
following steps: First, calculate the probability distribution
curve of x(i,H), x(i,S), x(i,V), and each of them is sampled
into a histogram with 100 discrete bins and represented by a
100 dimensional feature vector, f(i,H), f(i,S), f(i,V), respectively.
Finally, all the obtained feature vectors are integrated into a
300 dimensional feature vector f(i,HSV) = [f(i,H), f(i,S), f(i,V)].
Hence, similar to membrane 15, X1 and X5 are represented by
feature matrices F(S,HSV) and F(V,HSV) using R6, respectively.

Algorithm 2Workflow of Membrane 4
Input: The microscopic image set X0.
Output: The standard image set X1, the matching models

M1,M1, . . . ,M6.
1: Initialize membrane 4, where S(4,0) = 0, and G4 =

[0, 0, 0, 0].
2: Run membrane 6 as shown in Algorithm 1.
3: Activate membrane 4 by the output X1,X4,X5 from

membrane 6, and update G4 to [1, 0, 1, 0].
4: Run membrane 28 and 29, synchronously.
5: Obtain MDLA and MDLB from membrane 28 and 29,

respectively.
6: Dissolve membrane 28 and 29 with δ and release MDLA

and MDLB to membrane 26 and 27, respectively.
7: Run membrane 26 and 27, synchronously.
8: Obtain (F(S,DLA), F(V,DLA) and (F(S,DLB), F(V,DLB)),

respectively.
9: Dissolve membrane 26 and 27 with δ, and release

(F(S,DLA),F(V,DLA)) and (F(S,DLB),F(V,DLB)) to mem-
brane 25.

10: Run membrane 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 and
25, synchronously.

11: Obtain (F(S,RGB),F(V,RGB)), (F(S,HSV), F(V,HSV)),
(F(S,HSL), F(V,HSL)), (F(S,Lab), F(V,Lab)), (F(S,YUV),
F(V,YUV)), (F(S,GLCM), F(V,GLCM)), (F(S,PCA), F(V,PCA)),
(F(S,FT), F(V,FT)), (F(S,GF), F(V,GF)), (F(S,HOG), F(V,HOG)),
AccDLA and AccDLB, respectively.

12: Dissolve the membranes in step 10 with δ, and release
the obtained results in step 11 to membrane 11 and 12,
respectively.

13: Run membrane 11 and 12, synchronously.
14: Obtain AccRGB, AccHSV, AccHSL, AccLab, AccYUV,

AccGLCM, AccPCA, AccFT, AccGF, AccHOG, and
(Acc(DL,1),M(DL,1)), synchronously.

15: Dissolve membrane 11 and 12 with δ, and release the
obtained results in step 14 to membrane 7 and 8, respec-
tively.

16: Run membrane 7 and 8, synchronously.
17: Obtain (Acc(CPR,1),M(CPR,1)), (Acc(CPR,2),M(CPR,2)) and

MDL1,MDL2, . . . ,MDL6, synchronously.
18: Dissolve membrane 7 and 8 with δ, and release

(Acc(CPR,1),M(CPR,1)), (Acc(CPR,2),M(CPR,2)) and
MDL1,MDL2, . . . ,MDL6 to membrane 4, respectively.

19: ifAcc(CPR,1),Acc(CPR,2) andAcc(DL,1) get to convergence
then ObtainM1,M2, . . . ,M6; otherwise, repeat step 4 to
18.

20: end if
21: Activate membrane 2 using X1,M1,M2, . . . ,M6
22: Update G4 to [0, 0, 0, 0].
23: return X1,M1,M2, . . . ,M6.

(3) Membrane 17 is a P system associated with hue, satura-
tion, lightness (HSL) color space features. xi is a HSL image
in a given image set X , where i = 1, 2, . . . , n, and n is the
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FIGURE 7. A demonstration of the proposed RGB color space features.
The top row shows an original microscopic image (0 hour). The second
row demonstrates the R, G, B channels and gray-level image of the
original image. The third row shows the 256 bin intensity histograms of
the R, G, B channels and gray-level image, respectively. The bottom row
shows the integrated intensity histogram with 1024 bins.

number of images. xi is constituted by hue, saturation and
lightness channels, namely x(i,H) ranging from [0, 255], x(i,S)
ranging from [0, 255] and x(i,L) ranging from [0, 255] [81].
Based on the definition above, the rule of R7 is designed with
following steps: First, calculate the probability distribution
curve of x(i,H), x(i,S), x(i,L), and each of them is sampled
into a histogram with 100 discrete bins and represented by a
100 dimensional feature vector, f(i,H), f(i,S), f(i,L), respectively.
Finally, all the obtained feature vectors are integrated into a
300 dimensional feature vector f(i,HSL) = [f(i,H), f(i,S), f(i,L)].
Hence, similar to membrane 15, X1 and X5 are represented by
feature matrices F(S,HSL) and F(V,HSL) using R7, respectively.

(4) Membrane 18 is a P system associated with luminosity,
a, b (Lab) color space features. xi is a Lab image in a given
image set X , where i = 1, 2, . . . , n, and n is the number of
images. xi is constituted by L, a (green-red color components)
and b (blue-yellow color components) channels, namely x(i,L)
ranging from [0, 100], x(i,a) ranging from [−128, 127] and
x(i,b) ranging from [−128, 127] [82]. Based on the defini-
tion above, the rule of R8 is designed with following steps:
First, calculate the probability distribution curve of x(i,L),
x(i,a), x(i,b), and each of them is sampled into a histogram
with 100 discrete bins and represented by a 100 dimensional
feature vector, f(i,L), f(i,a), f(i,b), respectively. Finally, all the
obtained feature vectors are integrated into a 300 dimensional
feature vector f(i,Lab) = [f(i,L), f(i,a), f(i,b)]. Hence, similar to
membrane 15, X1 and X5 are represented by feature matrices
F(S,Lab) and F(V,Lab) using R8, respectively.
(5) Membrane 19 is a P system associated with luminosity,

chroma (YUV) color space features. xi is a YUV image in a
given image set X , where i = 1, 2, . . . , n, and n is the number
of images. xi is constituted by Y (luma or brightness com-
ponent), U and V (two chrominance or color components)

channels, namely x(i,Y) ranging from [0, 255], x(i,U) rang-
ing from [0, 255] and x(i,V ) ranging from [0, 255] [83].
Based on the definition above, the rule of R9 is designed
with following steps: First, calculate the probability distri-
bution curve of x(i,Y), x(i,U), x(i,V), and each of them is
sampled into a histogram with 100 discrete bins and rep-
resented by a 100 dimensional feature vector, f(i,Y), f(i,U),
f(i,V), respectively. Finally, all the obtained feature vectors are
integrated into a 300 dimensional feature vector f(i,YUV) =
[f(i,Y), f(i,U), f(i,V)]. Hence, similar to membrane 15, X1 and
X5 are represented by feature matrices F(S,YUV) and F(V,YUV)
using R9, respectively.
(6) Membrane 20 is a P system associated with grey-

level co-occurrencematrix (GLCM) features. GLCM features
consider the characteristics of the texture of an image by the
statistical results of specified spatial relationship of pixel-
pairs occur in an image, and it is usually used to analyze some
images of materials. Hence, it is selected to extract texture
features in our work. xi is a RGB image in a given image setX ,
where i = 1, 2, . . . , n, and n is the number of images. The rule
of R10 is designed with following steps: First, xi is converted
into a grey-level image x(i,Gr). Then, with an offset of 1 in
0◦, 45◦, 90◦, and 135◦ four directions, the GLCM of x(i,Gr)
is generated [84]. Then, calculate the contrast, correlation,
energy and homogeneity of these four direction, respectively.
Finally, the xi is represented by a 16 dimensional feature
vector f(i,GLCM). Hence, similar to membrane 15, X1 and X5
are represented by feature matrices F(S,GLCM) and F(V,GLCM)
using R10, respectively.

(7) Membrane 21 is a P system associated with principle
component analysis (PCA) features. In feature extraction
approaches, PCA is usually used as a post-processing method
for feature selection or dimensionality reduction, which can
transform extracted features into new features with smaller
data size but more important information. So, it is selected to
analyze the principle information of images in our work. xi is
a RGB image in a given image set X , where i = 1, 2, . . . , n,
and n is the number of images. The rule of R11 is designed
with following steps: First, xi is converted into a grey-level
image x(i,Gr). Then, the PCA approach is applied to extract
a latent, which is a 256 dimensional vector containing the
eigenvalues of the covariance matrix of x(i,Gr) [10], [85].
Thirdly, the eigenvalues in the latent are ranked in a descend-
ing order. Finally, the first 50 dimensionality of the ranked
latent are selected and used as the PCA feature vector f(i,PCA).
Hence, similar to membrane 15, X1 and X5 are represented by
featurematricesF(S,PCA) andF(V,PCA) usingR11, respectively.

(8) Membrane 22 is a P system associated with Fourier
transform (FT) features. FT is an effective signal processing
method in pattern recognition domain, and it can represent
an image by a combination of terms of lower and higher fre-
quency, where the terms of lower frequency usually include
the stronger information of the image. Hence, we choose the
FT features to represent the images from the view of signal
frequency analysis. xi is a RGB image in a given image set
X , where i = 1, 2, . . . , n, and n is the number of images.
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FIGURE 8. A demonstration of the selected DCNN (VGG-16 network) structure.

The rule of R12 is designed with following steps: First, xi is
converted into a grey-level image x(i,Gr). Then, the intensity
histogram of x(i,Gr) is extracted, which is represented by a
256 dimensional vector f(i,Gr). Thirdly, discrete Fourier trans-
form is applied to f(i,Gr) [86]. Finally, the first 50 Fourier
coefficients are used as a 50 dimensional feature vector f(i,FT).
Hence, similar to membrane 15, X1 and X5 are represented by
feature matrices F(S,FT) and F(V,FT) using R12, respectively.
(9) Membrane 23 is a P system associated with Gabor filter

(GF) features. GFs are a series of linear filters used for texture
description, which can analyze frequency and orientation
information in a localized region in an image effectively.
So, we choose it as a texture feature extraction approach in
our work. xi is a RGB image in a given image set X , where
i = 1, 2, . . . , n, and n is the number of images. The rule of
R13 is designedwith following steps: First, xi is converted into
a grey-level image x(i,Gr). Then, a set of 40 Gabor filters are
designed to transform x(i,Gr) into 40 images, respectively [87].
Thirdly, for each of these 40 images, a eight bins intensity
histogram is built up, so each image is represented by a eight
dimensional vector f(i,j), where j = 1, 2, . . . , 40. Finally, all
40 vectors are integrated into a 8 × 40 dimensional feature
vector f(i,GF) = [f(i,1), f(i,2), . . . , f(i,40)]. Hence, similar to
membrane 15, X1 and X5 are represented by feature matrices
F(S,GF) and F(V,GF)using R13, respectively.

(10) Membrane 24 is a P system associated with histogram
of orientation gradient (HOG) features. HOG is an effective
local feature extraction approach, which counts occurrences
of gradient orientation in local areas of an image. It can be
considered as a local shape feature extraction method, as well
a texture feature extraction method. Therefore, we select it
to describe the characteristics of gradient changes in our
work. xi is a RGB image in a given image set X , where
i = 1, 2, . . . , n, and n is the number of images. The rule of

R14 is designedwith following steps: First, xi is converted into
a grey-level image x(i,Gr). Then, a nine bins HOG of x(i,Gr) is
extract [88]. Finally, xi is represented by a nine dimensional
feature vector f(i,HOG). Hence, similar to membrane 15, X1
and X5 are represented by feature matrices F(S,HOG) and
F(V,HOG) using R14, respectively.

(11) Membrane 11 is a P system associated with fea-
ture selection for classical pattern recognition methods. The
rule of R15 is introduced to calculate the matching accuracy
of each pair of standard and validation feature matrices.
First, input ten pairs of feature matrices from (1) to (10) to
R15. Then, ten accuracies of these feature matrix pairs are
obtained, namely AccRGB, AccHSV, AccHSL, AccLab, AccYUV,
AccGLCM, AccPCA, AccFT, AccGF and AccHOG. Finally, these
obtained accuracies are released into membrane 7 for a fea-
ture selection process (Sec. IV-B).

2) MEMBRANE 8 (P SYSTEM FOR DEEP LEARNING
METHODS)
Because of the effectiveness in different feature extrac-
tion tasks, a well-known DCCN structure developed by the
‘‘Visual Geometry Group (VGG)’’, namely VGG-16 net-
work [89], is selected as the basic deep learning model.
Furthermore, to apply VGG-16 in the degradation state
matching task, a fine tuning process is handled in the fully-
connected layer. The modified VGG-16 structure is shown
in FIGURE 8.

(1)Membrane 28 is a P system associatedwithmodel train-
ing for deep learning method A. The rule of R17 is designed
to directly train the parameters of a VGG-16 network using
the training data set X4 and the validation data set X5. First,
all the images in X4 and X5 are resized from 400×300×3 to
224 × 224 × 3 pixels to meet the requirement of VGG-16.
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Although the resized images are 42% size of the original
images, resulting in a loss of information, we still have the
classical pattern recognition features from the original images
to make up this loss. Hence, this image resizing operation is
carried out in our work. Then, the VGG-16 structure is trained
with a back propagation process [11]. Thirdly, each resized
image is represented by a 25088 dimensional length fea-
ture vector in the fully-connected layer. Finally, the directly
trained DCNN modelMDLA is obtained.
(2)Membrane 29 is a P system associatedwithmodel train-

ing for deep learning method B. The rule of R17 is designed
to pre-train the parameters of a VGG-16 network using a
transfer learning strategy. First, all the images inX4 andX5 are
resized as that mentioned in (1). Then, the VGG-16 structure
is pre-trained with a large auxiliary dataset of ImageNet
[14], [15], [71]. Thirdly, a domain-specific fine-tuning pro-
cess is applied to the pre-trained VGG-16 structure on the
small data sets X4 and X5 in the fully-connected layer. Next,
each resized image is represented by a 25088 dimensional
length feature vector in the fully-connected layer. Finally,
the indirectly trained DCNN model MDLB is obtained based
on the transfer learning approach.

(3) Membrane 26 is a P system associated with deep learn-
ing method A. xi is a RGB image in a given image set X ,
where i = 1, 2, . . . , n, and n is the number of images. The
rule of R14 is designed with following steps: First, input xi to
the DCNN model MDLA. Then, output a 25088 dimensional
length feature vector fi. Hence, similar to membrane 15,
X1 and X5 are represented by feature matrices F(S,DLA) and
F(V,DLA) using R18, respectively.
(4) Membrane 27 is a P system associated with deep learn-

ing method B. xi is a RGB image in a given image set X ,
where i = 1, 2, . . . , n, and n is the number of images. The
rule of R20 is designed with following steps: First, input xi to
the DCNN model MDLB. Then, output a 25088 dimensional
length feature vector fi. Hence, similar to membrane 15,
X1 and X5 are represented by feature matrices F(S,DLB) and
F(V,DLB) using R20, respectively.
(5) Membrane 25 is a P system associated with the first

round feature selection of deep learning methods. The rule
of R15 is applied to calculate the matching accuracy AccDLA
between F(S,DLA) and F(V,DLA), and the accuracy AccDLB
between F(S,DLB) and F(V,DLB), respectively. Then, these two
accuracies are released into membrane 12 for a further feature
selection process.

(6) Membrane 12 is a P system associated with the second
round feature selection of deep learning methods. The rule of
R16 is applied to selected the first optimal matching model
M(DL,1) from MDLA and MDLB, where the selected model is
corresponding to the Acc(DL,1). Furthermore, in membrane 8,
to obtain an even robust ensemble learning performance,
based on the selected DCNN model M(DL,1), eight hyper-
parameter settings of the full-connected layer are further
compared on each of the six degradation states, and the best
setting for each state is selected (Sec. IV-C).

3) MEMBRANE 4 (P SYSTEM FOR ENSEMBLE LEARNING)

In membrane 4, rule (Input1, . . . , Input4)
R22
−→ Output are

specified as follows:
Input1 denotes standard images X1, Input2 denotes vali-
dation images X5, Input3 denotes the set of the selected
feature extraction models {M(CPR,1),M(CPR,2), M(DL,1)},
Input4 denotes the set of fusion weights of feature vectors
{w1, . . . ,w6} (Eq. (3)), and Output represents the matching
models MDL1 ,MDL2 , . . . ,MDL6 .
In order to matching a degradation state, first, its fea-

ture vectors are extracted by the selected models M(CPR,1),
M(CPR,2) and MDL1 ,MDL2 , . . . ,MDL6 in Sec. III-C1 and III-
C2, respectively. Hence, in each degradation state, each image
becomes represented by a set Λi of three different features
f(CPR,1), f(CPR,2) and fDLi=1,2,...,6 . Second, similarities are com-
puted according to Eq. (5) separately for all of the feature
representations in Eq. (17):

Λi = {f(CPR,1), f(CPR,2), fDLi}
↓ ↓ ↓

ψ(f(CPR,1)) ψ(f(CPR,2)) ψ(fDLi ),
(17)

where ψ(f(CPR,1)), ψ(f(CPR,2)) and ψ(fDLi ) are similarities
using f(CPR,1), f(CPR,2) and fDLi , respectively.
Furthermore, the similarities obtained above are fused by

a linear combination in Eq. (18).

θ (Λi) = w(i,1)ψ(f(CPR,1))+ w(i,2)ψ(f(CPR,2))

+w(i,3)ψ(fDLi ), (18)

which provides an overall similarity assessment for each
degradation state by Λi. The weight wi indicates the useful-
ness of the corresponding feature vector f(CPR,1), f(CPR,2) and
fDLi=1,2,...,6 in each degradation state. If a weight is higher, then
its corresponding feature is more ‘‘important’’.

To obtain such weights, the standard image set X1 and val-
idation image set X5 are applied. Specially, a grid searching
strategy is heuristically used to test possible weight com-
binations. First, each weight is quantized into 101 values
with the step length 0.01, that is, {0, 0.01, 0.02, . . . , 0.99, 1}.
Then, in a weigh vector wi=1,2,...,6, the combination of
w(i,1),w(i,2),w(i,3) leads to the highest matching accuracy
Acci is selected. Finally, the selected wi=1,2,...,6 are used to
implement the ensemble learning approach in membrane 4.

After all the proposed operations above, membrane 4 out-
puts M1,M2, . . . ,M6 and release them to membrane 2.

D. TEST DATA PREPARATION
In this section, the usages and details of membrane 3 are
introduced. Membrane 3 is a cell-like P system as shown in
FIGURE 3, and it is used to prepare ‘test data’. This P system
includes one skin membrane and one elementary membrane,
and it is represented as Eq. (19):

Π3 = (X∗, {3, 5}, µ3, {ω3 ∪ ω5}, {R4, R23, r3}), (19)

where its structure µ3 is defined as Eq. (20):

µ3 = [ [ ]5]3. (20)
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Algorithm 3Workflow of Membrane 3
Input: The original microscopic image set X0.
Output: The test image set X7.
1: Initialize membrane 3, where S(6,1) = 1, and G3 =

[1, 1, 0, 0].
2: Run membrane 5.
3: Obtain X6 from membrane 5.
4: Dissolve membrane 5 with δ, and release X6 to its exter-

nal environment.
5: Run membrane 3.
6: Obtain X7 from membrane 3.
7: Activate membrane 2 using X7.
8: Update G3 to [0, 0, 0, 0].
9: return X7.

The working process of membrane 3 is shown in
Algorithm 3.

1) MEMBRANE 5 (P SYSTEM FOR TEST DATA)

In membrane 5, the rule of X0
R23
−→ X6 works first, where

except X2 and X3, all the remaining (1− pTr − pV) images in
X0 are used as test images. Then, membrane 5 is dissolved by
δ, and X6 is released to membrane 3.

2) MEMBRANE 3 (P SYSTEM FOR TEST DATA PREPARATION

In membrane 3, X6
R4
−→ X7 is first applied to do data

augmentation on the images in X6. Then, membrane 3 outputs
X7 and release it to membrane 2.

E. THE MATCHING MODEL
Membrane 2 is a multi-layer cell-like P system as shown in
FIGURE 3, and it is used to do the final degradation state
matching. This P System includes one skin membrane and
16 elementary membranes, and it is represented as Eq. (21).

Π2 = (X∗, {2, 3, 4, . . . , 29}, µ2, {ω2 ∪ ω3 ∪

ω4 ∪ . . . ∪ ω29}, {R0, . . . ,R29, r2}), (21)

where its structure µ2 is defined as Eq. (22):

µ2 = [ [ [ ]5]3 [ [ [ ]9 [ [ ]13
[ ]14]10]6 [ [ [ ]15 [ ]16 [ ]17
[ ]18 [ ]19 [ ]20 [ ]21 [ ]22
[ ]23 [ ]24]11]7 [ [ [ [ [ ]28]26
[ [ ]29]27]25]12]8]4]2. (22)

Because membrane 3 and 4 are well introduced in
Sec. III-D and Sec. III-C, we focus on the contents of the
skin membrane of this P system. The working process of
membrane 2 is shown in Algorithm 4.
In membrane 2, six matching results y1, y2, . . . , y6 are first

obtained, which are totally raw data, without any statisti-
cal significance. Then, membrane 2 outputs them to mem-
brane 1 for further result statistics and analysis with the rules

Algorithm 4Workflow of Membrane 2
Input: The microscopic image sets X1 and X7.
Output: The test and evaluation results y1, y2, . . . , y6.
1: Initialize membrane 2, where S(2,1) = 0, and G2 =

[0, 0, 0, 0].
2: Run membrane 3 and 4 as shown in Algorithm 3 and 2,

synchronously.
3: Receive the released data from membrane 3 and 4, syn-

chronously.
4: Activate membrane 2, update G2 to [1, 0, 0, 0].
5: Obtain y1, y2, . . . , y6 from membrane 2.
6: Dissolve membrane 2 with δ, and release y1, y2, . . . , y6

to its external environment.
7: Update G2 to = [0, 0, 0, 0].
8: return y1, y2, . . . , y6.

R30,R31 and R32. In membrane 1, y7, y8, y9 are the final
output of the whole matching system with io = 1.

F. SUMMARY
In this section, the technical details of the proposed P sys-
tem are introduced from five respects: The whole matching
system in Sec. III-A, training data preparation in Sec. III-B,
ensemble learning in Sec. 2, test data preparation in Sec. III-D
and the matching model in Sec. III-E, referring to multiple
machine vision, machine learning, pattern recognition, image
processing methods.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, the experimental settings (Sec. IV-A), results
and analyses (Sec. IV-B, IV-C and IV-D) are introduced to
show the feasibility and effectiveness of the proposed mem-
brane computing framework. Moreover, a brief summary
(Sec. IV-E) is given at the end of this section.

A. EXPERIMENTAL SETTING
1) EXPERIMENTAL DATA
In this paper, an original microscopic image data set with
1035 examples of six degradation states is used as X0, includ-
ing 150 images of 0 hour (health), 150 images of 18 hours,
195 images of 36 hours, 180 images of 54 hours, 180 images
of 63 hours, and 180 images of 72 hours (failure), as the
examples shown in FIGURE 1 (c) to (j). All the images are
in ‘.png’ format, with 400 × 300 pixel size, 3 × 8 = 24 bit,
3500×magnification. All other image data sets are generated
from X0, and the detailed information of the experimental
data is given in TABLE 3.

2) EXPERIMENTAL PROCESS
In Sec. IV-B, in order to select the feature extraction
models M(CPR,1) and M(CPR,2), the describing abilities of
ten classical pattern recognition methods mentioned in
Sec. III-C1 are compared and analyzed first. Then, the effec-
tiveness of different DCNN feature extraction approaches is
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TABLE 3. The experimental data setting. The first column shows the data sets. The second column shows the total numbers of images. The third to the
eighth columns represent the degradation states. The last two columns show the corresponding P system rules and describitions.

evaluated in Sec. IV-C to select a better performance on
M(DL,1) mentioned in Sec. III-C2. Furthermore, the mod-
els MDL1 ,MDL2 , . . . ,MDL6 are selected for each degrada-
tion state. Lastly, the final obtained matching models using
ensemble learning, M1,M2, . . . ,M6, are tested to demon-
strate the usefulness of the proposed membrane computing
framework in this paper.

B. EVALUATION OF CLASSICAL PATTERN
RECOGNITION METHODS
In this section, the functions of classical pattern recogni-
tion methods in membrane 7 (Sec. III-C1) are proved using
X1 and X5.
(1) In order to select the first two optimal feature extrac-

tion models M(CPR,1) and M(CPR,2) from ten methods men-
tioned in Sec. III-C1, the matching accuracies are compared
in FIGURE 9.

FIGURE 9. A comparison of the matching accuracies using ten classical
pattern recognition feature extraction approaches on the validation data
set. The horizontal axis shows different feature extraction approaches
(RGB, HSV, HSL, Lab, YUV, GLCM, PCA, FT, GF and HOG) at different
degradation states and their overall performance (mean accuracies). The
vertical axis denotes the matching accuracies of different approaches. In
the red dotted circle, five feature extraction methods obtained close
accuracies around 50%.

As shown in FIGURE 9, the analysis of different feature
extraction methods is discussed below:

1) The RGB feature has a high matching accuracy of
97.3% at 0 hour, and medium results at other states.
Finally, the RGB feature shows an available and stable

performance in the state matching task. Similar to the
RGB feature, the YUV, HOG and PCA feature have
higher mean accuracies and stable matching abilities.
The YUV feature even obtains the highest mean accu-
racy of 55.6% among all ten compared methods.

2) For FT and GF features, both of them have higher mean
matching accuracies around 50%, but their match-
ing performance in different states are quite differ-
ent, showing their lower working stabilities. Hence,
the usages of these two approaches are limited in
practice.

3) The HSV, HSL and Lab features only have good per-
formance in certain states, like 0, 54 and 72 hours, but
loose efficacy in other states. Due to their lower mean
accuracies and stabilities, they are not suitable for this
matching task.

4) For the GLCM feature, due to the standard images
have a contrast near to 0, which totally destroys the
describing ability of the feature, resulting in a failed
result. However, this poor performance of the GLCM
feature is not caused by the feature extraction method
itself, but shows that the usage of the GLCM is not
suitable for this matching task.

(2) As shown in FIGURE 9, because five feature extraction
methods, RGB,YUV, FT, GF andHOG, obtain high and close
accuracies around 50%, the operation of ‘practical case’ in the
ruleR16 is applied. Hence, the variances of these fivemethods
are further compared in FIGURE 10.

From FIGURE 10, the most stable two feature extraction
methods, the RGB and HOG features, are selected. Based on
the rule of R16, because RGB and HOG features have the first
and second lowest variances, the feature extraction models
M(CPR,1) and M(CPR,2) are referring to them, respectively.
In FIGURE 11 and 12, the details of the matching result using
the M(CPR,1) model (the RGB feature) and M(CPR,2) model
(the HOG feature) are shown in two confusion matrices,
respectively.

From FIGURE 11 and 12, a distinct complementarity
between the M(CPR,1) (RGB) and M(CPR,2) (HOG) is shown.
For example, the M(CPR,1) obtains a matching accuracy of
97.3% at the 0 hour, and the M(CPR,2) only has a accuracy
of 40%. In contrast, at 72 hours, the M(CPR,1) only obtains
41.7% accuracy, but the M(CPR,2) is 20% higher. Hence, this
complementarity provides a higher possibility for a further
ensemble learning.
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FIGURE 10. A comparison of the variances of matching accuracies using
five classical pattern recognition feature extraction approaches on the
validation data set. The horizontal axis shows different approaches (RGB,
YUV, FT, GF and HOG). The vertical axis denotes the variances of matching
accuracies of different approaches. In the red dotted circles, the most
stable two feature extraction methods are found by the lowest two
variances.

FIGURE 11. The confusion matrix of the state matching result by the
M(CPR,1) model (the RGB feature) on the validation data set. The mean
accuracy is 52.5% and variance is 4.8%.

C. EVALUATION OF DEEP LEARNING METHODS
In this part, the usefulness of the deep learning methods in
membrane 8 (Sec. III-C2) is tested using X1 and X5.
(1) In order to select the first optimal deep learning feature

extraction model M(DL,1) from two DCNN structures men-
tioned in Sec. III-C2, the matching accuracies are compared
in FIGURE 13.

As shown in FIGURE 13, the analysis of two feature
extraction methods is discussed below:

1) Due to the small data set problem, it is very difficult
to train an effective deep learning (VGG-16) structure
directly, resulting in a poor state matching accuracy
of 15.3%.

2) In contrast to the directly trained deep learning
(VGG-16) structure, the transfer learning strategy

FIGURE 12. The confusion matrix of the state matching result by the
M(CPR,2) model (the HOG feature) on the validation data set. The mean
accuracy is 49.5% and the variance is 7.2%.

FIGURE 13. A comparison of the matching accuracies using two deep
learning feature extraction approaches on the validation data set. The
horizontal axis shows different approaches (directly trained VGG-16 and
pre-trained VGG-16 using transfer learning) at different degradation
states and their overall performance (mean accuracies). The vertical axis
denotes the matching accuracies of different approaches. The red dotted
circle, marks the method with the highest accuracy.

enhances the deep learning (VGG-16) method with
a doubled accuracy of 33.7%, showing a great
improvement.

(2) As shown in FIGURE 13, because the pre-trained deep
learning (VGG-16) using transfer learning obtains a much
higher matching accuracy than the directly trained one, the
operation of ‘ideal case’ in the rule R16 is applied. Hence,
themethod of deep learning (VGG-16) using transfer learning
is selected as the deep learning feature extraction model
M(DL,1). In addition, the details of the matching result using
the M(DL,1) is shown in FIGURE 14.
Furthermore, based on the selected deep learning model

M(DL,1) and the rule of R21, eight hyper-parameter settings
are tested in the softmax layer in FIGURE 8 for a fine tune,
including 6, 16, 64, 256, 1024 and 2048 dimensional length
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FIGURE 14. The confusion matrix of the state matching result by the
M(Dl,1) model (VGG-16 using transfer learning) on the validation data set.
The mean accuracy is 33.7% and variance is 10.6%.

TABLE 4. The selected optimal hyper-parameters used in the M(DL,1) for
different matching states. The first row shows the degradation states.
The second row shows the hyper-parameters.

FIGURE 15. A comparison of the matching accuracies using M(DL,1)
before and after the fine tune on the validation data set. The horizontal
axis shows different approaches (M(DL,1) before and after fine tune) at
different degradation states and their overall performance (mean
accuracies). The vertical axis denotes the matching accuracies of different
approaches. In the red dotted circle, the method obtains a higher
accuracy is marked.

feature vectors. In TABLE 4, the selected optimal hyper-
parameters for different degradation states are given.

To evaluate the effectiveness of the fine tune work
above, a comparison of the matching accuracies is shown
in FIGURE 15, where after fine tuning the models
(MDL1 ,MDL2 , . . . ,MDL6 ) are obtained. Using the fine tuned
models, a mean accuracy which is 24% higher than that
before fine tuning. In addition, the details of the matching
result is shown in FIGURE 16.

FIGURE 16. The confusion matrix of the state matching result by the
M(DL,1) model after fine tune on the validation data set. The mean
accuracy is 57.7% and variance is 4.3%.

D. EVALUATION OF THE ENSEMBLE
LEARNING APPROACH
In this section, the proposed ensemble learning using a mem-
brane computing framework in membrane 4 (Sec. III-C3) is
tested using X1 and X5.

(1) To obtain matching models M1,M2, . . . ,M6, the
selected feature extraction models M(CPR,1), M(CPR,2),
MDL1 ,MDL2 , . . . ,MDL6 , are fused together with the weights
w1,w1, . . . ,w6 using the rule of R22. These weights are
shown in TABLE 5.

TABLE 5. Fusion weights used in the ensemble learning process. The first
column shows different matching models. The first row denotes the
fusion weights.

(2) Using the obtained fusion weights w1,w1, . . . ,w6
above, the matching accuracies of the ensemble learning
approach is compared to the single models M(CPR,1) (RGB),
M(CPR,2) (HOG) andMDL1 ,MDL2 , . . . ,MDL6 (VGG-16 using
transfer learning and fine tune) in FIGURE 17.

As shown in FIGURE 17, the matching result using the
ensemble learning strategy exceeds the results using all
the single models (M(CPR,1), M(CPR,2) and MDL1 ,MDL2 , . . . ,

MDL6 ). In addition, the details of the matching result is shown
in FIGURE 18.

(3) Finally, the whole P system (membrane 1) is tested
using X7 and the rule of R30 to R32, and the details of the
matching result is shown in FIGURE 19.
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FIGURE 17. A comparison of the matching accuracies using ensemble
learning and single models. The horizontal axis shows different
approaches (M(CPR,1) (RGB), M(CPR,2) (HOG) and MDL1

,MDL2
, . . . ,MDL6

(VGG-16 using transfer learning and fine tune) at different degradation
states and their overall performance (mean accuracies) on the validation
data set. The vertical axis denotes the matching accuracies of different
approaches. The red dotted circle shows the method with the highest
accuracy.

FIGURE 18. The confusion matrix of the state matching result by the
ensemble learning strategy on the validation data set. The mean accuracy
is 61.4% and variance is 4.3%.

As shown in FIGURE 19, the proposed method achieves
a higher accuracy of 61.0% than that using all the single
approaches on the test data set with the single state matching
case, showing the effectiveness of our method. Furthermore,
membrane 1 shows a distinct trend of Gaussian distribution.
Hence, in a practical work, membrane 1 is not only useful to
match a new microscopic image to a certain single degrada-
tion state, but also useful to match the new image to a range of
nearby degradation states. A demonstration of the Gaussian
distribution trend is shown in FIGURE 20.

From FIGURE 20, we can find that, if we consider each
three neighboring states as a state range, and define the state
of the middle one as the state of this range, then we can
achieve the accuracy of state range matching as shown in
FIGURE 21.

FIGURE 19. The confusion matrix of the state matching result in the final
test for membrane 1 on the test data set. The mean accuracy is 61.0% and
variance is 4.3%.

FIGURE 20. A demonstration of the Gaussian distribution in
membrane 1 on the test data set. (a) to (f) show the actual degradation
states, respectively. The horizontal axis in each sub-figure shows the
matched degradation states. The vertical axis in each sub-figure denotes
the matching results. The red curves are the fitting results in a Gaussian
distribution.

From FIGURE 21, we can find that, the state matching
result achieves an accuracy of 77.4% and a variance of
2.6%, showing a good matching performance and a high
stability. Furthermore, we compare the matching results
between our proposed method and human visual analysis
of the images. Especially, three human matching results are
obtained, and their average can be used as a benchmark of per-
formance for the automated system. The comparison is shown
in FIGURE 22.
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FIGURE 21. The state range matching result (accuracy) on the test data
set. The horizontal axis shows six degradation states and mean result.
The vertical axis shows the matching results. The mean accuracy is 77.4%
and variance is 2.6%.

FIGURE 22. A comparison of matching results (accuracy) between
human average and our proposed method on the test data set. The
horizontal axis shows six degradation states and mean result of human
and our method, where the blue bins on the left side denote the human
average, and the original bins on the right side represent our method. The
vertical axis shows the matching results. The mean accuracy of human
average is 60.8% and variance is 3.2%. The mean accuracy of our method
is 61.0% and variance is 4.3%.

From FIGURE 22, we can find that the matching perfor-
mance of our proposed method (61.0% accuracy) is very
close to the human matching result (60.8% accuracy), prov-
ing the effectiveness of our method. However, the variance of
our method is 1.1% higher than the human average, showing
the stability of our method is lower than the human work.

Finally, when we apply the proposed system in a real-
world environment: First, the similarity between a new test
image and each of the six standard images is automatically
calculated using the matching models of M1,M2, . . . ,M6,
respectively. Then, the test image is matched to the state with
the highest similarity. Hence, the users only need to give
one test image to the system, but do not need to choose any
models or weights manually.

E. SUMMARY
In this section, the proposed ensemble learning system using
a membrane computing framework is tested to prove the

usefulness and effectiveness. First, the experimental set-
ting is introduced in Sec. IV-A. Then, two feature extrac-
tion approaches using RGB and HOG methods are selected
in Sec. IV-B. Thirdly, a transfer learning based VGG-16
network is selected in Sec. IV-C. Finally, the ensemble
learning approach is tested in Sec. IV-D, and achieves
61.0% and 77.4% accuracies on the test data set with single
state matching and state range matching, respectively.

V. HARDWARE DESIGN
In order to apply the proposed microscopic machine vision
system in practical industrial fields, a corresponding hard-
ware is designed.

A. ADDRESSED PROBLEMS
Low-voltage electromagnetic coil is a device that uses the
principle of electromagnetic induction to work. There are
many factors affecting the working performance of the coil,
including the coil material (e.g., copper and aluminum),
the number of winding turns, and the working environmental
conditions (e.g., temperature, humidity and dust). To avoid
the influence from the working environments, the coils are
usually protected by some insulated rubber tapes, as shown
in FIGURE 23.

FIGURE 23. An example of the a coil that is protected by some insulated
rubber tapes (the part in the red dotted circle).

Because the insulated rubber tapes are always thick, solid
and non-transparent, it is not possible to apply the proposed
microscopic machine vision system to monitor the degra-
dation states during the use of the coil in practical work.
Hence, a novel mechanical device is designed, considering
the external protection and visible monitoring problems from
the following respects jointly:
(1) The materials of the mechanical device itself is

insulated.
(2) The mechanical device can isolate the influence of the

working environment.
(3) The mechanical device is able to rotate to observe the

360◦ changes of the wire throughout the coil.
(4) An observing port is designed to connect with the

observation lens from a microscopy.
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B. DESIGNING
1) MATERIALS OF THE MECHANICAL DEVICE
Because the working environment as of the coils are usually
with high temperature, high humidity and dusty conditions,
some widely used engineering materials, like ‘polyamide’
(PA) [90], are considered. Hence, based on the prior knowl-
edge and experiences, the following materials are selected as
follows: Themain shaft of the coil uses ‘poly tetra fluoroethy-
lene’ (PTFE); the bearings, nut, and sleeves use PA; the upper
lids, lower lids, and the end caps use ‘acrylonitrile butadi-
ene styrene’ (ABS); the observation window uses ‘polyvinyl
chloride’ (PVC); the gaskets and seals use ‘fluorelastomer’.
These selected materials have some common properties in
practical work, including lightness, waterproof, heat resistant,
insulated, strong, wear resistant, good plasticity and anti-
magnetic electricity.

FIGURE 24. A demonstration of the designed structure for the mechanical
device to protect and monitor a coil. (a) is the external view, (b) is the
internal view, (c) is the upward view of the coil, and (d) is the
cross-section view. Component No.: 1. lower cover, 2. optical screen,
3. upper cover, 4. observation window, 5. front cover, 6. handle, 7. wire,
8. spindle, 9. front bearing, 10. front axle sleeve, 11. spool, 12. rear axle
sleeve, 13. rear end cap, 14. rear bearing, 15. nut.

2) STRUCTURE OF THE MECHANICAL DEVICE
Considering all the needed functions, the mechanical device
is designed as shown in FIGURE 24.

In FIGURE 24, the upper cover No. 3 and the lower cover
No. 1 in the system are connected by four bolts, and a rubber
gasket is interposed in the middle. The front and rear end
covers No. 5 and No. 13 are also connected to the upper and
lower covers by bolts, and the end cover and the shaft contact
with seal grooves which is used to install seals to ensure that
the system is isolated from the external environment. The
bobbin No. 11 of the coil is sleeved on the main shaft No. 8,

and the entire coil is fixed on the shaft by the nut No. 15.
The main shaft No. 8 is hollow, and the electric wire passes
through the front shaft sleeve No. 10 and the through hole on
the main shaft No. 8 to connect the external power supply.
The main shaft is matched with the upper and lower covers
No. 3 and No. 1 through the front and rear bearings No. 9 and
No. 14 to achieve the purpose of driving the coil to rotate. The
observation window No. 4 and the screen No. 2 are designed
on the upper cover No. 3 to achieve the purpose of observation
using an outer lens of a microscopy.

C. SUMMARY
In order to monitor the degradation states of the low-voltage
electromagnetic coil insulation using the proposed micro-
scopic machine vision system in this paper, a mechanical
device is designed. First, the materials of this mechanical
system are selected referring to the properties of insulated,
anti-electromagnetic, high temperature (Sec. V-B1). Then,
this mechanical device not only plays a protective role against
heating, water and dust, but also realizes the purpose of 360◦

rotating the coil for an overall observing (Sec. V-B).

VI. CONCLUSION AND FUTURE WORK
This work is an interdisciplinary research, referring to
computer science (machine vision, machine learning and
membrane computing), reliability engineering (degrada-
tion monitoring) and industrial design (mechanical system
design), which provides a novel, interesting and potential
topic for both scientific and industrial fields.

A. CONCLUSION
In this paper, a novel microscopic machine vision system
is proposed to solve a degradation monitoring problem of
low-voltage electromagnetic coil insulation, where an ensem-
ble learning approach using a membrane computing frame-
work is creatively introduced. In Sec. I, the whole system
is introduced first. Then, related works of degradation mon-
itoring, microscopic machine, ensemble learning, membrane
computing, classical pattern recognition methods, and deep
learning methods are briefly reviewed in Sec. II. Thirdly,
the details of the proposed algorithms are introduced in
Sec. III, including the definition of the whole membrane
system and the usages of it for the ensemble learning.
In Sec. IV, experiments are used to evaluate and attest the use-
fulness and potential of the proposed system, where a mean
accuracy of 61, 4% is achieved on the validation data set of six
degradation states with single state matching. Furthermore,
61.0% and 77.4% accuracies are achieved on the test data
set with state range matching. Finally, in order to apply the
proposed microscopic machine vision system in a practical
work in Sec. V, a hardware (a mechanical device) is designed
to replace the current used insulated rubber tapes from the
coils.

B. FUTURE WORK
Because this work is the first one to use machine vision,
ensemble learning and membrane computing approaches in
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a degradation monitoring task, it provides a very huge poten-
tial for the future research. Besides the degradation mon-
itoring for the low-voltage electromagnetic coil insulation,
some other related cases, such as metal fatigue [91] and con-
crete aging [92], can be also monitored by similar methods.
As well, more advanced machine learning methods, such as
the ‘generative adversarial networks’ (GAN) [93] and graph
theory based methods [94], can be included in the membrane
computing framework for a more accurate matching result. In
addition, more self-adaptive functions, like the nove global
numerical optimization [95] and the adaptive regularization
method [96], can be inserted into the membrane computing
systems for a more rapid and robust matching result. Fur-
thermore, more exquisite designs, as the electronic cluster
eyes [97] and wireless sensors [98], are possible to make
the system as a part of the internet of things. In addition,
we only apply the most basic similarity matching strategy in
this paper, without any machine learning algorithms, so we
consider to introduce some advantaged machine learning
approaches to improve the matching performance, like artifi-
cial neural network [11], random forests [99] and conditional
random fields [63].
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[23] J. Dassow and G. Pǎun, ‘‘On the power of membrane computing,’’
J. Universal Comput. Sci., vol. 5, no. 2, pp. 33–49, 1999.

[24] P. Werynski, D. Roger, R. Corton, and J. F. Brudny, ‘‘Proposition of a new
method for in-service monitoring of the aging of stator winding insulation
in AC motors,’’ IEEE Trans. Energy Convers., vol. 21, no. 3, pp. 673–681,
Sep. 2006.

[25] F. Perisse, P.Werynski, and D. Roger, ‘‘A newmethod for ACmachine turn
insulation diagnostic based on high frequency resonances,’’ IEEE Trans.
Dielectr. Electr. Insul., vol. 14, no. 5, pp. 1308–1315, Oct. 2007.

[26] F. Perisse, D. Mercier, E. Lefevre, and D. Roger, ‘‘Robust diagnostics
of stator insulation based on high frequency resonances measurements,’’
IEEE Trans. Dielectr. Electr. Insul., vol. 16, no. 5, pp. 1496–1502,
Oct. 2009.

[27] S. Savin, S. Ait-Amar, D. Roger, and G. Vélu, ‘‘Aging effects on the
AC motor windings: A correlation between the variation of turn-to-turn
capacitance and the PDIV,’’ in Proc. CEIDP, Oct. 2011, pp. 64–67.

[28] S. Savin, S. Ait-Amar, and D. Roger, ‘‘Turn-to-turn capacitance variations
correlated to PDIV for AC motors monitoring,’’ IEEE Trans. Dielectr.
Electr. Insul., vol. 20, no. 1, pp. 34–41, Feb. 2013.

[29] C. Zoeller, T. Winter, T. M. Wolbank, and M. A. Vogelsberger, ‘‘Detection
of AC machines insulation health state based on evaluation of switching
transients using two current sensors and eigenanalysis-based parameter
estimation,’’ in Proc. ECCE, Sep. 2014, pp. 3111–3118.

[30] C. Zoeller, T. M. Wolbank, and M. A. Vogelsberger, ‘‘Online insulation
condition monitoring of traction machines using inverter induced voltage
injection,’’ in Proc. IECON, Nov. 2015, pp. 2456–2462.

[31] C. Zoeller, T. M. Wolbank, and M. A. Vogelsberger, ‘‘Influence of voltage
excitation and current sensors on monitoring of stator winding insulation
based on transient current step response,’’ in Proc. ECCE, Sep. 2015,
pp. 2854–2861.

[32] P. Nussbaumer, M. A. Vogelsberger, and T. M. Wolbank, ‘‘Induction
machine insulation health state monitoring based on online switch-
ing transient exploitation,’’ IEEE Trans. Ind. Electron., vol. 62, no. 3,
pp. 1835–1845, Mar. 2015.

[33] N. J. Jameson, K.Wang, C. Morillo, M. H. Azarian, andM. Pecht, ‘‘Health
monitoring of solenoid valve electromagnetic coil insulation under thermal
deterioration,’’ in Proc. 62nd IIS MFPT/ISA, 2016, pp. 1386–1387.

[34] K. Wang, H. Guo, A. Xu, Z. Liu, C. Li, F. Kong, and S. Qi, ‘‘Degradation
monitoring of low-voltage electromagnetic coil insulation based on micro-
scopic image analysis,’’ in Proc. PHM, Oct. 2018, pp. 692–696.

[35] M. Graves and G. Batchelor,Machine Vision for the Inspection of Natural
Products. New York, NY, USA: Springer, 2003.

[36] J. Beyerer, F. P. León, and C. Frese, Machine Vision: Automated Visual
Inspection: Theory, Practice and Applications. Berlin, Germany: Springer,
2016.

[37] C. Steger, M. Ulrich, and C. Wiedemann, Machine Vision Algorithms and
Applications, 2nd ed. London, U.K.: Wiley, 2018.

[38] C. Li, K.Wang, and N. Xu, ‘‘A survey for the applications of content-based
microscopic image analysis in microorganism classification domains,’’
Artif. Intell. Rev., vol. 51, no. 4, pp. 577–646, 2019.

97238 VOLUME 7, 2019



C. Li et al.: Microscopic Machine Vision Based Degradation Monitoring of Low-Voltage Electromagnetic Coil Insulation

[39] S. Chen, M. Zhao, G. Wu, C. Yao, and J. Zhang, ‘‘Recent advances
in morphological cell image analysis,’’ Comput. Math. Methods Med.,
vol. 2012, Oct. 2011, Art. no. 101536.

[40] J. A. A. Jothi and V. M. A. Rajam, ‘‘A survey on automated cancer
diagnosis from histopathology images,’’ Artif. Intell. Rev., vol. 48, no. 1,
pp. 31–81, 2017.

[41] Z. Gácsi, ‘‘The application of digital image processing to materials sci-
ence,’’Mater. Sci. Forum, vols. 414–415, pp. 213–220, Jan. 2003.

[42] C. Li, K. Shirahama, and M. Grzegorzek, ‘‘Environmental microbiology
aided by content-based image analysis,’’ Pattern Anal. Appl., vol. 19, no. 2,
pp. 531–547, 2016.

[43] J. Xu, X. Luo, G. Wang, H. Gilmore, and A. Madabhushi, ‘‘A deep
convolutional neural network for segmenting and classifying epithelial and
stromal regions in histopathological images,’’ Neurocomputing, vol. 191,
pp. 214–223, May 2016.

[44] C. Li, X. Huang, T. Jiang, and N. Xu, ‘‘Full-automatic computer aided
system for stem cell clustering using content-based microscopic image
analysis,’’ Biocybernetics Biomed. Eng., vol. 37, no. 3, pp. 540–558,
2017.

[45] N. Schlüter and F. Faul, ‘‘Matching the material of transparent objects:
The role of background distortions,’’ i-Perception, vol. 7, no. 5, pp. 1–24,
2016.

[46] G. Zhang, M. J. Pérez-Jiménez, and M. Gheorghe, Real-Life Applications
With Membrane Computing. Cham, Switzerland: Springer, 2017.

[47] G. Zhang, J. Cheng, T.Wang, X.Wang, and J. Zhu,Membrane Computing:
Theory and Applications. Beijing, China: Science Press, 2015.
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[51] G. Pǎun, ‘‘A quick introduction to membrane computing,’’ J. Logic Algebr.
Program., vol. 79, no. 6, pp. 291–294, 2010.

[52] C. Buiu, C. Vasile, and O. Arsene, ‘‘Development of membrane controllers
for mobile robots,’’ Inf. Sci., vol. 187, pp. 33–51, Mar. 2012.

[53] R. Yahya, S. Shamsuddin, S. I. Yahya, S. Hasan, B. Al-Salibi, and
G. Al-Khafaji, ‘‘Image segmentation using membrane computing: A lit-
erature survey,’’ in Bio-Inspired Computing—Theories and Applications,
M. Gong, L. Pan, T. Song, and G. Zhang, Eds. Singapore: Springer, 2016,
pp. 314–335.

[54] X. Wang, G. Zhang, F. Neri, T. Jiang, J. Zhao, M. Gheorghe, F. Ipate,
and R. Lefticaru, ‘‘Design and implementation of membrane controllers
for trajectory tracking of nonholonomic wheeled mobile robots,’’ Integr.
Comput.-Aided Eng., vol. 23, no. 1, pp. 15–30, 2016.

[55] T. Wang, G. Zhang, and M. Pérez-Jiménez, ‘‘Fault diagnosis models for
electric locomotive systems based on fuzzy reasoning spiking neural P
systems,’’ in Membrane Computing (Lecture Notes in Computer Sci-
ence), vol. 8961, M. Gheorghe, G. Rozenberg, A. Salomaa, P. Sosík, and
C. Zandron, Eds. Cham, Switzerland: Springer, 2014, pp. 385–395.

[56] D. Díaz-Pernil and A. Berciano, F. Peña-Cantillana, and
M. A. Gutiérrez-Naranjo, ‘‘Segmenting images with gradient-based
edge detection using membrane computing,’’ Pattern Recognit. Lett.,
vol. 34, no. 18, pp. 846–855, 2013.

[57] H. Peng, J. Wang, and M. Pérez-Jiménez, ‘‘Optimal multi-level threshold-
ing with membrane computing,’’ Digit. Signal Process., vol. 7, pp. 53–64,
Feb. 2015.

[58] D. Guo, G. Zhang, Y. Zhou, J. Yuan, P. Paul, K. Fu, and M. Zhu, ‘‘Image
thresholding using a modified membrane-inspired algorithm based on
particle swarm optimization with hyperparameter,’’ in Proc. ACMC, 2018,
pp. 318–340.

[59] T. M. Mitchell, Machine Learning. New York, NY, USA: McGraw-Hill,
1997.

[60] J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky, ‘‘Bayesian
model averaging: A tutorial,’’ Statist. Sci., vol. 14, no. 4, pp. 382–401,
1999.

[61] L. Breiman, ‘‘Bagging predictors,’’ Mach. Learn., vol. 24, no. 2,
pp. 123–140, 1996.

[62] C. Li, Content-based Microscopic Image Analysis. Berlin, Germany:
Logos Verlag Berlin GmbH 2016.

[63] X. He, R. Zemel, and M. A. Carreira-Perpinan, ‘‘Multiscale conditional
random fields for image labeling,’’ in Proc. CVPR, Jun./Jul. 2004, pp. II.

[64] I. Zyout, J. Czajkowska, and M. Grzegorzek, ‘‘Multi-scale textural feature
extraction and particle swarm optimization based model selection for false
positive reduction in mammography,’’ Comput. Med. Imag. Graphics,
vol. 46, no. 2, pp. 95–107, 2015.

[65] L. Deng and D. Yu, ‘‘Deep learning: Methods and applications,’’ Found.
Trends Signal Process., vol. 7, nos. 3–4, pp. 1–199, 2014.

[66] Y. Bengio, ‘‘Learning deep architectures for AI,’’ Found. Trends Mach.
Learn., vol. 2, no. 1, pp. 1–127, 2009.

[67] I. Hadji and R. P. Wildes, ‘‘What do we understand about con-
volutional networks?’’ 2018, arXiv:1803.08834. [Online]. Available:
https://arxiv.org/abs/1803.08834

[68] S. Dieleman. (2015). Classifying Plankton With Deep Neural Networks.
[Online]. Available: https://benanne.github.io/2015/03/17/plankton.html

[69] S. Kosov, K. Shirahama, C. Li, and M. Grzegorzek, ‘‘Environmental
microorganism classification using conditional random fields and deep
convolutional neural networks,’’ Pattern Recognit., vol. 77, pp. 248–261,
May 2018.

[70] G. Guo and C. R. Dyer, ‘‘Learning from examples in the small sample
case: Face expression recognition,’’ IEEE Trans. Syst., Man, Cybern., B,
Cybern., vol. 35, no. 3, pp. 477–488, Jun. 2005.

[71] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. CVPR, Jun. 2009,
pp. 248–255.

[72] S. P. K. Karri, D. Chakraborty, and J. Chatterjee, ‘‘Transfer learning
based classification of optical coherence tomography images with diabetic
macular edema and dry age-related macular degeneration,’’ Biomed. Opt.
Express, vol. 8, no. 2, pp. 579–592, 2017.

[73] C. G. M. Snoek, M. Worring, and A. W. M. Smeulders, ‘‘Early versus
late fusion in semantic video analysis,’’ in Proc. ACM ICMR, 2005,
pp. 399–402.

[74] H. Anton, Elementary Linear Algebra, 7th ed. Hoboken, NJ, USA: Wiley,
1994.

[75] G. Sidorov, A. Gelbukh, H. Gómez-Adorno, and D. Pinto, ‘‘Soft similarity
and soft cosine measure: Similarity of features in vector space model,’’
Computación Sistemas, vol. 18, no. 3, pp. 491–504, 2014.

[76] E. Levina and P. Bickel, ‘‘The earth mover’s distance is the mallows
distance: Some insights from statistics,’’ in Proc. ICCV, Jul. 2001,
pp. 251–256.

[77] J. Voit, The Statistical Mechanics of Financial Markets. Berlin, Germany:
Springer-Verlag, 2003.

[78] R. Gonzalez and R. Woods, Digital Image Processing, 4th ed. London,
U.K.: Pearson, 2017.

[79] B. Hüttenrauch, ‘‘Literature review on data augmentation,’’ in Target-
ing Using Augmented Data in Database Marketing, B. Hüttenrauch and
G. Krämer, Eds. Berlin, Germany: Springer, 2016, pp. 71–104.

[80] C. Poynton, Digital Video and HDTV: Algorithms and Interfaces.
San Mateo, CA, USA: Morgan Kaufmann, 2003.

[81] M. K. Agoston, Computer Graphics and Geometric Modelling. London,
U.K.: Springer, 2005.

[82] M. Ebner, Color Constancy. Hoboken, NJ, USA: Wiley, 2007.
[83] C. Poynton. (1999). YUV and Luminance Considered Harmful. [Online].

Available: http://poynton.ca/PDFs/YUV_and_luminance_harmful.pdf
[84] R. M. Haralick, K. Shanmugam, and I. Dinstein, ‘‘Textural features for

image classification,’’ IEEE Trans. Syst., Man, Cybern., vol. SMC-3, no. 6,
pp. 610–621, Nov. 1973.

[85] K. Pearson, ‘‘On lines and planes of closest fit to systems of points in
space,’’ Philos. Mag., vol. 2, no. 6, pp. 559–572, 1901.

[86] S. Bochner and K. Chandrasekharan, Fourier Transforms. London, U.K.:
Princeton Univ. Press, 1949.

[87] B. S.Manjunath andW.Y.Ma, ‘‘Texture features for browsing and retrieval
of image data,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 8,
pp. 837–842, Aug. 1996.

[88] N. Dalal and B. Triggs, ‘‘Histograms of oriented gradients for human
detection,’’ in Proc. CVPR, Jun. 2005, pp. 886–893.

[89] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online]. Avail-
able: https://arxiv.org/abs/1409.1556

[90] R. Palmer, ‘‘Polyamides, plastics,’’ in Encyclopedia of Polymer Science
and Technology. New York, NY, USA: Wiley, 2001.

[91] R. I. Stephens, A. Fatemi, R. R. Stephens, and H. Fuchs,Metal Fatigue in
Engineering, 2nd ed. Hoboken, NJ, USA: Wiley, 2001.

[92] J. C. Lim and T. Ozbakkaloglu, ‘‘Influence of concrete age on stress–strain
behavior of FRP-confined normal- and high-strength concrete,’’Construct.
Building Mater., vol. 82, no. 4, pp. 61–70, 2015.

VOLUME 7, 2019 97239



C. Li et al.: Microscopic Machine Vision Based Degradation Monitoring of Low-Voltage Electromagnetic Coil Insulation

[93] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative
adversarial networks,’’ 2014, arXiv:1406.2661. [Online]. Available:
https://arxiv.org/abs/1406.2661

[94] C. Li and M. Wand, ‘‘Combining Markov random fields and convolu-
tional neural networks for image synthesis,’’ in Proc. CVPR, Jun. 2016,
pp. 2479–2486.

[95] J. Cheng, G. Zhang, F. Caraffini, and F. Neri, ‘‘Multicriteria adaptive
differential evolution for global numerical optimization,’’ Integr. Comput.-
Aided Eng., vol. 22, no. 2, pp. 103–117, 2015.

[96] B. Xu, P. Guo, and C. L. P. Chen, ‘‘An adaptive regularization method
for sparse representation,’’ Integr. Comput.-Aided Eng., vol. 21, no. 1,
pp. 91–100, 2014.

[97] S. Wu, G. Zhang, M. Zhu, T. Jiang, and F. Neri, ‘‘Geometry based three-
dimensional image processing method for electronic cluster eye,’’ Integr.
Comput.-Aided Eng., vol. 25, no. 3, pp. 213–228, 2018.

[98] F. Fernández-Luque, D. Pérez, J. Zapata, and R. Ruiz, ‘‘Automatically cal-
ibrated occupancy sensors for an ambient assisted living system,’’ Integr.
Comput.-Aided Eng., vol. 23, no. 3, pp. 287–298, 2016.

[99] T. Ho, ‘‘Random decision forests,’’ in Proc. ICDAR, Aug. 1995,
pp. 278–282.

CHEN LI received the B.E. degree from the Uni-
versity of Science and Technology Beijing, China,
in 2008, the M.Sc. degree from Northeast Nor-
mal University, China, in 2011, and the Dr.-Ing.
degree from the University of Siegen, Germany,
in 2016. From 2016 to 2017, he was a Post-
doctoral Researcher with the Johannes Gutenberg
University of Mainz, Germany. He is currently an
Associate Professor with Northeastern University.
He is also the Head of the Research Group for

Microscopic Image and Medical Image Analysis, Northeastern University.
His research interests include microscopic image analysis, medical image
analysis, machine learning, pattern recognition, machine vision, multimedia
retrieval, and membrane computing.

FANJIE KONG received the B.E. degree from
the Research Group for Microscopic Image and
Medical Image Analysis, Northeastern University,
China, in 2018. He is currently pursuing the
master’s degree with Duke University, USA. His
research interest includes image analysis, machine
learning, and membrane computing.

KAI WANG received the Ph.D. degree in mecha-
tronic engineering from the Shenyang Institute of
Automation (SIA), Chinese Academy of Sciences
(CAS). He was a Visiting Scholar with the Center
for Advanced Life Cycle Engineering (CALCE),
University of Maryland, from 2014 to 2016. He is
currently an Associate Professor with SIA, CAS.
He is also a Tutor for graduate students with the
University of CAS. His primary research inter-
ests include fault diagnosis, prognostics and health

management, and reliability engineering. Recently, he is specially focused on
degradation mechanisms of electromagnetic coil insulation and methods to
detect degraded insulation prior to the formation of shorts in electromagnetic
coils. He received the Best Academic Presentation Award at the 2013 IEEE
International Conference on Electronic Measurement & Instruments.

AIDONG XU was born in Liaoning, China,
in 1969. He received the Ph.D. degree from
Shenyang Institute of Automation (SIA), Chinese
Academy of Sciences, in 2012, where he is cur-
rently a Research Fellow. His research interests
include industrial digital communications, func-
tional security technologies, and fault diagnosis.
He is a member of the fourth Technical Com-
mittee (Field bus) of the National Industrial Pro-
cess Measurement and Control Standardization

Technical Committee and an expert at the International Electro Techni-
cal Commission/Industrial Process Measurement and Control Committee/
Digital Communications Subcommittee/Real-Time EthernetWorking Group
(IEC/SC65C/WG11).

GEXIANG ZHANG was born in 1974. He was a
Visiting Researcher with the Research Group of
Prof. Marian Gheorghe, University of Sheffield,
U.K., the Research Group of Prof. Mario J. Perez-
Jimenez, University of Seville, Spain, and the
Research Group of Prof. Nadrian C. Seeman,
New York University, USA. He is currently a
Professor with the Southwest Jiaotong University,
China. He is also a Guest Professor with Xihua
University, China. He has published three books

and more than 30 papers about membrane in high level journals and con-
ferences. His research interests include membrane computing, evolutionary
computation, smart power grids, and robot control. He is also the Chairman
of the Chinese Membrane Commuting Society.

NING XU received the bachelor’s degree from
Shenyang University, China, in 2008, the mas-
ter’s degree from the Northeast Normal University,
China, in 2011, and the Ph.D. degree from the Uni-
versity of Siegen, Germany, in 2016. Since 2017,
she has been a Lecturer with Liaoning Shihua
University, China. Her research interests include
image and video analysis.

ZHIHUA LIU was born in Liaoning, China,
in 1977. He received the Ph.D. degree in pat-
tern recognition and intelligent systems from the
Shenyang Institute of Automation (SIA), Chinese
Academy of Sciences (CAS), in 2008, where he
is currently an Associate Professor. His primary
research interests include nanomanipulation meth-
ods, nanoscale measurement, and image process-
ing method at micro/nano scale.

HAIFENG GUO was born in Liaoning, China,
in 1979. He received the degree from Northeastern
University, China, in 2009. He is currently pursu-
ing the Ph.D. degree with the Shenyang Institute
of Automation, University of Chinese Academy
of Sciences. His research interests include degra-
dation mechanisms of transformer winding insu-
lation and methods to detect degraded insulation
prior to the formation of shorts in windings, fault
prediction and health management, and reliability
engineering.

97240 VOLUME 7, 2019



C. Li et al.: Microscopic Machine Vision Based Degradation Monitoring of Low-Voltage Electromagnetic Coil Insulation

XUE WANG received the bachelor’s and mas-
ter’s degrees from Northeastern University, China,
in 2014 and 2017, respectively, where she is cur-
rently an Engineer. Her research interest includes
machine design.

KUAN LIANG received the bachelor’s degree
from Northeastern University, China, in 2014,
where he is currently an Engineer with the
Research Group for Microscopic Image and Med-
ical Image Analysis. His research interest includes
machine design.

JIANYING YUAN received the B.S. degree in
biomedical engineering and the master’s degree
in pattern recognition and intelligent system from
Southwest University of Science and Technol-
ogy, China, in 2005 and 2008, respectively, and
the Ph.D. degree in mechanical design and the-
ory from Southwest Jiao Tong University, China,
in 2015. She is currently a Lecturer with the
Chengdu University of Information Technology,
China, meanwhile, she is also a Postdoctoral

Researcher with the University of Electronic Science and Technology, China.
Her research interests include computer vision and membrane computing.
Till now, she has published three papers about membrane computing.

SHOULIANG QI received the Ph.D. degree from
Shanghai Jiaotong University, in 2007. He joined
the GE Global Research Center. From 2014 to
2015, he was a Visiting Scholar with the Eind-
hoven University of Technology and the Epilepsy
Center Kempenhaeghe, The Netherlands. He is
currently an Associate Professor with the North-
eastern University, China. In recent years, he has
been conducting productive studies in the intelli-
gent medical imaging computing and modeling,

machine learning, brain networks, and brain models. He has published over
80 papers in peer-reviewed journals and international conferences. He has
received academic awards such as the Chinese Excellent Ph.D. Dissertation
Nomination Award.

TAO JIANG was born in 1975. He received
the Ph.D. degree from the University of Siegen,
Germany, in 2013. He is currently a Professor
with the Chengdu University of Information Tech-
nology (CUIT), China. He is also the Dean with
the Control Engineering College of CUIT. His
research interests includemachine vision, artificial
intelligence, robot control, self-driving auto, and
membrane computing.

VOLUME 7, 2019 97241


	INTRODUCTION
	RELATED WORK
	DEGRADATION MONITORING OF LOW-VOLTAGE ELECTROMAGNETIC COIL INSULATION
	MICROSCOPIC MACHINE VISION
	MEMBRANE COMPUTING
	ENSEMBLE LEARNING
	CLASSICAL PATTERN RECOGNITION METHODS
	DEEP LEARNING METHODS
	SUMMARY

	METHODS
	THE MATCHING SYSTEM
	TRAINING DATA PREPARATION
	MEMBRANE 9 (P SYSTEM FOR DATA STANDARDIZATION)
	MEMBRANE 10 (P SYSTEM FOR TRAINING DATA)
	MEMBRANE 6 (P SYSTEM FOR TRAINING DATA PREPARATION)

	ENSEMBLE LEARNING
	MEMBRANE 7 (P SYSTEM FOR CLASSICAL PATTERN RECOGNITION METHODS)
	MEMBRANE 8 (P SYSTEM FOR DEEP LEARNING METHODS)
	MEMBRANE 4 (P SYSTEM FOR ENSEMBLE LEARNING)

	TEST DATA PREPARATION
	MEMBRANE 5 (P SYSTEM FOR TEST DATA)
	MEMBRANE 3 (P SYSTEM FOR TEST DATA PREPARATION

	THE MATCHING MODEL
	SUMMARY

	EXPERIMENTAL RESULTS AND ANALYSIS
	EXPERIMENTAL SETTING
	EXPERIMENTAL DATA
	EXPERIMENTAL PROCESS

	EVALUATION OF CLASSICAL PATTERN RECOGNITION METHODS
	EVALUATION OF DEEP LEARNING METHODS
	EVALUATION OF THE ENSEMBLE LEARNING APPROACH
	SUMMARY

	HARDWARE DESIGN
	ADDRESSED PROBLEMS
	DESIGNING
	MATERIALS OF THE MECHANICAL DEVICE
	STRUCTURE OF THE MECHANICAL DEVICE

	SUMMARY

	CONCLUSION AND FUTURE WORK
	CONCLUSION
	FUTURE WORK

	REFERENCES
	Biographies
	CHEN LI
	FANJIE KONG
	KAI WANG
	AIDONG XU
	GEXIANG ZHANG
	NING XU
	ZHIHUA LIU
	HAIFENG GUO
	XUE WANG
	KUAN LIANG
	JIANYING YUAN
	SHOULIANG QI
	TAO JIANG


