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ABSTRACT Aiming at solving the problem of the multi-low-frequency mechanical resonances appearing
in the large optical telescope control system, this paper proposes a novel control method based on nonlinear
active disturbance rejection control (NADRC) and proportional–integral (PI) control. In the proposed control
framework, a nonlinear tracking differentiator (NTD)-based feedforward control is designed to improve
the tracking performance of the system. Then, the principle of suppression of mechanical resonance of
this method is analyzed. Compared with the most commonly used acceleration feedback control (AFC)
method, the theoretical analysis shows that the proposed method is more effective for suppressing the
low-frequency mechanical resonance. Finally, the proposed method is applied to a large optical telescope,
and the experimental results show that the proposed method is better than AFC.

INDEX TERMS Mechanical resonance suppression, active disturbance rejection control (ADRC), acceler-
ation feedback control (AFC), nonlinear tracking differentiator (NTD), optical telescope.

I. INTRODUCTION
The large optical telescope is a kind of high precision observ-
ing equipment, and a high precision motion control system is
essential. However, the tracking precision of the control sys-
tem is affected by various known and unknown disturbances,
such as mechanical resonance [1], friction torque [2],
wind disturbance torque [3], [4], dead zone [1], un-modeled
dynamics, etc. Among these disadvantages, the mechanical
resonance which limits the bandwidth of speed has a serious
impact, and the problem of mechanical resonance in the large
telescope control system is a long-standing problem.

In [5], the low frequency mechanical resonance sup-
pression methods that commonly used in industrial are
explored, including low-pass filter method, notch filter
method, Bi-quad filter method, etc. Unfortunately, these sup-
pressionmethods are not suitable for large telescope. Because
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the mechanical resonance of large telescope has the following
characteristics: 1) The resonant frequency is very low, gener-
ally lower than 50 Hz, sometimes even only a few Hz [6].
2) The inertia ratio of the load and motor is very large [7].
3) The damping ratio is small whichmeans that themagnitude
of the Bode diagram of the plant increases to very high levels
at the nature frequency [3]. 4) There are usually multi low
frequency resonances in the system [9]. 5) The system con-
tains a variety of nonlinearities: friction, backlash, rate, and
acceleration limits [7]. For the above reasons, the commonly
used methods for suppressing resonance in large telescopes
include: limiting the speed loop bandwidth, AFC [6], Quan-
titative Feedback Theory (QFT) [1], and linear-quadratic-
Gaussian (LQG) [2], [3]. Among them, AFC is one of the
most widely used methods, and it is used in many large
telescopes to suppress mechanical resonance [6], [8]–[13].

In recent years, ADRC is used to suppress the mechan-
ical resonance, and it takes the mechanical resonance as a
disturbance and compensates the disturbance by extended
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state observer (ESO). In [14], [15], the performance of
ADRC is better than AFC through extensive simulation
and experimental results, however, the theoretical analy-
sis was not conducted. In [16], [17], Model-based ADRC
and non-model-based ADRC is used to control a two-mass
benchmark problem, further demonstrating that ADRC has
a good suppression performance for mechanical resonance.
Reference [18] analyzes and proves that ADRC can com-
pensate for mismatched disturbances, and give the princi-
ple of mechanical resonance suppression by using ADRC
from the perspective of time domain. However, the phys-
ical meaning of how the ADRC suppresses mechanical
resonance is not clear enough in time domain. Mean-
while, the linear extended state observer (LESO) of the
linear active disturbance rejection control (LADRC) brings
phase loss or sacrifices the nonlinear performance when
the bandwidth of LESO is limited [19]–[21]. The nonlin-
ear extended state observer (NESO) of NADRC has high
observe efficiency [22], which reduces the phase loss, but is
not widely used.

Considering the above problems, the following researches
are carried out in this paper: 1) A composite control frame
which includes NADRC (speed loop), PI (position loop) and
NTD (speed and acceleration feedforward) is introduced to
solve the problem of multi low frequency mechanical res-
onances in large telescope. 2) The mechanism of ADRC
restraining mechanical resonance is studied from frequency
domain perspective. 3) By comparing with AFC method,
the advantages of suppressing low frequency mechanical res-
onance by using ADRC are explored. 4) The experimental
results carried on a large optical telescope are presented
to verify the correctness of the theoretical analysis and the
effectiveness of the proposed method.

The rest of this paper is organized as follows. In section II,
the model of the large telescope is analyzed, and a simpli-
fied model is deduced. In section III, the composite control
method is proposed, the stability of the proposed method is
proved, the resonance suppression mechanism of the method
is discussed, and then the advantages of this method are
illustrated by comparing with AFC. In section IV, experimen-
tal results are shown. In section V, concluding remarks are
included.

II. MATHEMATICAL MODEL OF A LARGE TELESCOPE
Figure 1 shows the three-dimensional (3-D) sketch of a
large optical telescope. Usually, the elastic deformation of
the transmission mechanism cannot be neglected due to the
excessive load, and this deformation will lead to devia-
tion and lag in the transmission process, so the load can-
not be regarded as an ideal rigid body. Fig. 2 shows the
azimuth axis frequency response data (FRD) model of a
large optical telescope, which has a low frequency res-
onance at 31Hz and 40Hz respectively. The FRD model
varies according to the azimuth and elevation angles, friction,
speed, and acceleration [1]. These nonlinearities and param-
eter uncertainties increase the difficulty of system analyzing

FIGURE 1. The 3-D sketch of a large optical telescope.

and design [1], [23].The compliant couple of the motor and
the load in the telescope can be modeled as a two-inertia
model as shown in Fig.3, and the feedback is a motor-side
feedback [24].The inertia of the motor is JM , the inertia of
the load is JL , the motor is connected to the load by a
shaft, the stiffness coefficient is Ks, the damping coefficient
is bs, the electromagnetic torque of the motor is TM , the load
torque produced by the friction and wind disturbance is TL
and in most cases TL is small, ωM and θM represent the speed
and angle of the motor, ωL and θL represent the speed and
angle of the load. The kinematics equations of the system
shown in Fig.3 can be expressed as


JM ω̇M = TM − bs (ωM − ωL)− Ks (θM − θL)
JL ω̇L = bs (ωM − ωL)+ Ks (θM − θL)− TL
ωM = θ̇M

ωL = θ̇L

(1)

Then, the block diagram of the two-inertia model can be
obtained as Fig.4. By ignoring TL , the transfer function from
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FIGURE 2. Measured telescope FRD model (from reference current Iref
to motor speed ωM ).

FIGURE 3. Two-inertia model.

FIGURE 4. Block diagram of two-inertia model.

TM to ωM can be described as

GModel (s) =
ωM

TM
=

1
(JM + JL)

·
1
s
·

JLs2 + bss+ Ks
JM JL

(JM+JL )
s2 + bss+ Ks

(2)

Usually, the motor current close loop can be regarded as
(3) [24], kT represents the torque coefficient of the motor, Tf
is the time constant of the current close loop, Iref is current
reference, and in most cases, Tf is very small and can be

ignored.

Gacr (s) =
TM
Iref
=

kT(
Tf s+ 1

)2 (3)

Substitute (3) into (2), the transfer function from Iref to ωM
can be induced

GPlant (s)

=
ωM

Iref
= GModel · GASR

=
1(

Tf s+ 1
)2 · kT

(JM + JL)
·
1
s
·

JLs2 + bss+ Ks
JM JL

(JM+JL )
s2 + bss+ Ks

(4)

Let

G1 (s) =
1
s
·

1(
Tf s+ 1

)2 (5)

G2 (s) =
kT

(JM + JL)
·

JLs2 + bss+ Ks
JM JL

(JM+JL )
s2 + bss+ Ks

(6)

G1 (s) is an ideal rigid body, whereas G2 (s) is a com-
pliance of the transmission component, which corrupts the
ideal plant. The anti-resonant frequency (ωA) and resonant
frequency (ωN ) of the system can be calculated as

ωA =

√
Ks
JL

ωN =

√
Ks
JL
+
Ks
JM

(7)

When in the low frequency band, s → 0, so G2 (s) ≈
kT
/
(JM + JL), (4) can be simplified to (8), in this case the

system is equivalent to a rigid body.

G′Plant (s) = l1 (s) =
1
s
·

kT
(JL + JM )

(8)

While in the high frequency band, s→∞, the dominator
is s2, so G2 (s) ≈ kT

/
JM (4) can be simplified to (9), which

is equivalent to the motor working without any load.

G′′Plant (s) = l2 (s) =
kT

JM · s
·

1(
Tf s+ 1

)2 (9)

However, the specific values of JL andKS are very difficult
to get in the real practice. The usual method is to simplify
the FRD model and identify the parameters. Table 1 shows
the fitted parameters of the two-inertia model. It is important
to stress that these fitted parameters are not realistic and of
no physical significance, because of the simplification in the
process.

It can be seen from Fig. 5 that the fitted transfer function
GPlant (s) perfectly fits the real tested FRD model. Due to the
existence of mechanical resonance, the amplitude-frequency
characteristic of the system in the high frequency band is
raised, thereby reducing the gain margin of the control sys-
tem, and thus the bandwidth of the control system cannot be
improved.
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TABLE 1. Identified parameters for two-inertia model.

FIGURE 5. Bode diagram of two-inertia model and tested model.

III. ACTIVE DISTURBANCE REJECTION CONTROL FOR
TWO-INERTIA MODEL
From the above discussion, we can see that if G2 (s) can be
compensated, GPlant (s) becomes an ideal rigid plant which
is easy to control. ADRC is that kind of method that can
treat G2 (s) as disturbance, which can be estimated and com-
pensated in real time [25]. Based on this theory, this section
firstly presents the methodology of the framework and pro-
posed controller, and then the stability of the closed loop con-
trol system is proved. Secondly, based on frequency domain
analysis, the principles of suppressing mechanical resonance
of LADRC and AFC are discussed. Finally, the comparison
between ADRC and AFC is theoretically analyzed, and the
advantages and disadvantages of ADRC are discussed.

A. PROPOSED METHOD FOR TELESCOPE
The control method proposed in this paper is shown in Fig. 6.
This scheme consists of three elements: the position loop con-
troller, the speed loop controller, and the NTD feedforward.
The position loop controller is traditional PI controller. The
speed loop controller is NADRCwhich consists of NESO and
a proportional feedback control law. The NTD feedforward
controller consists of an acceleration feedforward controller
and a speed feedforward controller.

1) SPEED LOOP CONTROLLER DESIGN
The principle of the speed loop NADRC is shown in Fig. 6.
Ignoring the Tf in (4), the transfer function from Iref to θM is

Gvplant (s) =
θM

Iref
= Gplant (s) ·

1
s

FIGURE 6. Block diagram of proposed method for telescope control
system.

=
kT

(JM + JL)
·
1
s2
·

JLs2 + bss+ Ks
JM JL

(JM+JL )
s2 + bss+ Ks

(10)

Considering the external disturbance w, (10) can be rewrit-
ten as

JMJL
....
θ M + bs (JM + JL)

...
θ M + Ksθ̈M

= kT
(
JL Ïref + bsİref + KsIref

)
+ w (11)

Integrating (11) twice on both sides, the fourth-order sys-
tem with a relative degree of two becomes a second-order
system as below

θ̈M = b0 · Iref + f (12)

where

b0 =
kT
JM

(13)

f =
kT bs
JMJL

∫
Iref +

kTKs
JMJL

∫∫
Iref −

bs (JM + JL)
JMJL

θM

−
Ks (JM + JL)

JMJL

∫
θM +

∫∫
w (14)

Here f , including both external disturbance and the res-
onance, represents the ‘‘ total disturbance’’ to be estimated
and compensated. Based on (12), it is better to choose a
third-order ESO [22]. With x1 and x2 denoting θM and ωM ,
and x3 denoting f , (12) can be rewritten as ẋ1ẋ2

ẋ3

 =
 0 1 0
0 0 1
0 0 0

 x1x2
x3

+
 0
b0
0

 u+
 0
0
1

 ḟ
y =

[
1 0 0

] x1x2
x3

 (15)

So the corresponding NADRC control law is constructed
as

ESO :



ε1 = z1 − θM
ż1 = z2 − β01 · ε1

ż2 = z3 − β02 · fal
(
ε1,

1
2
, δ

)
+ b̂0Iref

ż3 = −β03 · fal
(
ε1,

1
4
, δ

)
(16)
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fal (ε1, a, δ) =

{ ε1

δ(1−a)
|ε1| 6 δ

sign (ε1) |ε1|a |ε1| > δ
(17)

u0 = kp
(
ωref − z2

)
(18)

u = u0 −
z3
b̂0

(19)

According to [26], the anti-windup of NADRC is designed
as

Iref =


Imin u < Imin

u Imin < u < Imax

Imax u > Imax

(20)

where θref is the reference position, ωref is the reference
speed, u0 is the virtual control signal, u is the compensated
control signal, Iref is the actual control signal, ε1 is the
observer error, β01, β02 and β03 are observer gains, b̂0 is the
estimated value of b0, δ is the parameter to be tuned, kp is
the controller gain. z1 and z2 are observer states tracking θM
and ωM respectively, here z3 is the extended state which is the
estimation of f in real time. Assuming that the controller is
unsaturated, so

Iref = u = u0 −
z3
b̂0

(21)

Substituting (21) into (12),

θ̈M = b0 · u0 − b0 ·
z3
b̂0
+ f (22)

With b̂0 ≈ b0 and z3 ≈ f , we have{
θ̈M ≈ b0 · u0
ω̇M ≈ b0 · u0

(23)

It can be seen from (23) that the total disturbance is ‘‘can-
celled’’ and the plant of speed becomes an ideal rigid plant,
so the ideal closed-loop control of speed can be achieved by
a simple proportional controller in (18).

2) POSITIOIN LOOP CONTROLLER DESIGN
The position loop controller in Fig. 6 is a traditional PI
controller

GPI (s) = k ′p + k
′
i ·

1
s

(24)

k ′p is the proportional gain, k
′
i is integral coefficient.

3) FEEDFORWARD CONTROLLER DESIGN
In order to improve the accuracy of the control system,
the feedforward control is used. The differential du/dt cal-
culation can be not realized in reality. So the widely used
feedforward method is shown in (25), the differential result is
filtered by a first-order or second-order low-pass filter, is the
time constant of the low-pass filter, however these methods
are either too noisy or have large phase lag.

GD (s) =
s

TDs+ 1
or

s

(TDs+ 1)2
(25)

FIGURE 7. Bode diagram of NTD and du/dt + LPF (h = 0.00001, h0 = 10h,
TD = 0.0005, r = 0.8772/T 2

D ).

In this paper, NTD is used to solve these problems [27],
as shown in (25)(26).

fh = fhan (x̃1 (k)− ν (k) , x̃2 (k) , r, h0)

x̃1 (k + 1) = x̃1 (k)+ hx2 (k)

x̃2 (k + 1) = x̃2 (k)+ h · fh

(26)



d = rh0

d0 = h0d

y1 = (x̃1 (k)− ν (k))+ h0x̃2 (k)

a0 =
√
d2 + 8r |y|

a1 =


x̃2 (k)+

(a0 − d)
2

sign (y) , |y1| > d0

x̃2 (k)+
y
h0
, |y1| 6 d0

fhan = −

 rsign (a1) , |a1| > d

r
a1
d
, |a1| 6 d

(27)

where ν (k) is the reference input, x̃1 (k) is the state tracking
ν (k), x̃2 (k) is the differential of x̃1 (k), h is the sampling
interval, h0, d , d0, y1, a0 and a1 are the intermediate variables,
r the speed factor which determines the tracking speed to be
tuned.According to [28], the relationship between r and the
bandwidth ωTD is

ωTD = 1.14
√
r (28)

By sine sweep measurement method, the Bode diagram
of (24) and x̃2 in (27) is obtained. As shown in, the three
methods have the same bandwidth of 318 Hz. It can be seen
that the phase angle of NTD basically maintains about 900

ahead inside of bandwidth, whereas outside of bandwidth the
phase angle is rapidly down to −900, which shows that NTD
is an ideal differentiator.
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Therefore, speed and acceleration feedforward controllers
can be designed as NTD:

θref _f (k + 1)
= θref _f (k)+ hωf (k)
ωf (k + 1)
= ωf (k)+ hfhan

(
θref _f (k)− θref (k) , ωf (k) , r, h0

)
ωref _f (k + 1)
= ωref _f (k)+ haf (k)
af (k + 1)
= af (k)+ hfhan

(
ωref _f (k)− ωref (k) , af (k) , r, h0

)
(29)

θref (k) is the position reference signal, θref _f (k) is the
state tracking θref (k), ωf (k) is feedforward speed, ωref _f (k)
is the state trackingωf (k), af (k) is feedforward acceleration,
Kω and Ka are parameters to be tuned.

4) THE FINAL CONTROLLER
Based on the above design, the control algorithm proposed
in this paper can be divided into three parts: 1) The first
part is NESO, as shown in (16). 2) The second part is the
feedforward part, which consists of two NTDs in series,
as shown in (29). 3) The third part is speed loop controller
and position loop PI controller. Ignoring the saturation effect,
(18)(19)(21) (24) can be written as

ADRC : Iref = kpk ′p
(
θref − θM

)
+ kpk ′i

∫ (
θref − θM

)
dt + kpKωωf

+Kaaf − kpz2 −
z3
b̂0

(30)

5) STABILITY ANALYSIS
The stability proof of NADRC is very difficult, and keeps
un-proved for decades. Up until recent years the problem
was solved, the rigorous convergence proofs of the NESO
and the NTD were conducted in [29], [30], and the sta-
bility of traditional NADRC in [22] for SISO system was
proved in [31]. Theorem 5 in [31] indicates that the system
is stable if Assumptions A1-A4 are satisfied. Theorem 5 and
Assumptions A1-A4 are shown in the Appendix A. This
paper mainly focuses on the practical application, so only the
improved parts in this paper will be proved and some existing
conclusions in the literatures will be used.

Assumption 1 is made for the boundedness of the system
itself and the external disturbance. For general practical sys-
tems, Assumption 1 holds. The convergence of ESO and TD
used in this paper are proved in [29] and [30], so Assumption
2 andA4 hold. Therefore, here we only need to prove that (30)
satisfies Assumption 3, andAssumption 3 in [31] is described
as follows

Assumption 3 ϕ (v) is continuously differentiable,
ϕ (0) = 0, and Lipschitz continuous with Lipschitz constant
L:
∣∣ϕ (v)− ϕ (v̂)∣∣ 6 L

∥∥v− v̂∥∥for all v, v̂ ∈ Rn.There exist

constants λ2i(i = 1, 2, 3, 4), β2, and positive continuous
differentiable function V2, W2:Rn+1

→ R such that

λ21‖v‖26V2 (v) 6 λ22‖v‖2, λ23‖v‖2 6 W2 (v) 6 λ24‖v‖2

(31)
n−1∑
i=1

vi+1
∂V2 (v)
∂vi

+ ϕ (v1, v2, . . . , vn)
∂V2 (v)
∂vn

6 −W2 (v)

(32)∣∣∣∣∂V2 (v)∂vn

∣∣∣∣ 6 β2 ‖v‖ , ∀v = (v1, v2, . . . , vn) ∈ Rn (33)

Let Kω = 1, Ka = 1
/
b̂0, (30) can be rewritten as

Iref =
1

b̂0

(
−b̂0kpk ′i

∫ (
θM − θref

)
dt
)

+

(
−b̂0kpk ′p

(
θM − θref

))
+

(
−b̂0kp

(
z2 − ωf

)
+ af − z3

)
(34)

We can see from (30) that the controller of proposed
method is linear, and the corresponding ϕ (·) in Assumption 3
is

ϕ (x1, x2, x3) = −b̂0kpk ′ix1 − b̂0kpk
′
px2 − b̂0kpx3 (35)

Apparently ϕ (x1, x2, x3) is Lipschitz continuous.
Let

A =

 0 1 0
0 0 1
−b̂0kpk ′i −b̂0kpk ′p −b̂0kp

 (36)

With appropriate parameters, A can be Hurwitz.
Let

V (x) = 〈PAx, x〉 (37)

W (x) = ‖x‖2 = x21 + x
2
2 + x

2
3 (38)

Here ∀x = (x1, x2, x3)T ∈ Rn, PA is the positive definite
matrix that is the unique solution of the Lyapunov equation
PAA+ ATPA = −In, In is a 3-dimensional identity matrix.
Then

λ21‖x‖2 6 V (x) 6 λ23‖x‖2 (39)
n−1∑
i=1

xi+1
∂V
∂xi
−

(
b̂0kpk ′ix1 + b̂0kpk ′px2 + b̂0kpx3

) ∂V
∂xn

= −〈x, x〉 = −W (x) (40)

And ∣∣∣∣ ∂V∂xn
∣∣∣∣ 6 β2 (PA) ‖x‖ (41)

Therefore, V (x) and W (x) satisfy the conditions of
Assumption 3.

So the Assumptions A1-A4 are all satisfied, and the pro-
posed method is stable. A numerical analysis is presented in
the Appendix B.
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B. THE PRINCIPLE OF ADRC AND AFC SUPPRESSING
MECHNIACL RESONANCE
1) THE PRINCIPLE OF ADRC SUPPRESSING MECHNIACL
RESONANCE
The ESO is the core of ADRC, which improves the con-
trol performance through observing and compensating the
internal and external disturbances. This section focuses on
the principle of ESO suppressing mechanical resonance.
Fig.8 shows the disturbance observing and compensating part
of the ESO. Since the NESO cannot be analyzed by transfer
function, a linearized ESO is used here for analysis. And in
order to simplify the discussion, it is assumed that there is
a speed sensor in the system, so a second-order ESO will be
used. All parts f0 that corrupt the ideal integral component are
regarded as ‘‘disturbance’’. If the estimated disturbance z̃2 of
ESO rapidly converges to f0,then the disturbance encountered
by the ideal plant can be well compensated.

FIGURE 8. Block diagram LESO.

According to the above assumptions, and ignoring Tf and
saturation in Fig. 8, (4) can be written as follows

ω̇M = b0 · Iref + f0 (42)

where

f0 =
kT bs
JMJL

∫
Iref +

kTKs
JMJL

∫∫
Iref

−
bs (JM + JL)

JMJL
ωM −

Ks (JM + JL)
JMJL

∫
ωM +

∫∫
w

(43)

Then the corresponding second-order LESO is
ε̃1 = z̃1 − ωM
˙̃z1 =˙̃z2 − β̃01 · ε̃1 + b̂0Iref
˙̃z2 = −β̃02 · ε̃1

(44)

Here, z̃1 and z̃2 are observer states tracking ωM and f0,
β̃01 and β̃02 are observer gains. Using the parameterization
technique proposed in [32], let

[
β̃01 β̃02

]T
=
[
2ωo ω2

o
]T ,

ωo is the observer bandwidth. By Laplace transformation,
the disturbance observed is

Z̃2 (s) =
−b0ω2

o

(s+ ωo)2
· Iref (s)+

ω2
os

(s+ ωo)2
·�M (s) (45)

If Tf = 0, combining (4) and (45), using the Masonąŕs
gain formula (MGF), the transfer function of the enhanced
plant can be expressed as

GLESO (s) =
ωM

u0
=

kT

JM +
(
1− ω2

o
(s+ωo)2

)
· JL

·
JL · s2 + bs · s+ Ks

JM

JM+
(
1− ω2o

(s+ωo)2

)
·JL
· JL · s2 + bs · s+ Ks

·
1
s

(46)

Let

fLESO (s) =
JM

JM +
(
1− ω2

o
(s+ωo)2

)
· JL

(47)

Within the observer bandwidth of ωo, we can get
ω2
o
/
(s+ ωo)2 = 1, so fLESO (s) = 1, Then equation (46) can

be simplified to

GLESO (s) =
kT
JM
·
1
s

(48)

GLESO (s) is an ideal plant. Therefore, as long as the
observer bandwidth of the ESO satisfies ωo > ωN ,the
mechanical resonance of the system can be well suppressed,
and the system becomes an ideal plant. Fig. 9 shows the Bode
diagram of GLESO (s) under different observer bandwidth.
It indicates that the ADRC method can effectively suppress
mechanical resonance. The larger the observer bandwidth is,
the closer the plant is to l2 (s), and the better the suppress
effect.

FIGURE 9. Bode diagram enhanced plant (from u0 to ωM ),
the parameters are shown in the Table 1 and the observer bandwidth are
ωo, 10ωo, 100ωo (ωo = 200).

We can see from Fig. 9 that the principle of ADRC sup-
pressing themechanical resonance is reducing the load inertia
as close as possible to zero by electronic means, thus reducing
the coupling between the motor and the load. In this scenario,
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FIGURE 10. Block diagram of ideal acceleration feedback.

the motor can work as equivalent to no load in the low fre-
quency band, and effectively suppressing the mechanical res-
onance. Theoretically, if we want to construct the enhanced
plant to a pure integral component through ESO, the observer
bandwidth ωo needs to be infinite.

2) THE PRINCIPLE OF AFC SUPPRESSING
MECHNIACL RESONANCE
In order to demonstrate the resonance suppressing perfor-
mance of ADRC, in this section the AFC method is simply
discussed.

As shown in Fig. 10, assuming that the transfer function of
the ideal acceleration observer is Gas (s) = ro2

/
(s+ ro)2,

ro is the observer bandwidth of the acceleration observer,
feedback gain is a, and Tf ≈ 0. The estimated acceleration is
feed back to the current loop. Using the MGF, we can get

GAFC (s) =
ωM

Iref
=

kT(
1+ a·ro2

(s+ro)2

)
· JM + JL

×
JL · s2 + bs · s+ Ks(

1+ a·ro2

(s+ro)2

)
·JM(

1+ a·ro2

(s+ro)2

)
·JM+JL

· JL · s2 + bs · s+ Ks

×
1
s

(49)

Let

fAFC (s) =

(
1+ a·ro2

(s+ro)2

)
· JM(

1+ a·ro2

(s+ro)2

)
· JM + JL

(50)

The principle of AFC for suppressing the mechanical reso-
nance is raising the inertia of the motor by electronic means,
effectively reduces the amplitude of the transfer function in
the high frequency band, thereby suppressing the mechanical
resonance. Theoretically, if we want to change the plant to an
ideal pure integral by AFC, the observer bandwidth ro needs
to be infinite and the value of a needs to be large enough.

C. COMPARISON OF THE TWO METHODS
According to the above analysis, we can see that the two
methods both want to enhance the original plant show in (4)
to an ideal pure integral component, so that the mechanical
resonance is suppressed. Here is a comparison of the advan-
tages and disadvantages of the two methods.

Given the same observer bandwidth ro = ωo > ωN ,
the Bode diagrams of fLESO (s) and fAFC (s) are shown
in Fig. 11. When ωN < ωcross, ωcross is the intersection point
of fLESO (s) and fAFC (s), fLESO (s) is closer to 1 than fAFC (s),
soGLESO (s) is closer to the ideal plant thanGAFC (s), and the
larger the feedback gain, the better the effect as can be seen
in Fig. 12.

FIGURE 11. Bode diagram of fLESO (s) and fAFC (s), the parameters are
shown in the Table 1 and ro = ωo = 2000, a = 10, 2a = 20.

FIGURE 12. Bode diagram of GLESO (s) and GAFC (s), the parameters are
shown in the Table 1 and ro = ωo = 2000, a = 10, 2a = 20.

As shown in Fig. 13, when ro = ωo = 2000 and
load inertia JL increases from JL to 10JL , the magnitude of
fAFC2 (s) decrease, thus the performance of AFC decreases.
Fig. 14 indicates that LESO still has very good effects. The
feedback gain a of AFC needs to be tuned larger to obtain an
effect similar to LESO. From the above discussion, we can
conclude that for low-frequency mechanical resonance, ESO
is better; whereas for higher mechanical resonance, AFC is
better.

As shown in Fig. 15, the ESO improves the open loop
gain at the low frequency and reduces the open loop gain
at the high frequency, thus a simple proportional controller
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FIGURE 13. Bode diagram of fLESO (s) and fAFC (s), the parameters are
shown in the Table 1 and ro = ωo = 2000, a = 10.

FIGURE 14. Bode diagram of GLESO (s) and GAFC (s), the parameters are
shown in the Table 1 and ro = ωo = 2000, a = 10.

can satisfy the requirements. However, ESO also has its
disadvantage: ESO suppressing the resonant frequency at
the cost of reducing the phase margin. Fig. 16 shows the
phase margin of the enhanced plant under different observer
bandwidths. When ωo is less than 318 Hz, the phase angle of
the system becomes smaller as the ωo increases. When the ωo
is greater than 318Hz, the phase angle of the system increases
with the increase of ωo. In practical, the bandwidth of ESO
should not be too low, because ESO with low bandwidth has
limited effect; nor can it be too high, such that the noise will
be amplified. Therefore, ADRC is good at suppressing the
low frequency mechanical resonance. For higher frequency
mechanical resonance, the bandwidth of ESO needs to be
very high which is not realizable in actual application. For-
tunately, NESO has much better observing efficiency than
LESO which may relief the phase loss [28]. And in the appli-
cation scenario of large telescopes, the mechanical resonant
frequency is very low, and the noise of the system has already
been effectively reduced, so the bandwidth of the ESO can be
appropriately increased.

IV. EXPERIMENT
The experiment setup is shown in Fig. 17. It consists of an
operating console, a telescope control unit, a servo controller,

FIGURE 15. Bode diagram of LESO and AFC (from Iref to ωM ), the
parameters are shown in the Table 1 ro = ωo = 2000, a = 10.

FIGURE 16. Phase of GLESO at ωA when the bandwidth of the LESO
changing.

and a large telescope. The measured FRD model of azimuth
axis of the telescope is shown in Fig. 2. The telescope con-
trol unit is an embedded computer with real-time operat-
ing system. The servo controller can control and drive both
azimuth and elevation axes at the same time. The MCU of
servo controller is TMS320F28335, and the IPMmodules are
Mitsubishi PM200CLA120. The angular measuring system
is consist of a Renishaw grating ruler and two read heads,
and the grating ruler has 86400 pulses and the read head is
400 times subdivision. It can be calculated that one pulse rep-
resents 0.009375 arc-second (including a four-fold increase
in resolution by the quadrature encoder pulse (QEP) mod-
ule). is the friction torque of the shaft. The current sampling
frequency is 8 kHz, and the encoder sampling frequency is
2 kHz. Since the control systems of azimuth and elevation
axes have the same architecture, the azimuth axis is used
for comparison and verification. The acceleration observer
used here is Luenberger observer described in [5], and the
parameters are: a = 25, kap = 365, kai = 150, kad =
179. The speed and position controller of AFC method are
PI controllers in series, the speed parameters are: ksp =
0.3, ksi = 0.07, the position parameters are: kpp = 11.7,
kpi = 2.29.

The tuning of the proposed control strategy is as follows:
1) The first step is to determine the parameters

of LADRC in the speed loop. According to Table 1,
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FIGURE 17. Experimental setup.

TABLE 2. Main parameters used in the experiment.

b̂0 = kT
/
JM ≈ 2011. The observer bandwidth ωo and the

controller gain kp can be tuned by according to the bandwidth
method [32].

2) The second step is to determine the parameters of
NADRC. According to the typical third-order NESO empir-
ical formula in [33]: δ = 0.05, β01 = 3ωo, β02 = 3ω2

o
/
5,

β03 = ω3
o
/
9, so the parameters of NESO are determined.

And the controller gain of NADRC can be selected as kp in
step one.

3) The parameters k ′p, k
′
i of PI in the position loop can be

tuned by using Ziegler-Nichols tuning rules.
4) In the feedforward NTD: h0 is determined by h0 =

10h = 0.005 [28](in this experiment h = 0.0005), can
be selected by the bandwidth method in (27). The feed-
forward gains Kω can be set to 1, and Ka can be set to
1
/
b0 ≈ 0.0005 [34].
From above discussion, It can be concluded that the pro-

posed controller only has 5 parameters to tune: ωo, kp, r , k ′p
and k ′i . The parameters used in the experiment are listed in
the Table 2.

As shown in Fig. 18, both the AFC and the ADRC enhance
the plant to a relative ideal plant. Unlike above analyses
based on the simplified two-inertia model, the AFC method
also has a large phase loss at the anti-resonant frequency

FIGURE 18. Enhanced plant comparison (from u0 to ωM ).

FIGURE 19. Speed close-loop Bode comparison (from ωref to ωM ).

FIGURE 20. Speed step comparison.

for multi-inertia systems. What’s more, the phase angle of
NADRC is bigger than LADRC, and much bigger than AFC,
which may give better robustness. In Fig. 19, the bandwidth
of the speed loop is higher than AFC by using NADRC. The
step response in Fig. 20 also demonstrates that NADRC is
faster than the other methods.

The sensitivity Bode diagram of the position loop is shown
in Fig. 21. The proposed composite control method still keeps
the same error sensitivity peak as the other methods, and
the position error sensitivity attenuation is strengthened in
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FIGURE 21. Position error sensitivity comparison (from θref to θerr ).

FIGURE 22. Position close-loop bode comparison (from θref to θM ).

FIGURE 23. Position trapezoidal wave tracking comparison.

low frequency range and boosted slightly in higher frequency
range where the disturbance is small in telescope control
system. By this way, the tracking accuracy is improved.
Fig. 22 is closed-loop Bode diagram of position loop, it can
be seen that the resonance peak of the proposed method is the
smallest. The presence of a resonant peak will cause position
overshoot, whereas, for telescope, the reference signal is
often a low-frequency sinusoidal like signals. Fig. 23 shows
the trapezoidal wave tracking curve of the telescope. The

FIGURE 24. Position error of sinewave tracking.

TABLE 3. Position error comparison.

proposed method has the smallest overshoot and the fastest
convergence. Fig. 24 shows the tracking error curve of the
sine wave y = 360 sin (0.1667t).

Table 3 shows the different sinusoidal tracking errors. The
error is reduced by using the method proposed, and the pro-
posed method also has a good suppression effect on some
nonlinear and unknown disturbances such as friction, dead
zone and noise.

V. CONCLUSION
This paper studies the use of the ADRC technique to sup-
press the multi low mechanical resonances appearing in the
large optical telescope. First, a simplified physical model
was established. Concerned about the control of the motor
position, a third-order NESO was designed to estimate and
compensate the original plant to an ideal rigid plant, which
decouples the compliance between the motor and the load.
Moreover, a PI controller was used to achieve a high precision
position tracking of the telescope. Then based on the NTD,
a speed and acceleration feedforward is established such that
the tracking performance can be improved. The principle
of suppression mechanical resonance of ESO is analyzed in
frequency domain. Comparing with AFC, it can be concluded
that the ADRC is better than AFC at suppressing the low
frequency mechanical resonance, whereas for higher fre-
quency mechanical resonance, AFC is better. As confirmed
by the experimental results, the proposed control system
has good low-frequency mechanical resonances suppressing
effect, command-following performance and is robust against
all kinds of disturbances.
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APPENDIX A
ASSUMPTIONS AND THEORME
This section describes the main conclusions of [31]. For an
n-dimensional SISO nonlinear system which can be written
as

_̇x1 (t) =
_x2 (t)

_̇x2 (t) =
_x3 (t)

...

_̇xn (t) =
_

f
(
t,_x1 (t) , . . . ,

_xn (t) ,
_w (t)

)
+ b_u (t)

_y (t) = _x1 (t)

(51)

where _y (t) is the output, _u (t) is the input, _w ∈

C1 ([0,∞) ,R) is the external disturbance,
_

f ∈ C1
(
Rn+2,R

)
represents the nonlinear function of the plant which is possi-

bly unknown, and
_

b > 0 is a constant control coefficient
which is not exactly known, but we have the nominal value
_

b0 that is sufficiently closed to
_

b.
The ESO for system (51) is

_̇x
∗

1 (t) =
_x
∗

2 (t)+ ξ
n−1 (t) g1

(
_

θ (t)
)

_̇x
∗

2 (t) =
_x
∗

3 (t)+ ξ
n−2 (t) g2

(
_

θ (t)
)

...

_̇x
∗

n (t) =
_x
∗

n+1 (t)+ gn

(
_

θ (t)
)
+

_

b0
_u (t)

_̇x
∗

n+1 (t) =
1
ξ (t)

gn+1

(
_

θ (t)
)

(52)

where
_

θ (t) =
(
_y (t)− _x

∗

1 (t)
)/

ξn (t), _y
∗

(t) = _x
∗

1 (t), gi ∈

C (R,R),and ξ ∈ C
([
0,∞) ,R+

)
is the gain function to

be chosen to satisfy ξ (0) = 1, ξ̇ (t) = −aξ (t) , a > 0 if
ξ (t) > ε, and ξ̇ (0) = 0.

A reference system is given as
ẋ∗1 (t) = x∗2 (t)
ẋ∗2 (t) = x∗3 (t)

...

ẋ∗n (t) = ϕ
(
x∗1 (t) , . . . , x

∗
n (t)

)
, ϕ (0, . . . , 0) = 0

(53)

where ϕ ∈ C (Rn,R). The TD can be rewritten as

ż∗1R (t) = z2R (t)
...

ż∗nR (t) = z(n+1)R (t)
ż(n+1)R (t)

= Rnψ
(
z1R (t)− υ (t) ,

z2R (t)
R

, . . . ,
z(n+1)R (t)

Rn

)
ψ (0, 0, . . . , 0) = 0

(54)

where R is the tuning parameter and ψ ∈ C
(
Rn+1,R

)
.

The control objective of ADRC is to make xi (t) converge to
ziR (t) or υ(i−1) (t) in the way of reference system state x∗i (t)
converging to zero. The controller of ADRC is

u (t) =
1
b0

[
ϕ
(
_x
∗

1 (t)− zR (t)
)
+ z(n+1)R (t)−

_x
∗

n+1 (t)
]
(55)

where
((

_x
∗

1 (t) ,
_x
∗

2 (t) , . . . ,
_x
∗

n (t)
)
,
_x
∗

n+1 (t)
)
is the solu-

tion of (52) and
(
(z1R (t) , z2R (t) , . . . , znR (t)) , z(n+1)R (t)

)
is

the solution of (54). The Assumption 1 below is made for the
original system in (51) itself and the external disturbance.

Assumption 1: Both _w and _̇w are bounded on R, there exist
positive constants C̄1, C̄2 and a non-negative function $ ∈
C (R) such that∣∣∣∣∣∣

∂f
(
t,_x, _w

)
∂
_x i

∣∣∣∣∣∣ 6 C̄1 +$, i = 1, 2, 3, . . . n,∣∣∣f (t, 0, _w)∣∣∣ 6 C̄1 +$ (56)∣∣∣∣∣∣∣
∂
_

f
(
t,_x, _w

)
∂
_wi

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
∂
_

f
(
t,_x, _w

)
∂ti

∣∣∣∣∣∣∣
6 C̄1 + C̄2

∥∥∥_x∥∥∥+$ (57)

TheAssumption 2 is for ESO (52) and the unknown param-

eter
_

b0.
Assumption 2: |gi (r)| 6 3i |r| for some positive constants

3i for i = 1, 2, . . . , n + 1. There exist constants λ1j ( j =
1, 2, 3, 4), β1, and positive definite continuous differentiable
function V1, W1: Rn+1

→ R such that

λ11‖v‖2 6 V1 (v) 6 λ12‖v‖2

λ13‖v‖2 6 W1 (v) 6 λ14‖v‖2

∀v ∈ Rn+1 (58)
n∑
i=1

(vi+1 − gi (v1))
∂V1 (v)
∂vi

−gn+1 (v1)
∂V1 (v)
∂vn+1

6−W1 (v) ,

∀v ∈ Rn+1 (59)∣∣∣∣∂V1 (v)∂vn+1

∣∣∣∣ 6 β1 ‖v‖ , ∀v = (v1, v2, . . . , vn+1) ∈ Rn+1

(60)

Moreover, the parameter b0 satisfies B ,
∣∣∣ b−b0b0

∣∣∣3n+1 <

λ13
β1

.
The Assumption 3 is for reference system (53).
Assumption 3: ϕ (v) is continuously differentiable, ϕ (0) =

0, and Lipschitz continuous with Lipschitz constant L:∣∣ϕ (v)− ϕ (v̂)∣∣ 6 L
∥∥v− v̂∥∥ for all v, v̂ ∈ Rn. There exist

constants λ2i ( i = 1, 2, 3, 4), β2, and positive continuous
differentiable function V2, W2: Rn+1

→ R such that

λ21‖v‖26V2 (v) 6 λ22‖v‖2, λ23‖v‖2 6 W2 (v) 6 λ24‖v‖2

(61)
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n−1∑
i=1

vi+1
∂V2 (v)
∂vi

+ ϕ (v1, v2, . . . , vn)
∂V2 (v)
∂vn

6 −W2 (v)

(62)∣∣∣∣∂V2 (v)∂vn

∣∣∣∣ 6 β2 ‖v‖ , ∀v = (v1, v2, . . . , vn) ∈ Rn (63)

The Assumption 4 is for TD in (54).
Assumption 4:Both υ (t) and υ̇ (t) are bounded in [0 ,∞),

and ψ (·) is locally Lipschitz continuous, and system (54)
with υ (t) ≡ 0, R ≡ 1 is globally asymptotically stable.
Theorem 5: Let _x i (t) (1 6 i 6 n) and (1 6 i 6 n+ 1) be

the solutions of closed-loop system combined of (51) (52).

Let _x
∗

n+1 (t) be the extended state defined in (52), and let
z1R (t) be the solution of (54). Under Assumptions A1-A4,
the following statements hold true for any given initial values
of (51) and the closed-loop system.

(1) For any σ > 0 and τ > 0, there exists a constantR0 > 0
such that |z1R (t)− ν (t)| < σ uniformly in t ∈ [τ ,∞) for
all R > R0.
(2) For every R > R0, there are an R-dependent constant

ε0 > 0 for any ε ∈ (0, ε0), and an ε− dependent constant
tε > 0 such that for all t > tε,∣∣∣_x i (t)− _x

∗

i (t)
∣∣∣ 6 01ε

n+2−i, i = 1, 2, . . . , n+ 1

and ∣∣∣_x i (t)− ziR (t)∣∣∣ 6 02ε, i = 1, 2, . . . , n

where 01 and 02 are R-dependent positive constants only.

APPENDIX B
NUMBERICAL ANALYSIS
If let b̂0 = 2011, kp = 0.014, k ′p = 12, k ′i = 2.3. Then the
Lipschitz continuous function ϕ (x1, x2, x3) is

ϕ (x1, x2, x3) = −64.8x1 − 337.8x2 − 28.1x3 (64)

And

A =

 0 1 0

0 0 1

−64.8 −337.8 −28.1



PA =

 2.9676 1.3827 0.0077

1.3827 6.2266 0.0056

0.0077 0.0056 0.0180


So, the Lyapunov function is

V (x) = 2.9676x21 + 6.2266x22 + 0.0180x23

+ 2.7654x1x2 + 0.0154x1x3 + 0.0112x2x3 (65)

V (x) = 2.9676x21 + 6.2266x22 + 0.0180x23

+ 2.7654x1x2 + 0.0154x1x3 + 0.0112x2x3

> 1.3772x21 + 4.8383x22 + 0.0047x23

> 0.0047
(
x21 + x

2
2 + x

2
3

)
= λ21‖x‖2 (66)

TABLE 4. Nomenclatures.

V (x) = 2.9676x21 + 6.2266x22 + 0.0180x23
+ 2.7654x1x2 + 0.0154x1x3 + 0.0112x2x3

6 4.1580x21 + 7.6149x22 + 0.0313x23

6 7.6149
(
x21 + x

2
2 + x

2
3

)
= λ23‖x‖2 (67)

2∑
i=1

xi+1
∂V
∂xi
−

(
b̂0kpk ′ix1 + b̂0kpk ′px2 + b̂0kpx3

) ∂V
∂x3

= −x12 − x22 − x32 = −〈x, x〉 = −W (x) (68)

So Assumption 3 is satisfied.
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APPENDIX C
NOMENCLATURE
See Table 4.
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