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ABSTRACT Quality of experience (QoE), which directly relates to both technical evolvement and profit
promotion, is a vital concern for mobile video services. However, the wireless network operators have long
been troubled by the problem of lacking effective QoEmonitoring approaches since the traditional evaluation
methods of communication quality are objective metrics oriented. Considering that mobile terminals are the
network elements closest to users, it is promising to realize a real-time QoE estimation for video services
by fully utilizing the sensing capabilities of mobile terminals. As the first step, we specifically develop a
mobile video testing application. With support from China Unicom, one of the three major wireless network
operators in China, over 80 000 data records are collected under the real-world conditions. The collected
data consist of four types of subjective scores and 13 objective parameters concerning video attributes,
network performance, device capability, playback events, and external factors. After preprocessing the data
set through correlation analysis, we establish the two QoE estimation models based on the C4.5 method and
the gradient boosting decision tree (GBDT) method, respectively. The experimental results demonstrate that
the proposed models can achieve remarkable estimation performances and outperform the baseline models.
Specifically, the overall estimation accuracy of the GBDT-based model is approximately 80% for a five-level
scale and approaches 90% when a more practical 3-level scale is adopted. Finally, we comprehensively
discuss the estimation performances based on characteristics of the data and validate the feasibility of
estimating QoE based on mobile terminals—the ‘‘peripheral sensors’’ of the mobile networks.

INDEX TERMS Decision tree, mobile terminals, estimation model, QoE, video services.

I. INTRODUCTION
With the explosive development of wireless networks, mobile
video services have been rapidly popularized. According to
the Cisco Visual Networking Index [1], the mobile video
traffic will account for 79 percent of the world’s total mobile
data traffic by 2022. When it comes to the era of 5G, the ulti-
mate goal of technological evolvement is no longer simply
to approach the theoretical upper limit but to provide better
quality of experience (QoE) for mankind [2]–[4]. This devel-
opment concept has inspired various technological improve-
ments for mobile video services [5]–[10]. In addition, user
experience directly determines the viability of a technology
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or service in the competitive market. Therefore, QoE of
wireless video services has become a core concern for wire-
less network operators from both technical and commercial
perspectives.

However, it is still difficult for the wireless network
operators to evaluate and monitor user experience about
mobile video services effectively. Considering that user rat-
ing is much too costly, sometimes even infeasible due to
user reluctance, establishing QoE estimation models based
on measurable objective parameters is the most promis-
ing approach. Some early works proposed to estimate
QoE directly through a fundamental communication perfor-
mance metric such as system throughput and communication
delay [11], [12], however, the estimation performances are
not satisfactory. For a better estimation performance, some

92778 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-2168-0044


X. Liu et al.: Peripheral Sensing: Monitoring QoE for Video Services Based on Mobile Terminals

researchers further considered this problem from the perspec-
tive of causality within the generation process of user expe-
rience and established an estimation framework containing
three successive stages, i.e. network quality of service (QoS),
application QoS and user QoE [13]. However, the feasibility
of this framework is challenged by the difficulties of infer-
ring application QoS from network QoS. First, it is difficult
to estimate application QoS at the network side since the
information of the upper layers is transparent to the wireless
network operators who act as information pipelines today.
Even if the wireless network operators are able to overcome
the legal issues and parse the packets by some means, such as
deep packet inspection (DPI), they are still not able to directly
derive the application-specific quality parameters since the
main video source providers adopt hyper text transfer pro-
tocol over secure socket layer (HTTPS) to encrypt video
traffic [14]. In addition, some application parameters are not
fully known priori, such as the variable bit rate. Therefore,
there is a strong demand for the wireless network operators
to extend their sensing range beyond the core network and
acquire informative knowledge from the upper layers.

Another challenge for QoE estimation results from its mul-
tidisciplinary attributes [15]. In addition to technological fac-
tors, various non-technological factors, such as user-specific
factors (preference, psychological and behavioral states) and
context factors (location, time and environmental conditions),
need to be taken into consideration and we call them external
factors in this paper. In order to establish a total understanding
of QoE, the paper [16] proposed the concept of communica-
tion ecosystem that involved four factor domains, i.e., tech-
nical aspects, business models, human behavior and context.
Though knowing the significant influences of external fac-
tors, few researchers successfully introduced them into QoE
estimation and commonly regarded them as the introducers
of randomness. This was mainly due to the fact that the
external factors were beyond network monitoring scope and
information about them was usually not available in real
scenarios. In addition, the external factors influence QoE in a
very complicated way, how to introduce them into estimation
models appropriately remains unknown.

Mobile terminals are the carriers of the applications and
they can provide various QoE-related information compre-
hensively, accurately and timely at the application level.
Therefore, mobile terminals have unique advantages in QoE
estimation, which has been proved by our previous work [17].
However, the abilities of mobile terminals go beyond that.
Nowadays, mobile terminals, the network elements closest
to users, are all embedded with various powerful sensors.
They form a ubiquitous Internet of Things accompanying
all mobile users, which makes it possible to extend the
sensing range of the network to the physical space around
human [18] and introduce external factors into QoE estima-
tion. In this paper, we further propose a data-driven QoE esti-
mation scheme for mobile video services in virtue of mobile
terminals and validate the feasibility based on data from
real-world scenarios. Different from previous QoE estimation

models that just focus on technical factors, the proposed esti-
mation scheme still takes non-technical factors into account.
In order to acquire sufficient real-world data, we specially
develop a mobile testing application and collect a mass of
testing data with the help from China Unicom, the second-
largest wireless operator in China. The collected data con-
tain subjective scores about user experience and objective
parameters including technical and non-technical parameters.
To cope with the complicated unknown relationships among
the data, we utilize decision tree to establish two estimation
models that map the objective parameters to the subjective
scores. The experimental results verify that the proposed
scheme can realize an accurate QoE estimation, making it
possible for the wireless network operators to monitor QoE
through the massive ‘‘peripheral sensors’’ of the mobile net-
works. The main contributions of this work are listed as
follows.

1) We comprehensively analyze the causal mechanism
in mobile video communications and propose a QoE
estimation scheme that takes full advantage of mobile
terminals.

2) According to the proposed QoE estimation scheme,
we set up a QoE data set for mobile video services
through real-world collection.

3) Based on decision tree, we propose two estima-
tion models with remarkable performances. Moreover,
we obtain some quotable knowledge about QoE esti-
mation in virtue of a series of statistical analyses.

In the rest of this paper, related works are introduced
in Section II. Then, the data collection is described in
Section III. In Section IV, we introduce the data prepro-
cessing. Section V describes the estimation models and the
corresponding training algorithms. In Section VI, we conduct
performance evaluations and provide necessary discussions.
Finally, we conclude this paper in Section VII

II. RELATED WORKS
Existing works related to various QoE estimation methods
are reviewed in this section. The related works are classified
into three categories, i.e., methods based on human response,
methods based on human behavior and methods based on
estimation model.

A. HUMAN RESPONSE BASED METHODS
There are two types of methods based on human response,
which are distinguished by whether users are conscious with
the response. Subjective test is usually regarded as synony-
mous with the method based on human conscious response.
In a subjective test, users deliberately report their opinion
scores about a specific service according to a predefined
standard, such as mean opinion score (MOS) and differ-
ence mean opinion score (DMOS) [12]. Though subjective
tests are costly and intrusive, they are still widely used
to calibrate subjective quality for various QoE researches
in the lab settings. In addition, various unconscious
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physiological responses are also used for QoE measurement.
Electroencephalogram (EEG), which can record brain elec-
trophysiological activities and decipher user instantaneous
perception and cognitive processes, has been utilized to eval-
uate subjective quality of video services in both auditory
domain [19] and visual domain [20], [21]. In the paper [22],
multiple physiological signals, such as EEG, electrocardio-
graph (ECG) and respiration, were utilized for an alternative
evaluation of human experience about immersive multimedia
content. More details about physiological QoE assessment
methods can be found in the survey [23]. Though physio-
logical methods are informative to QoE estimation, they are
rarely applied in practice since the measurement of most
physiological responses needs specialized devices and testing
environments.

B. HUMAN BEHAVIOR BASED METHODS
User online behaviors have been proved to be informative for
various video services [24], [25]. Some of them are correlated
with user experience and can reflect QoE to some extent.
Therefore, it was proposed to derive behavior based metrics,
such as viewing time [26], number of views [27] and aban-
donment rate [28], from the recorded service data for QoE
evaluation. Such behavior based metrics enable us to infer
user experience without the risk of annoying users, which
makes them optional low-cost indicators of QoE. However,
the evaluation accuracy of the behavior based metrics cannot
be guaranteed and these metrics are obviously not suitable for
real-time estimation.

C. ESTIMATION MODEL BASED METHODS
Estimating QoE through a model based on objective param-
eters can lead to a real-time and non-intrusive monitor-
ing of QoE. Therefore, it is widely favored and studied.
In early works, researchers attempted to establish a model
of explicit mapping equation from objective parameters to
QoE. Fiedler et al. [11] proposed a generic formula with
a negative exponential form to characterize the quantitative
relationship between QoE and a single QoS parameter. In the
series of studies [29], [30], Hossfeld et al. studied the impacts
of initial delay and stalling to user experience concerning
Youtube video services. Similarly, they also discovered the
exponential relationships between MOS and the two perfor-
mance factors, respectively. These exponential models can
reflect the marginal diminishing effect of user perception;
however, a univariate model is inadequate for QoE estima-
tion in practice. Gómez et al. [31] proposed a linear model
containing initial buffering time, rebuffering frequency and
mean rebuffering time, and further developed a YouTube
QoE evaluation tool for Android terminals. In the paper [32],
an explicit model was developed through regression analysis
of three performance parameters at both the application and
network levels. However, explicit models are usually gen-
erated by fitting a predefined expression to training data,
whichmakes it difficult for the model to cover more influence

FIGURE 1. The mind map of the proposed approach, which includes the
factor analysis process and the estimation process of QoE.

factors without sufficient prior information about the compli-
cated model structure.

When more influence factors are taken into consideration,
the models based on machine learning methods embody their
advantages in dealingwith the complex relationships between
QoE and various QoS factors. In [33], thirteen QoS parame-
ters were used for QoE prediction and the nearest neighbor
approach was adopted due to the high-dimensionality of fea-
ture space. Owing to the outstanding ability of representation
and prediction, some deep learning methods were success-
fully utilized for quality feature representation [34] and QoE
prediction [35]. Moreover, some advanced machine learning
methods such as boosting support vector regression [36] and
adaptive network based fuzzy inference system (ANFIS) [37]
were also utilized for QoE estimation.

III. DATA SET
In order to take full advantage of mobile terminals to obtain
as much beneficial information as possible, we comprehen-
sively analyzed the causal mechanism in mobile video com-
munication and factorized the QoE generation process into
technical factors and external factors (Fig. 1). The technical
factors contained 11 objective parameters that could be clas-
sified into four types: video attributes, network performance,
device capability and playback events. For the external fac-
tors, we utilized the acceleration sensors and light sensors
embedded in mobile terminals to record the parameters about
user movements and ambient illuminance condition. The two
external parameters were selected since user perception of the
video services can be greatly influenced by user movement
state [38] and ambient illuminance [39]. In addition, both
external parameters may contain informative scene knowl-
edge. For instance, lighting information is tightly related with
the user environmental conditions, such as outdoor or indoor.
All the recorded objective parameters are listed and described
in Table 1.
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TABLE 1. List of the recorded objective parameters.

FIGURE 2. The diagrammatic drawing of data collection.

Moreover, the subjective ratings about the video quality
in terms of four aspects, i.e., visual quality, playback flu-
ency, initial loading (the satisfaction degree about the starting
delay due to initial loading) and overall experience, were
also recorded. In addition to the overall experience, the other
three aspects were taken into account since the overall expe-
rience of video service is mainly determined by the three
aspects [27]. Therefore, using the subentry scores as inter-
layer components can help us to have a better understanding
of the relationships between the objective parameters and
QoE.

For clarity, the diagrammatic drawing of data collection
is demonstrated in Fig. 2. We specially developed a testing
application (app) called CU-vMOS which could be installed
on both the Android system and the iOS system. A user
started a test by pressing the starting button on the initial
interface. Then, the app randomly requested a video from
our pre-established server for the user. The video was played
in a classic manner. First, the user experienced a starting
delay caused by the initial loading until the first frame

appeared. Over the course of the playback, the visual quality
of the video maintained consistent and stalling might occur
if the network performance was unable to meet the demand.
Meanwhile, this app automatically recorded the 13 objective
parameters in a non-intrusive way.

When the video was over, each user was asked to rate
each of the four aspects. All the scores were on a 5-level
scale according to the absolute category rating (ACR), which
mapped the 1-5 points into the ‘‘Bad’’, ‘‘Poor’’, ‘‘Fair’’,
‘‘Good’’ and ‘‘Excellent’’ levels, respectively. After the user
finished the rating, the opinion scores together with the
recorded objective parameters were all transferred to the
pre-established server.

The contents of testing videos were diversified, including
cartoons, documentary films, variety shows, sport videos and
so on. Each type of content had four different versions in
terms of definition, i.e., 240P, 360P, 720P and 1080P. Accord-
ing to the statistics collected at Youtube, the majority of
videos watched by the mobile users are short: nearly 90% of
the videos are shorter than 5 minutes, and the average length
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is 160 seconds [31]. Therefore, our prepared videos were of
three lengths, i.e., 30 seconds, 5 minutes and 10 minutes,
which could be regarded as short, middle and long videos for
the mobile scenarios, respectively. In total, 240 videos were
prepared for the test.

Over six hundred professional mobile network inspectors
from China Unicom took part in the data collection during
their routing inspections. Nevertheless, the signal providers
were not limited to China Unicom. The participants were
elaborately instructed about the principles of the test and
received appropriate reward for this task. From January to
February 2018, a data set containing over eighty thousand
data records was established for further study.

IV. DATA PREPROCESSING AND ANALYSIS
The data preprocessing consists of two steps, i.e., unifying
the data form and cleaning the outliers.

A. DATA TRANSFORMATION
In the raw data set, the 11 technical parameters are measured
by a single scalar quantity while the two external parameters
are in the form of time series. Instead of using the two time
series directly, we transform each time series into a single
scalar quantity in advance.

The parameters of movement are in the form of time
series of acceleration data, which are characterized in three
dimensions. In order to transform them into a single scalar
that can well reflect user movement intensity, the accelera-
tion data are processed as the following steps. Denoting the
three-dimensional acceleration at time t as Ea(t), we decom-
pose Ea(t) by the following expression

Ea(t) = Eg+ Eabg(t)+ Eatb(t), (1)

where Eg, Eabg(t) and Eatb(t) are the gravitational acceleration,
the acceleration of user’s body relative to the ground and the
acceleration of user’s mobile terminal relative to user’s body,
respectively. Eabg(t) corresponds to the holistic motion inten-
sity of user body while Eatb(t) can reflect the slight waggling
of mobile terminal caused by the swing of the holding arm.
Accordingly, the time average of Ea(t) over the course of video
playback can be expressed as

Eamean = Eg+ Eabg + Eatb, (2)

where Eabg and Eatb are the time average of Eabg(t) and Eatb(t),
respectively. Calculating the variance for Ea(t), we have

Var(Ea(t)) =
1
T

T∑
t=1

(Eabg(t)+ Eatb(t)− Eabg − Eatb)2

≈
1
T

T∑
t=1

[(Eabg(t)− Eabg)2 + (Eatb(t)− Eatb)2]

= Var(Eabg(t))+ Var(Eatb(t)), (3)

where the approximation is based on the reasonable assump-
tion that user holistic movement relative to the ground is
uncorrelated or mildly correlated with the random arm swing.

According to the basic principles of kinematics, it can be
inferred that the variance of Eabg(t) and the variance of Eatb(t)
are both positive correlated with the intensity and variabil-
ity of user motion. Therefore, the approximate value of
Var(Ea(t)), which is the sum of Var(Eabg(t)) and Var(Eatb(t)),
is used as an integrated scalar indicator of user motion inten-
sity. In addition, considering that the length our testing video
are all less than 10 minutes, we directly take the time average
of the ambient light parameter to represent the overall ambi-
ent illuminance condition.

B. DATA CLEANING
As the first step of data cleaning, the fragmentary parts
of the raw data are restored in virtue of the information
redundancy in order to preserve more data for the subsequent
analysis. After the unrecoverable data are deleted, the out-
liers are removed through correlation analysis. Specifically,
we first denote the four subjective scores of overall experi-
ence, initial loading, playback fluency and visual quality by
Si (i = 1, 2, 3, 4), respectively. Similarly, the 13 objective
parameters are denoted by Pj, where the subscripts are in
accordance with Table 1. Then, calculating the Spearman’s
rank correlation coefficients for each pair of subjective scores
and objective parameters, we obtain a correlation coefficient
matrix CM, whose elements are defined by the following
equation [40]

CM(i, j) = 1−
6

∑
n(rg(S

n
i )− rg(P

n
j ))

2

N (N 2 − 1)
, (4)

where rg(Sni ) and rg(Pnj ) denote the ranks of Sni and Pnj ,
respectively. The superscript n indicates the index of all the
samples andN is the total number of samples. The correlation
coefficients of the 13 selected parameters and the 4 subjective
scores are demonstrated in Fig. 3. It can be seen that most
of the objective parameters demonstrate weak correlations
with the four subjective scores. This should be unsurprising.
First, a single objective parameter can just partly determine
the perceived performances of the video services. In addi-
tion, unlike the tests conducted in a laboratory environment,
the tests conducted in the real-world scenarios are inevitably
influenced by unpredictable factors, which further reduce the
correlations between the subjective scores and the considered
objective parameters.

Then, the box plots based on the correlation coefficients are
used to identify the outliers. The validity of a sample needs to
be verified by each subjective score. To be specific, we first
select four objective parameters that are most correlated with
Si according to the correlation coefficients as the primary
parameters of Si. Then, the data set is divided into five subsets
Dli (l = 1, 2, 3, 4, 5) according to the values of Si and four
box plots corresponding to the four primary parameters are
depicted for each subset Dli . A sample belonging to Dli is
verified to be valid for Si if the sample is located within the
interval [Q1−1.5IQR,Q3+1.5IQR] in at least three box plots,
where Q1, Q3 and IQR represent the first quartile, the third
quartile and the interquartile range, respectively. The samples
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FIGURE 3. The correlation coefficients between the 4 subjective scores and the 13 objective parameters. The asterisks indicate result significance at
p < 0.01.

that are valid for all four subjective scores are regarded as the
valid samples. Finally, 29,778 valid samples are retained in
the training data set Dtrain for further modeling.

V. ESTIMATION MODELS
In this paper, the decision tree method is utilized to develop
the QoE estimation models. Among various machine learn-
ing approaches, we select the decision tree method for the
following reasons. First, non-parametric models are better
choices for QoE estimation considering that the relationships
between the objective parameters and the subjective scores
are so complex that it is difficult to assume a valid parametric
form in advance. Second, the model needs to be able to cope
with the interdependence between the objective parameters.
In addition, decision tree has long been applied in decision
analysis to help identifying a strategy most likely to reach a
goal. Thus, a model based on decision tree may provide the
wireless network operators with rewarding information to the
benefit of root cause analysis and network optimization [41].

Regarding the 5 discrete values of each subjective score as
the tags of 5 categories, we cast the estimation problems as
classification problems. In the following subsections, we pro-
pose two estimation models that are based on classification
tree and regression tree, respectively. Considering that the
training processes of the estimationmodels of the four subjec-
tive scores are identical and independent, we omit the indices
of different subjective scores in the following expressions of
this section.

A. CLASSIFICATION TREE BASED MODEL
In this subsection, the estimation models of the subjective
scores are established based on the classification tree method

C4.5 [42], which is suitable for the problems whose input
variables have both discrete and continuous forms. In this
work, video definition is regarded as discrete since it has only
four different values while the other objective parameters are
regarded as continuous. The training algorithm starts at a root
node, which contains all the training samples and is denoted
byR. Then, the information gain ratio (IGR) is calculated for
each parameter as follows.

When an objective parameter Pm is continuous, each sam-
ple in the root node can be classified into one of the two child
nodes C1m,q and C2m,q depending on whether Pm of the sample
is smaller or larger than a specific splitting value vm,q, where q
indexes all possible splitting values. The IGR of this splitting
scheme is defined as:

IGR(vm,q) =
H (S)−

∑
r∈1,2

|Crm,q|
|R| H (S|Pm ∈ Crm,q)

H (Pm)
, (5)

where H (S) and H (Pm) are the entropies of all the samples
at the root node with respect to the subjective score S and
the objective parameter Pm, respectively. H (S|Pm ∈ Crm,q) is
the conditional entropy of S given Pm belonging to Crm,q. The
largest value of all possible IGR(vm,q) is selected as the IGR
of Pm at the root node, i.e., IGRm = maxq{IGR(vm,q)}.

When an objective parameter Pm is discrete, the samples
in the root node are directly divided into multiple child nodes
corresponding to each value of Pm. Denoting the r th child
node by Crm, the IGR of Pm is directly defined as:

IGRm =
H (S)−

∑
r
|Crm|
|R| H (S|Pm ∈ Crm)
H (Pm)

, (6)

whose notations are similar to those of the equation (5).
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The parameter with the largest IGR is selected to be the
splitting parameter of the root node and the root node is split
into multiple child nodes based on the corresponding splitting
scheme. Then, regarding each child node of R as a new root
node, the training algorithm further splits the corresponding
subtrees in the same way as introduced above. The algorithm
keeps on expanding the classification tree recursively until
one of the following conditions is satisfied at the current node.
• All the samples have the same subjective score.
• The number of the samples is no larger than a predefined
value Nmin.

• All the samples have the same value of the splitting
parameter.

We call the nodes that stop further splitting the leaf nodes.
At a certain leaf node, the subjective score corresponding to
the largest sample proportion is selected to be the estimated
score for any sample belonging to the leaf node.

The training procedures of the classification tree based
estimation model are listed in Algorithm 1. The algorithm
builds a classification tree by a recursive functionBUILD_CT
whose inputs are Dtrain and Nmin. The algorithm controls the
complexity of the classification tree by the model param-
eter Nmin since it determines the minimum sample num-
ber requirement in a node for further splitting. The optimal
value of Nmin is determined by cross-validation. The out-
put of BUILD_CT is a multi-layer nested struct T and the
struct layers from the outside to the inside correspond to the
tree-structure layers from the root to the leaves. Ns is the
number of discrete values of Ps and the function Maj means
taking the score with the largest proportion.

B. REGRESSION TREE BASED MODEL
In addition to the classification tree C4.5, we utilize the
gradient boosting decision tree (GBDT) method [43], which
conducts multi-class logistic regression by multiple boosting
trees, to establish another estimation model. In this model,
5 estimation trees, which are denoted by Tl (l = 1, 2, 3, 4, 5),
are built for each of the four subjective scores. When being
used to estimate the subjective score S of a new data sample
x, each of the five estimation trees produces a classification
score Tl(x) related to the possibility that S(x) = l. Finally,
S(x) is estimated to be k (k = 1, 2, 3, 4, 5) if Tk (x) =
maxl{Tl(x)}.
As the first step, the training algorithm translates the sub-

jective score of the nth training sample xn to a 5 × 1 vector
hn according to the one-hot coding scheme, where the lth
element hn(l) equals one while the other elements equal
zero. Then, according to the multi-class logistic regression,
the probability that S(xn) = l can be defined as

cl(xn) =
eTl (xn)∑5
k=1 e

Tk (xn)
. (7)

The corresponding likelihood function can be expressed as

p(H|T1,T2, . . . ,T5) =
N∏
n=1

5∏
k=1

ck (xn)hn(k), (8)

Algorithm 1 Training Algorithm of the Classification Tree
Based Estimation Model
Input: the training data set Dtrain; minimum sample number

for splitting Nmin;
Output: the classification tree T : the child nodes T .child ,

the splitting parameter index T .dim, the splitting value
T .spl;

1: function T = BUILD_CT(Dtrain,Nmin)
2: if |Dtrain| ≤ Nmin or the values of S inDtrain are identical

then
3: return T .child = Maj(Dtrain), T .dim = 0, T .spl =

inf;
4: end if
5: calculate IGRm for each objective parameter Pm; deter-

mine the splitting parameter Ps and the splitting value vs
by IGRs = maxm{IGRm};

6: if the values of Ps in Dtrain are identical then
7: return T .child = Maj(Dtrain), T .dim = 0, T .spl =

inf;
8: else
9: T .dim = s;
10: end if
11: if Ps is discrete then
12: T .spl = inf;
13: divide Dtrain into Ns subsets SDi (i = 1, 2, . . . ,Ns)

according to the values of Ps, calculate the child nodes
recursively T .child(i) = BUILD_CT(SDi,Nmin);

14: else
15: T .spl = vs;
16: divide Dtrain into 2 subsets SDj (j = 1, 2) by splitting

the values of Ps by vs, calculate the child nodes recur-
sively T .child(j) = BUILD_CT(SDj,Nmin);

17: end if
18: return T .child , T .dim, T .spl;
19: end function

where H is a N × 5 matrix with the nth row being h>n .
Taking the negative logarithm for the equation (8), we have
the cross-entropy error function

E(T1,T2, . . . ,T5) = −
N∑
n=1

5∑
k=1

hn(k) ln ck (xn). (9)

Calculating the gradient of the equation (9) with respect to
the classification score Tl(xn), we obtain

∇Tl (xn)E(T1,T2, . . . ,T5) = cl(xn)− hn(l). (10)

Then, the estimation trees are trained iteratively. First,
the training data set Dtrain is randomly divided into a training
subset D1 and a test subset D2 according to the proportions
1 − ptest and ptest , respectively. The training process starts
from an initial state T (0)

1 , T (0)
2 , . . . ,T (0)

5 . In the uth round
(u = 1, 2, 3, . . .), the residual error between the target value
hn(l) and the estimated value c(u−1)l (xn) is calculated for each
xn, i.e.,

r (u)n,l = hn(l)− c
(u−1)
l (xn), (11)
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Algorithm 2 Training Algorithm of the Regression Tree
Based Estimation Model
Input: the training data setDtrain; the training parameters ρl ,

dmax , ptest , rstop, rmax ;
Output: Regression tree T1, T2, T3, T4, T5;
1: Initialization: u = 1, T (0)

1 , T (0)
2 , T (0)

3 , T (0)
4 , T (0)

5 ;
2: randomly divideDtrain into a training subsetD1 and a test

subset D2 by the ratio ptest ;
3: while u ≤ rmax do
4: for l = 1 to 5 do
5: calculate the residual data set R(u)

l on D1, d = 1;
6: function T̂ (u)

l = BUILD_RT(R(u)
l , d, dmax)

7: if d ≥ dmax or r
(u)
n,l are identical for all xn orNtr ≤ 1

then
8: return T̂ (u)

l .child = meann(r
(u)
n,l ), T̂

(u)
l .dim = 0,

T̂ (u)
l .spl = inf;

9: end if
10: search for the optimal splitting scheme (Pt , vt );
11: if the values of Pt in D1 are identical then
12: return T̂ (u)

l .child = meann(r
(u)
n,l ), T̂

(u)
l .dim = 0,

T̂ (u)
l .spl = inf;

13: else
14: T̂ (u)

l .dim = t , T̂ (u)
l .spl = vt ;

15: divide R(u)
l into 2 subsets R(u)

l (1) and
R(u)
l (2) by the splitting scheme (Pt , vt ),

recursively calculate the child nodes
T̂ (u)
l .child(j) = BUILD_RT(R(u)

l (j), d + 1, dmax)
(j = 1, 2);

16: end if
17: return T̂ (u)

l .child , T̂ (u)
l .dim, T̂ (u)

l .spl;
end function

18: T (u)
l = T (u−1)

l + ρl T̂
(u)
l ;

19: end for
20: if the test performance on D2 has not been promoted

for rstop rounds then
21: break;
22: end if
23: end while

where c(u−1)l (xn) is calculated by T (u−1)
l according to the

equation (7). Then, the residual data set of Tl in this round
is defined as

R(u)
l = {[x

>
n , r

(u)
n,l ]|n = 1, 2, . . . ,Ntr }, (12)

where Ntr is sample number of D1.
The algorithm fits a boosting tree T̂ (u)

l to R(u)
l , where T̂ (u)

l
is a binary regression tree with the maximal depth dmax . The
training process of T̂ (u)

l starts at a root node containing all
the training samples. Then, the samples in the root node are
divided into two child nodes R(u)

l (1) and R(u)
l (2) according

to a splitting scheme that are characterized by an objective
parameter Pm and a splitting value vm,q. The splitting scheme
(Pt , vt ) that minimizes the sum of intra-class variations of the
S in the two child nodes is selected as the optimal scheme.

Treating each child node of the root node as a new root
node, the training algorithm keeps on expanding the corre-
sponding subtrees by splitting the new root nodes in the same
way. The boosting tree is expanded recursively till the leaf
nodes, at which one of the following conditions is satisfied.
• The depth of the current node has reached the maximal
depth dmax .

• All the samples have the same residual error.
• The number of the samples is no more than 1.
• All the samples have the same value of the splitting
parameter.

For the samples in the same leaf node, the residual errors are
all set to be the mean value of themselves. Finally, each of the
five estimation trees is updated according to the equation

T (u)
l = T (u−1)

l + ρl T̂
(u)
l , (13)

where ρl is the learning step size for Tl .
At the end of each round, the algorithm evaluates themodel

performance on the test subsetD2. The iteration process stops
when there is no performance improvement for over rstop
rounds or the total number of iterations reaches rmax , where
the early stoping round number rstop and the maximal number
of iterations rmax are predefined to avoid overfitting. The
training procedures of the regression tree based estimation
model are listed in Algorithm 2, where each boosting tree is
built by the recursive function BUILD_RT in a similar way
as BUILD_CT in Algorithm 1.

VI. PERFORMANCE EVALUATION AND DISCUSSION
In this section, the performances of the two proposed estima-
tion models are evaluated. In addition, we provide necessary
discussions on the characteristics of the data for a more
comprehensive understanding of the performances.

A. ESTIMATION PERFORMANCES
For the classification tree based model, the parameter Nmin
needs to be determined first. As demonstrated in Fig. 4,
the relationships between the estimation performances and
model complexity are obtained through 10-fold cross-
validation, where Rmin is the percentage of Nmin to the total
number of training data N , i.e., Nmin =

N ·Rmin
100 . It can be seen

that as the model complexity increases, the estimation perfor-
mances on the training data get promoted significantly while
the estimation performances corresponding to the test data
tend towards the opposite direction. It is evident that an overly
complicated classification tree model will lead to the problem
of overfitting. In order to avoid overfitting, Nmin is assigned
the value corresponding to the best estimation performance
on the test data. Therefore, we set Rmin = 10, 2, 10, 10 for
the estimation of overall experience, initial loading, playback
fluency and visual quality, respectively.

For the GBDT based model, the model parameters are
set as ρl = 0.01, Dmax = 8, ptest = 0.1, rstop = 80
and rmax = 4000. For comparison, we also evaluate the
estimation performances of three classical machine learn-
ing methods: linear discriminant analysis (LDA), K nearest
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FIGURE 4. The quantitative relationship between estimation performance
(the upper: Classification accuracy, the lower: Root mean square error)
and complexity of the classification tree based model by 10-fold
cross-validation.

neighbor (KNN) and the support vector machine (SVM). All
the experimental results are obtained through 10-fold cross-
validation.

As shown in Fig. 5, both of the proposed models outper-
form the other three baseline models, which indicates that the
models with tree-formed structure are indeed more suitable
for QoE estimation. Specifically, the estimation accuracies
of the C4.5 based model range between 60% and 70% for
the four subjective scores, while the GBDT based method
demonstrates better performances that the overall estima-
tion accuracy approaches 80% and the accuracy for play-
back fluency reaches 82.4%. In addition, considering that
wireless network operators typically adopt a 3-level scale
(good, medium and bad) to evaluate user experience in prac-
tice, we transform the score ranges of 1 point, 2-3 points
and 4-5 points into the ‘‘bad’’, ‘‘medium’’ and ‘‘good’’
levels, respectively. As demonstrated in Fig. 6, the esti-
mation performances of both proposed models correspond-
ing to the 3-level scale are raised above 80% (except for
the visual quality of C4.5) and the overall performance of
the GBDT based model approaches 90%. Considering the
large variance in subjective opinions among different users
(cf. Section VI-D) and the complicated conditions in

FIGURE 5. The estimation performances of the proposed decision tree
based methods and the other baseline methods on the 5-level scale.

FIGURE 6. The estimation performances of the proposed decision tree
based methods on the practical 3-level scale.

real-world scenarios, such performance level is remarkable,
which validates the feasibility of the proposed QoE estima-
tion approach based on mobile terminals.

It should be noted that the performance advantage of the
GBDT based model compared to the C4.5 based model
results from the power of boosting trees. However, we should
not blurt out that the GBDT based model absolutely over-
matches the C4.5 based model. The intuitional structure of
the C4.5 based model preserves important information about
the statistical relationships between the subjective scores and
the objective parameters, which makes the C4.5 based model
more explicable and analyzable than the GBDT based model.
When detecting a QoE degradation in a certain area, the wire-
less network operators can conduct root cause analysis based
on the structure of the decision tree and seek for an effective
solution. Comparing the merits and demerits of both models,
wireless network operators can select an appropriate model
according to practical needs.

B. PARAMETER SELECTION
To have a better understanding of the estimation performance,
the statistical relationships between the objective parameters
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TABLE 2. The main parameters of each subjective score.

and the subjective scores are discussed in this subsection.
As demonstrated in Fig. 3, most of the correlation coefficients
are in accordance with our common sense, which confirms
the validity of the collected data. For instance, a longer join
time, which may be attributed to a higher video definition or
a poorer network performance, is likely to lower the score of
initial loading. Therefore, the join time is negatively corre-
lated with the scores of initial loading and playback fluency
but positively correlated with the score of visual quality.
Moreover, the global peak rate directly indicates the net-
work capacity. It is straightforward that the global peak rate
should be positively correlated with the scores of initial load-
ing, playback fluency and overall experience, respectively.
Interestingly, there also exists a positive correlation with the
global peak rate and the visual quality score, which may
be explained by the correlations among the three subscores
(cf. Section VI-C).

As demonstrated in Table 2, we list the six most correlated
parameters, which are called the main parameters, for each
subjective score. Not surprisingly, the scores of initial load-
ing and playback fluency mainly depend on the parameters
related to network performance and playback events, while
the score of visual quality mainly depends on video attributes.
It is worth noting that the first five main parameters of the
overall experience are all related to network performance and
playback events, which means that network performance is
still the main restricting factor of QoE.

In this paper, we specially introduce external factors into
QoE estimation. Though the external parameters show weak
correlations with the subjective scores, it is necessary to
find out how much performance improvement the external
factors can contribute to the QoE estimation. To this end,
we first remove the movement parameter and the ambient
light parameter, and then conduct model training based on the
abridged data in the same way as introduced above. As shown
in Fig. 7, the GBDT based model obtains considerable
performance improvement from the external factors, which
demonstrates the significance of external factors for QoE
estimation. Meanwhile, there is little performance improve-
ment for the C4.5 based model and this can be explained
by the characteristics of classification tree. As introduced in
Section V, C4.5 makes each split only based on the param-
eter with the maximal information gain ratio. Therefore,
the external factors which show slight correlations with the
subjective scores can hardly be selected and the beneficial
information can not be fully utilized by the C4.5 based
model.

FIGURE 7. The performance improvement due to the external parameters
(5-level scale).

C. THE RELATIONSHIPS AMONG THE SUBJECTIVE
SCORES
To have an insight into the statistical relationships among
the subjective scores, we demonstrate the correlation matrix
of the subjective scores in Table 3. It can be seen that the
three subscores all have a strong positive correlation with the
overall score and the correlation coefficients are close to each
other. In addition, the score of visual quality is also signifi-
cantly correlated with the other two subscores, which does
not fit with our common sense. This phenomenon may result
from positive interactions among the subjective scores, e.g.,
a usermay bemore tolerant to visual quality degradation if the
video is played fluently. Moreover, comparing the estimation
results demonstrated in Fig. 5, we can find that almost all
the models (except for GBDT) provide the lowest estimation
accuracy for the overall score. Compared to the overall score,
the three subscores aremore closely and directly related to the
objective parameters and they are less influenced by the vari-
ance and fluctuation of subjective opinion, which eventually
leads to higher estimation accuracy. This phenomenon veri-
fies the assumption that the three subentries can be regarded
as interlayer components that provide auxiliary information
leading to a more comprehensive understanding of QoE.

D. USER RATING DIVERSITY
In this paper, we aim at developing a universal QoE mon-
itoring approach for various mobile users. Therefore, user
rating diversity inevitably introduces error to the estimation
performances. The paper [44] systematically analyzed the
standard deviation of opinion scores (SOS) caused by user
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TABLE 3. Correlations among the four subjective scores.

FIGURE 8. The MOS-SOS curves of the four subjective scores in our test.

rating diversity and formulated the SOS hypothesis, which
postulates a square relationship between MOS and SOS:

SOS2 = a(−MOS2 + 6×MOS − 5), (14)

where a is a characteristic parameter that varies with the
tested crowd and rating conditions. The value of a is obtained
by data fitting and can be used as a direct measurement of user
rating diversity.

In the same way, we divide all the data samples into
multiple subsets based on the proposed classification tree
model, where each subset corresponds to a leaf node of the
tree. Then, the samples in a certain subset are considered
approximately congeneric since they have similar objective
parameters. Calculating the MOS and SOS values of each
subset for each subjective score and fitting the function (14) to
them, we obtain the four MOS-SOS curves and depict them
in Fig. 8. The shaded area indicates the empirical variation
range discovered in [44] and is provided for comparison.
It can be seen that the user rating diversity in our test is nor-
mal but it indeed significantly contributes to the estimation
error.

User rating diversity mainly results from the variations
of user specific factors and context factors. Therefore, it is
possible to reduce user rating diversity with more information
about the related factors. In the future, we attempt to further
exploit the capabilities of mobile terminals to sense more
beneficial information and develop customized QoE estima-
tion models based on long-term QoE data for a more refined
network monitoring.

VII. CONCLUSION
In this paper, we proposed a QoE monitoring approach based
on mobile terminals for video services. First, we compre-
hensively analyzed the causal mechanism in mobile video
communications and designed a QoE estimation approach
that took full advantage of mobile terminals. To explore
the feasibility of the proposed approach, we developed a
mobile testing app and established a video service data set
containing over eighty thousand data records from various
real-world scenarios. In addition to the various technical
factors, two external factors related to user movement and
environment lighting condition were specially recorded for
further exploration. We preprocessed the raw data based
on correlation analysis and obtained the training data set.
In consideration of the specific requirements of estimation
problem, two estimation models were established based on
the C4.5 method and the GBDT method, respectively. The
experimental results demonstrated that both tree-formed esti-
mationmodels outperformed other baseline machine learning
models. The remarkable estimation accuracies proved that it
is feasible for the wireless network operators to monitor QoE
efficiently based on mobile terminals. In addition, the discus-
sions demonstrated that the external factors were informative
for QoE estimation and the user rating diversity significantly
contributed to the estimation error. These discoveries moti-
vate us to further exploit the capabilities of mobile terminals
for QoE estimation and develop customized QoE estimation
models for a more refined QoE monitoring in the future.
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