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ABSTRACT Possibility system has been recently recognized as a potential foundational theory for fuzzy
set theory though the concept of possibility originated from the membership function of fuzzy sets. As an
application of fuzzy set theory, fuzzy control has been widely used in engineering practices, where control
laws are described by fuzzy if-then rules. This paper intends to formulate fuzzy control in the framework
of possibility theory by regarding the fuzzification procedure of fuzzy control as extraction process of the
fuzzy variable from crisp input, and the fuzzy if-then rules as extracted rules between fuzzy input/output.
Typical procedures of fuzzy control, such as fuzzification, implication, aggregation, and defuzzification,
are eventually formulated as a series of conditional possibilities operated by ‘‘max-product’’ operators. The
reformulated fuzzy controller has a more general form, which encompasses the Mamdani fuzzy controller as
a special case. Some fundamental concepts of possibility theory, such as randomness/fuzziness, possibility,
and conditional possibility, are also discussed, which may be helpful for the correct understanding of
possibility theory. Efforts have been made to bridge the two systems of possibility theory and fuzzy sets by
the derivation of composition rule of fuzzy relations from conditional possibility. All results are derived for
both normalized possibility and non-normalized possibility. This paper strengthened the role of possibility
theory as a foundation for fuzzy sets, and as a complementary method to probability theory for handling
information with fuzzy uncertainty.

INDEX TERMS Fuzzy control, fuzzy logic, fuzzy sets, possibility theory, rule extraction.

I. INTRODUCTION
Over the last three decades, the number and variety of appli-
cations of fuzzy sets, especially fuzzy logic, have increased
significantly [1]–[5]. The applications range from consumer
products such as cameras, washing machines, and microwave
ovens to industrial process control, medical instrumentation,
and decision-support systems. Originally, the objective of
fuzzy logic control systems is to control complex processes
by means of human experience [6]. However in the recent
years, the emphasis on knowledge representation issues in
works of fuzzy control tends to fade. More andmore attention
has been shifting into the fuzzy modeling and control of
nonlinear systems, where fuzzy systems, as universal approx-
imators, are usually applied to identify unknown uncertainty
terms required in control design [7], [8], [37]. Continuing
efforts on applications of fuzzy control exhibit great inter-
est in the integration of fuzzy logic with other methods,
such as neural-network, Kalman filter and genetic algorithm.

The associate editor coordinating the review of this manuscript and
approving it for publication was Derek Abbott.

The goal is to improve the control of complex, nonlinear
dynamic plants, for example, human body [1]–[3], [9]–[11].

The first application of fuzzy set theory to the control of
systems was by Mamdani and Assilian, who reported on the
control of a laboratory model steam engine [6], [9], [12]. It is
interesting to note that the first industrial application of fuzzy
control was the control of a cement kiln in Denmark [13].
By the end of the 1980s, fuzzy control began to establish
itself as a recognized control paradigm after Japanese man-
ufacturers launched a wide range of products with fuzzy
controlled parts and systems. Theoretical origin of fuzzy logic
systems may attribute to the paper ‘‘Outline of new approach
to the analysis of complex systems and decision processes’’
by Zadeh [14], where the compositional rule of inference is
considered to be the spine of all fuzzy logic models [6]. The
compositional rule of inference is a special kind of composi-
tion of fuzzy relations with one relation being unary.

In spite of the widespreading applications of fuzzy control,
there are fewworks on logical interpretation for fuzzy control.
It was claimed in [15] that most things named fuzzy inference
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can be naturally understood as logical deduction; and in [16]
another logical approach to fuzzy control was proposed based
on fuzzy logic programming. The link between possibility
and fuzzy logic was discussed in [35] and [39], but seman-
tically. Though the concept of possibility originated from
membership function of fuzzy sets, in recent years possibility
system has been recognized as a potential foundational theory
for fuzzy set theory with fuzzy membership regarded as pos-
sibility likelihood [33], [36]. This work intends to formulate
compositional rule of inference, especially fuzzy control,
in the framework of possibility theory, where compositional
rule of inference is taken as composition of conditional possi-
bility. All results are derived for both normalized possibility
and non-normalized possibility, considering that we human
beings tend to present fuzzy concepts in a flexible and incom-
plete manner.

The rest of the paper is organized as follows. To help
the understandings and applications of possibility theory,
section 2 and 3 discuss some fundamental problems related
to the concepts of randomness, fuzziness, and possibility.
Section 4 intends to bridge the two systems of possibility
theory and fuzzy sets, and derives composition rule of fuzzy
relations from conditional possibility. Section 5 formalizes
fuzzy control in possibility theory via fuzzy rule extrac-
tion. The reformulated fuzzy controller has a more general
form, which encompasses Mamdani fuzzy controller as a
special case. Section 6 gives an example of heating system
to illustrate the conciseness-in-form and the ease-to-use of
the reformulated fuzzy controller over the current Mamdani
fuzzy controller. Section 7 concludes the paper.

II. POSSIBILITY: FOR DESCRIPTION OF FUZZINESS
Traditionally, the uncertainty of information is believed to be
stochastic in nature, as such, must be dealt with methods pro-
vided by probability theory [17]–[21]. Recent decades, fuzzi-
ness, as the counterpart of randomness, has been recognized
as another kind of uncertainty of information, with which
fuzzy sets and possibility theory were proposed by Zadeh to
cope [22]. It should be noted that the concept of possibility
stems from membership degree of fuzzy sets. Nevertheless
the notion and calculation rules of possibility may at least
go back to the works of one economist Shackle [23], [24].
To have a clear understanding of possibility theory, we in this
section start from the concepts of randomness and fuzziness,
and then discuss both intuitive and axiomatic definitions of
possibility.

A. FROM RANDOMNESS TO FUZZINESS
Fuzziness is a different kind of uncertainty that is easy to
be mixed up with randomness. A definition of randomness
presented in [25] is given below.
Definition 1: Randomness is the occurrence uncertainty of

the either-or outcome of a random experiment, characterized
by the lack of predictability in mutually exclusive outcomes.

Either-or here means the experiment outcomes are mutu-
ally exclusive, that is at each experiment one can have only

one outcome among the sample space (a well-defined set
of possible outcomes). The tossing of a six-sided dice can
be a classical example of illustrating random experiment
or randomness. Obviously, each time one can only get one
side among all six possible sides, which is unpredictable
and is either this or that (e.g., either one or two, or others).
Sample space with mutually exclusive outcomes of a ran-
dom experiment can be further defined as random sample
space [25]. The random phenomenon, the random state or
even the random experiment can be mathematically repre-
sented by a random variable. A random variable X is a vari-
able whose value xi is subject to variation due to randomness,
which can take on a set of possible values of a random
phenomenon (state) in a random sample space �, each with
an associated probability, p(xi).
Outcomes of a random experiment are mutually exclusive

and lacking in predictability. In contrast, outcomes of a fuzzy
experiment are non-exclusive and lacking in clear boundary.
The definition of fuzziness is given below [25].
Definition 2: Fuzziness is the cognition uncertainty of the

both-and outcome of a fuzzy experiment, characterized by the
lack of clear boundary between non-exclusive outcomes.

Both-and here means the experiment outcomes are not
exclusive, that is at each experiment one could have multiple
outcomes at the same time. The classifying of age group can
be an example of illustrating fuzzy experiment or fuzziness.
Suppose you are informed of a person with his picture or his
age (e.g., 42 years old), and you are invited to classify this
person into age group = {aged, middle, young}, which is a
judgment procedure of a fuzzy phenomenon. Most likely you
would regard age of 42 as middle, but at the same time you
may also think this person is still young to some extent, and
you definitely will not like to regard this person as aged since
we elderly people always refuse to acknowledge that we are
old guy. One step further, you may consider the person as
aged, middle, young, with confidence 0, 1, and 0.5, respec-
tively. The outcomes (aged, middle, young) of the classifying
experiment are uncertain due to the lack of clear boundary
between them, and are not exclusive. In other words, one
can obtain a both-and outcome (both middle and young) that
contains multiple non-exclusive outcomes, simultaneously.

Sample space with non-exclusive outcomes of a fuzzy
experiment can be defined as fuzzy sample space [25].
A fuzzy variable X is a variable whose value xi is subject to
variation due to fuzziness, which can take on a set of possible
values of a fuzzy phenomenon (state) in a fuzzy sample
space9, each with an associated possibility,π (xi). Under this
definition, a fuzzy variable intrinsically represents the fuzzy
phenomenon, the fuzzy state or even the fuzzy experiment.

B. INTUITIVE/AXIOMATIC DEFINITIONS OF POSSIBILITY
After a clear definition of fuzziness, we below intro-
duce the concept of possibility in forms of both intuitive
definition [25] and axiomatic definition [23], [25].
Definition 3: Possibility (intuitive definition) is the mea-

sure of the both-and fuzziness, which is the classification
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confidence of every outcome of an experiment. Possibility
π (xi) of the outcome xi can be numerically described by the
compatibility (or similarity) between the fuzzy variable (the
state being judged) X and its prospective outcome xi, which
can be formulated as

π (xi) = comp(X , xi), (1)

where ‘‘comp’’ means compatibility.
In the example above of classifying age group, possibilities

of the person being aged, middle, young would be 0, 1, and
0.5, respectively. That is, your confidence of classifying the
person as aged, middle, young are 0, 1, and 0.5, respectively,
which represents the compatibility of the state being judged
(age group of the person) with prospective outcomes (aged,
middle, young).
Definition 4: Possibility (axiomatic definition) can be

built up upon a possibility space (9,6,5), which is a
mathematical construct that models a real-world process (or
‘‘experiment’’) consisting of fuzzy states that are lack of clear
boundary. A possibility space consists of three parts:

1) the fuzzy sample space 9 (recall that the sample space
in the axiomatic definition of probability is in fact a random
sample space), which is the set of all possible non-exclusive
outcomes.

2) the σ -algebra 6 ⊆ 29 , which is the event space
consisting of a set of events {Ai}. Note each event Ai is a
set containing zero or groups of outcomes which might be
of more practical use whereas an outcome xi is the result of a
single execution of the experiment.

3) the possibility measure 5 : 6 → [0, 1], which
is a function on 6 such that it satisfies the three axioms
below: [22], [32], [35]

Axiom 1. (Nonnegativity Axiom) π (φ) = 0 for empty
set φ.
Axiom 2. (Normality Axiom) the measure of entire fuzzy

sample space is equal to one: π (9) = 1.
Axiom 3. (Maxitivity Axiom), ∀A,B ⊆ 6,π(A∪B) =

max{π (A), π(B)}.
The widely accepted definition of possibility above was

originally proposed in [22], and was reformulated in [25] fol-
lowing a structure parallel to that of the axiomatic definition
of probability.

It is straightforward to justify the consistency between the
intuitive definition 3 and the axiomatic definition 4. Under
the compatibility interpretation of the intuitive definition of
possibility, we can see that if a state is compatible with
events A and B with confidence π (A) and π (B), respectively,
then it would be compatible with event A∪B with confidence
π (A∪B) = max{π (A), π(B)}. For example, if a person is
judged as middle and young with confidence 1 and 0.5,
then he will be judged as mature (the union of middle and
young) with confidence 1. This holds under the logic that
if we admit that a person is of middle age then we would
admit of no exception he is mature. Equation π (A∪B) =
max{π (A), π(B)} in this work is named as the maximum
principle of possibility (compatibility or similarity), which is

different from the addition principle of probability. Because
of the maximum principle of possibility, the intuitive defini-
tion 3 can serve as a foundation for the axiomatic definition 4.

Definition 4 is also named as the normal or normalized
possibility [32], [38]. Clearly, at least one of the elements of
9 should be fully possible, i.e. ∃xi, such that π (xi) = 1.
However, when such element does no longer exist, it leads
to a subnormal (or non-normalized) possibility distribution.
This situation may arise from incomplete data [38], or in our
viewpoint is simply due to human’s incomplete presentation
of fuzzy concepts. For example, given a range of temperature
(t = 0◦C ∼ 40◦C), we can defined two fuzzy concepts
‘‘high’’ (h) and ‘‘low’’ (l), by using conditional possibility
as will be discussed in the next section. It is often that, for
example given temperature 20◦C, both conditional possibility
of high and conditional possibility of low will be lower than
one, most likely being around 0.5, which means π (9|t) < 1.
A mapping 5 : 6 → [0, 1] satisfying Axioms 1 and 3 is
called a non-normalized possibility measure [32], [38].

We can definitely avoid such a situation by introducing
more fuzzy concepts to make fuzzy sample space complete,
that is

π (9) = max
xi
π (xi) = 1. (2)

For example, we can define one more fuzzy con-
cept ‘‘moderate’’ (m) to guarantee that π (9|t) =

max{π (h|t), π(m|t), π(l|t)} = 1. Nevertheless, as can
be seen by an example of fuzzy control in section 6,
we human beings tend to handle things in a concise and
flexible way, hence in an incomplete manner. In such sit-
uations, definition 4 can be slightly adapted to incorpo-
rate non-normalized possibility by replacing Axiom 2 with
Axiom 2’ below [32], [38].

Axiom 2’. 0 < π(9) ≤ 1.
This work suggests and follows hereafter the following

nomination for possibility.
Normal possibility (or normalized possibility): possibility

measure satisfying Axiom 1, Axiom 2 and Axiom 3.
Subnormal possibility (or non-normalized possibility):

possibility measure satisfying Axiom 1 and Axiom 3.
General possibility (or possibility in short): possibility

measure satisfying Axiom 1, Axiom 2’ and Axiom 3.
Note that possibility includes both normalized possibility

and non-normalized possibility.

III. CONDITIONAL POSSIBILITY AND
POSSIBILITY UPDATE
A key issue of uncertainty theory is bout uncertain inference,
which in probability theory relates to conditional probability
and probability update. We in this section introduce condi-
tional possibility and possibility update.

A. CONDITIONAL POSSIBILITY AND 2-ARY POSSIBILITY
Conditional possibility π (yj|xi) has been defined by Hisdal
similarly to probability theory using a Bayesian-like equation
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of the form [34], [35]

π (xiyj) = min(π (yj|xi), π(xi)), (3)

where π (xiyj) is the 2-ary joint possibility function of two
dependent fuzzy variables X and Y , and π (yj|xi) is the condi-
tional possibility distribution of Y given X .
Equation (3) is the min-based notion of conditional

possibility. On continuous numerical universe, this form
of conditioning induces undesirable discontinuities and the
maxitivity axiom is not preserved [23], [26]. Conditional pos-
sibility π (yj|xi) is better defined using the product rule below

π (xiyj) = π (yj|xi)π (xi), (4)

where by the use of the ‘‘max’’ disjunctive operator, we have

π (xi) =
1

α(xi)
max
yj
π (xiyj), (5)

π (yj) =
1

β(yj)
max
xi
π (xiyj), (6)

where

α(xi) = max
yj
π (yj|xi) ≤ 1, (7)

β(yj) = max
xi
π (xi|yj) ≤ 1. (8)

De Baets et al. [26] provide a mathematical justification of
the product-based notion of conditional possibility as in (4)
in a numerical universe, as opposed to the min-based condi-
tioning of qualitative possibility theory.

In the special case, fuzzy variables X and Y are inde-
pendent, (4) can be rewritten as the ‘‘product’’ conjunctive
operation below

π (xiyj) = π (xi)π (yj). (9)

The preference of the product-based notion of conditional
possibility over the min-based notion could be justified by
intuitive argumentation. This can be illustrated by an example
when two fuzzy variables X and Y are independent, and the
conclusion can be extended to the general case when they
are not independent. Suppose we are investigating people’s
physique, which is usually a joint fuzzy phenomenon of
height X and shape Y . The fuzzy sample space of height
X is {tall, middle, short} and shape Y = {strong, between,
thin}. In symbolic representation, X = {x1, x2, x3} and
Y = {y1, y2, y3}. If we are informed of π (xi) and π (yj)
as in Table 1 and 2, respectively, then what is the possibil-
ity that you would like to consider a person’s physique as
tall & strong? Similarly, the possibility of being middle &
between? Mathematically, given π (xi) and π (yj), how do we
treat π (xiyj)?

TABLE 1. Possibility π(xi ).

TABLE 2. Possibility π(yj ).

Obviously, the possibility of being tall & strong would
be 1, where the applying of ‘‘min’’ and ‘‘product’’ will lead to
the same results. However, the possibility of being middle &
between is 0.5 with ‘‘min’’ operator and is 0.3 with ‘‘product’’
operator. We prefer to admit that if we are uncertain about
two fuzzy phenomena with confidence less than one, we will
be more uncertain about the joint fuzzy phenomenon with
confidence less than the ‘‘min’’, but not with the ‘‘min’’
confidence of them. The results of π (xiyj) = π (xi)π (yj) are
listed in Table 3.

TABLE 3. Possibility π(xi yj ) = π(xi )π(yj ).

As a counterpart of conjunctive operation, disjunctive oper-
ator of possibility follows directly from the maximum princi-
ple of possibility and is rewritten as

π (xi ∪ xj) = max{π (xi), π(xj)}. (10)

We emphasize that the ‘‘max’’ disjunctive operator of pos-
sibility is totally different from the ‘‘additivity’’ disjunctive
operator of probability whereas probability/possibility follow
the same conjunctive operator of ‘‘product.’’

B. POSSIBILITY UPDATE
From (4), (6) and (8) we can derive a possibility update
equation in a form parallel to Bayesian inference as

π (xi|yj) =
π (xi)π (yj|xi)

π (yj)

=
β(yj)π (xi)π (yj|xi)
max
xk
{π (xk )π (yj|xk )}

, (11)

where π (xi|yj) is posteriori possibility, π (xi) is priori possi-
bility, π (yj|xi) is possibility likelihood of xi, and β(yj) can
be calculated by (8). Equation (11) is slightly different from
the possibility update equation in [27] and [28], which has no
such scaling factor β(yj).

IV. THE POTENTIAL OF POSSIBILITY THEORY
AS A FOUNDATION FOR FUZZY SETS
This section intends to bridge the two theories of fuzzy sets
and possibility at two points: 1) to interpret membership
function of fuzzy sets as likelihood function of possibil-
ity; 2) to derive composition rule of fuzzy relations from
conditional possibility via extraction of intermediate fuzzy
variable.
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A. FUZZY SETS AS LIKELIHOOD FUNCTION
OF POSSIBILITY
The concept of possibility, with a notion of membership
function, originally stems from fuzzy set theory. Let F be
a fuzzy set that is characterized by its membership function
µF (xi), which is interpreted as the compatibility of xi with the
concept labeled F . The possibility function π (xi) is defined
to be numerically equal to the membership function µF (xi)
of F , that is [22]

π (xi)
1
= µF (xi). (12)

On the other hand, there are ongoing efforts of inter-
preting membership function of fuzzy sets as likelihood
function of probability (conditional probability with likeli-
hood expansion, regarded as a function of the condition-
ing event) [29]–[32]. More recently, an interpretation of
fuzzy membership as likelihood function of possibility was
proposed [33], [36]. We here justify that it is not probability
likelihood but possibility likelihood that is intrinsically equal
to fuzzy membership.

Let us give an improved description to the interpretation of
fuzzy membership µF (xi) as the compatibility of xi with the
concept labeled F . We state that µF (xi) is the compatibility
of fuzzy concept variable Y with the concept labeled F given
its fuzzy attribute variable X being xi. Therefore µF (xi) can
be rewritten as

µF (xi) = µY |X (F |xi)
1
= π (F |xi). (13)

Note that the possibility likelihood interpretation π (F |xi)
of fuzzy membership µF (xi) is different from a probabil-
ity likelihood interpretation, that is, π (F |xi) = µF (xi) 6=
p(F |xi). As we can see, it turns out that membership function
of fuzzy sets is equal to conditional possibility with likelihood
expansion, though possibility function was originally thought
to be equal to membership function. This notion of fuzzy
membership makes clear that possibility system could be a
foundational theory for fuzzy set theory.

Fuzzy sets are generally assumed to be normalized [6],
which means

max
xi
µF (xi) = max

xi
π (F |xi) = 1. (14)

However fuzzy membership µF (xi) is usually the likelihood
function of non-normalized possibility. Be aware that the
normalization requirement of (14) for fuzzy sets is different
from Axiom 2 of definition 4. The former is generally much
easier to be achieved in practical applications as can be seen
by the example of fuzzy control in section 6.

B. COMPOSITION RULE OF FUZZY RELATIONS DERIVED
FROM CONDITIONAL POSSIBILITY
A fuzzy relation can be represented by a fuzzy set, and in
fact by a membership function of the fuzzy set [6], [14].
Therefore, a fuzzy relation can be represented by conditional
possibility. Suppose π (yj|xi) and π (zk |yj) represent fuzzy
relations from X to Y and from Y to Z , respectively, then

fuzzy relation from X to Z can be represented by π (zk |xi)
as

π (zk |xi) =
1

η(xi)
max
yl
π (zk |yl)π (yl |xi), (15)

where

η(xi) = max
yl
π (yl |xi) ≤ 1. (16)

Equation (15) above can be derived by using the dis-
junctive/conjunctive operators of possibility. By extraction of
intermediate fuzzy variable Y from fuzzy relation π (zk |xi),
we have

max
yl
π (zk , yl |xi) = max

yl
π (zk |yl, xi)π (yl |xi)

= max
yl
π (zk |yl)π (yl |xi), (17)

where zk and xi are assumed to be conditionally independent
given yl . We also have

max
yl
π (zk , yl |xi) = max

yl
π (yl |zk , xi)π (zk |xi)

= max
yl
π (yl |xi)π (zk |xi)

= η(xi)π (zk |xi), (18)

where yl and zk are assumed to be conditionally independent
given xi, and η(xi) is defined by (16).

By combining (17) and (18), we derive (15). As we can see
from (15), composition of two fuzzy relations equals to the
max-product operation of two conditional possibilities scaled
by a factor 1/η(xi).

V. FUZZY CONTROL FORMALIZED IN POSSIBILITY
THEORY VIA FEATURE EXTRACTION
In this section the classic ‘‘Mamdani’’ fuzzy controller [6] is
derived in the framework of possibility theory, where com-
positional rule of inference is interpreted as composition of
conditional possibilities.

A. A REVIEW OF FUZZY CONTROL
The widely used method of fuzzy control is characterized by
its control laws described by fuzzy if-then rules. Fig. 1 depicts
a generic so-called ‘‘Mamdani’’ fuzzy controller, which com-
prises of five parts [6]:

1) FUZZIFICATION OF THE INPUT VARIABLES
Take the inputs and determine the degree to which they
belong to each of the appropriate fuzzy sets via membership
functions.

2) APPLICATION OF THE FUZZY OPERATOR
IN THE ANTECEDENT
After the inputs are fuzzified, we know the degree to which
each part of the antecedent is satisfied for each rule. If the
antecedent of a rule hasmore than one part, the fuzzy operator
(AND or OR) is applied to obtain one number that represents
the result of the rule antecedent.
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FIGURE 1. Generic ‘‘Mamdani’’ fuzzy controller.

3) IMPLICATION FROM THE ANTECEDENT
TO THE CONSEQUENT
This step of implication is often called fuzzy if-then rules and
each rule has a rule weight. By implication, the consequent
is reshaped using a function associated with the antecedent.
Typical implication operations include min (minimum) and
prod (product). Implication is implemented for each rule with
a predetermined rule weight.

4) AGGREGATION OF THE CONSEQUENTS
ACROSS THE RULES
This is the process by which the fuzzy sets that represent the
outputs of each rule are combined into a single fuzzy set.

5) DEFUZZIFICATION
The input for the defuzzification process is a fuzzy set (the
aggregate output fuzzy set) and the output is a single number.

B. FUZZY CONTROL FORMALIZED IN POSSIBILITY
THEORY VIA RULE EXTRACTION
Following the notion of Fig. 1, the end-to-end function of the
fuzzy controller can be formulated as an optimum problem
with objective function as the conditional possibility π (u|e),
that is

FuzzyController(e, u) 1= max
u
π (u|e), (19)

where e is the crisp input of the fuzzy controller, u is the
output. Equation (19) means that the objective of the fuzzy
controller is to, given crisp input e, find the right output u
with the maximum possibility.

By introducing a fuzzy output ũ and following the process
of deriving (15), possibility function π (u|e) can be expanded
into

π (u|e) =
1

η1(e)
max
ũ
π (u|ũ)π (ũ|e), (20)

η1(e) = max
ũ
π (ũ|e) ≤ 1, (21)

where conditional possibility π (u|ũ) is related to defuzzifica-
tion, which transforms fuzzy output ũ into crisp output u.

Conditional possibility π (ũ|e) in (20) can be further
expanded into

π (ũ|e) =
1

η2(e)
max
ẽ
π (ũ|ẽ)π (ẽ|e), (22)

η2(e) = max
ẽ
π (ẽ|e) ≤ 1, (23)

which incorporates the procedures of fuzzy if-then rule
π (ũ|ẽ), and fuzzification π (ẽ|e). The procedure of fuzzifica-
tion converses the crisp input e into a fuzzy variable ẽ.
Combining (20) ∼ (23), we derive

π (u|e) =
1

η1(e)η2(e)
max
ũ

max
ẽ
π (u|ũ)π (ũ|ẽ)π (ẽ|e), (24)

η2(e) = max
ẽ
π (ẽ|e) ≤ 1, (25)

η1(e) =
1

η2(e)
max
ũ

max
ẽ
π (ũ|ẽ)π (ẽ|e) ≤ 1. (26)

As we can see from (24), aggregation of the consequents
ũ across the rules is realized by the operator ‘‘max.’’ And we
finally have the fuzzy controller formulated in the possibility
theory as

FuzzyController(e, u)

=
1

η1(e)η2(e)
max
u

max
ũ

max
ẽ
π (u|ũ)π (ũ|ẽ)π (ẽ|e)

= max
u

max
ũ

max
ẽ
π (u|ũ)π (ũ|ẽ)π (ẽ|e), (27)

where π (ẽ|e) can be further expanded to consider the case of
multiple antecedents. The second ‘‘=’’ in (27) holds because
η1(e) and η2(e) are constant factors for a given e, and have no
impact on deciding u.
Fuzzy controller (27) is like a Mamdani fuzzy controller

with the defuzzification process as ‘‘largest of the maxi-
mum’’ [6]. Fuzzy controller with different defuzzification can
be derived straightforwardly. For example, by introducing a

90120 VOLUME 7, 2019



W. Mei: Formalization of Fuzzy Control in Possibility Theory via Rule Extraction

concept parallel to the expected value of probability, the cen-
ter of gravity (COG) method is defined as [6]

uCOG =

∫
u uπ (u|e)du∫
u π (u|e)du

, (28)

where π (u|e) can be calculated by (24). Note that η1(e) and
η2(e) have no impact on uCOG as well, because they will
finally be reduced from numerator and denominator of (28).

C. A COMPARISON BETWEEN MAMDANI FUZZY
CONTROLLER AND THE NEW REFORMULATION
The new reformulated fuzzy controller closely resembles
the Mamdani fuzzy controller, which have identical basic
form and five typical procedures. As can be seen from (27),
typical procedures of fuzzy control, such as fuzzification,
implication, aggregation and defuzzification, are eventually
formulated in the framework of possibility theory as a series
of conditional possibilities operated by ‘‘max-product’’ oper-
ators. Note that in this work, only max-product operation is
considered for fuzzy relation, which is compatible with the
disjunctive/ conjunctive operators of possibility.

If we take a closer look at these two methods, we can find
three basic differences.

First, the two methods use different functions for the map-
ping of fuzzy output ũ to crisp output u. In (24) possibility
function π (u|ũ) conditioned on fuzzy output ũ is used, which
models the possibility of producing possible crisp output u
given a certain fuzzy output ũ. Whereas in existing Mamdani
fuzzy controller, membership function π (ũ|u) defining fuzzy
output ũ is used. Though π (u|ũ) and π (ũ|u) can be defined
to be numerically equal given a certain ũ, we would say the
former is more natural for modeling the transformation from
fuzzy output ũ to crisp output u.
Second, the two methods use different implication forms

of fuzzy if-then rules, and different aggregation mecha-
nisms. For Mamdani fuzzy controller, fuzzy if-then rules are
generally one-to-one mappings (i.e., parallel rules [6], [35]).
Though there are the cases of one-to-manymappings, they are
usually reduced into one-to-one mappings [6]. Aggregation
across fuzzy if-then rules is accomplished by applying the
maximum operator upon the consequents ũ of the rules. And
every fuzzy if-then rule can be assigned a weight factor. For
the proposed fuzzy controller, fuzzy if-then rules are modeled
by π (ũ|ẽ), which can handle more complicated many-to-
manymappings. The value ofπ (ũ|ẽ) represents the credibility
(confidence level) of the fuzzy if-then rule and is equivalent
to a weight factor. Aggregation across fuzzy if-then rules
is accomplished by two steps as shown in (24): application
of maximum operator upon fuzzy input ẽ, and then upon
the fuzzy output ũ. The maximum operator upon ẽ acts as
a local optimization. When π (ũ|ẽ) forms a diagonal matrix,
fuzzy if-then rules reduce to one-to-one mappings, and the
maximum operator over fuzzy input ẽ will lose its effect.
Meantime, the two methods have identical implication form
of fuzzy if-then rules, and the same aggregation mechanism.

Third, π (u|e) of the new reformulated fuzzy controller has
two additional scaling factors η1(e) and η2(e), which help
π (u|e) keep normalized provided π (u|ũ) is defined to be
normalized conditional possibility for every ũ, which can be
easily verified by using (20) and (21). Whereas for Mamdani
fuzzy controller, π (u|e) is expressed as membership func-
tion µ(u), which is usually a sub-normalized membership
derived from some normalized memberships [6], [35]. Note
again that the requirement of normalized membership (10)
is different from Axiom 2 of definition 4 for normalized
possibility. Nonetheless, as has been discussed previously,
the final crisp output provided by (27) or (28) is not affected
by the two factors.

Based on the above comparison, it is reasonable to con-
clude that the reformulated fuzzy controller is a more general
form of fuzzy controller, which encompasses Mamdani fuzzy
controller as a special case. It was derived rigorously from
possibility theory, with the merit of a concise and elegant
form.

VI. AN ILLUSTRATING EXAMPLE OF FUZZY CONTROL
FOR ROOM HEATING SYSTEM
An example of room heating system from [6] is adapted in
this section to illustrate the two fuzzy controllers. In this
example, the controller outputs control action to the heat-
ing system, according to the measured temperature of the
room, to maintain a comfortable room temperature. We cur-
rently have no idea of presenting examples using non-parallel
if-then rules, therefore Mamdani fuzzy controller and the
reformulated fuzzy controller are expected to produce the
same final control action. Nevertheless, we expect that
this example could illustrate the conciseness-in-form and
the ease-to-use of the new formalization over the cur-
rent Mamdani fuzzy controller. Besides, by this example
it will be illustrated that conditional possibility function
induced from membership function of fuzzy set is generally
non-normalized.

A. DESIGN PARAMETERS OF FUZZY CONTROLLER
For both fuzzy controllers, design parameters include fuzzi-
fication membership π (ẽ|e), fuzzy if-then rules in form of
π (ũ|ẽ), and conditional possibility π (ũ|u) for Mamdani fuzzy
controller and π (u|ũ) for the proposed fuzzy controller.
Input signal e of the fuzzy controller is room tempera-

ture (0◦C ∼ 40◦C), which can be transformed into fuzzy
input ẽ as ‘‘very low’’ (vl), ‘‘low’’ (l), ‘‘comfortable’’ (c),
and ‘‘high’’ (h). The fuzzification procedure is realized
by using membership function µẽ(e) = π (ẽ|e) as shown
in Fig. 2. As we can see, for every ẽ (∀ẽ), µẽ(e) satisfies (14),
whereas for a certain e (∃e), π (ẽ|e) does not satisfy Axiom 2
of definition 4. Therefore, conditional possibility function
π (ẽ|e) induced from membership function µẽ(e) as defined
in Fig. 2 is non-normalized, which reflects that we human
beings tend to handle fuzzy concepts in a concise, flexible
and incomplete manner. We will later in this section give
definitions for membership π (ẽ|e) in form of normalized
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FIGURE 2. Fuzzification membership µẽ(e)\π(ẽ|e).

conditional possibility, which are complete yet non-common
modelings of fuzzy concepts.

The set of fuzzy if-then rules in form of π (ũ|ẽ) is defined
in Table 4, which forms a diagonal matrix. Fuzzy output
ũ has three possible values as ‘‘big power’’ (b), ‘‘medium
power’’ (m), and ‘‘small power’’ (s). Note that Table 4 has
two columns for ũ = small, which is used purposely to make
fuzzy if-then rules ‘‘parallel’’ [6].

TABLE 4. Fuzzy if-then rules in form of π(ũ|ẽ).

The transformation of fuzzy output ũ to crisp output u is
realized by π (ũ|u) for Mamdani fuzzy controller or by π (u|ũ)
for the proposed fuzzy controller, which are defined to be
numerically equal as in Fig. 3. Crisp output u represents the
signal amplitude (e.g. in voltage) of the control action.

FIGURE 3. Conditional possibility π(ũ|u)\π(u|ũ).

B. CALCULATION PROCESSES OF FUZZY CONTROLLER
Suppose the room temperature is 8◦C and 14◦C, respectively,
let us see what are the outputs of the two fuzzy controllers.
Note that π (ẽ|e) is normalized possibility for room temper-
ature e = 8◦C, but non-normalized for room temperature
e = 14◦C.

If input signal e = 8◦C, then from Fig. 2 we know π (ẽ =
vl|e) = 1 and π (ẽ = l|e) = π (ẽ = c|e) = π (ẽ = h|e) = 0.
Then, only the rule ‘‘if ẽ = vl then ũ = b’’ will be fired.
According to (22), we have

π (ũ = b|e) =
1

η2(e)
max
ẽ
π (ũ = b|ẽ)π (ẽ|e)

= π (ũ = b|ẽ = vl)π (ẽ = vl|e)

= 1,

where

η2(e) = max
ẽ
π (ẽ|e) = 1,

which means Mamdani fuzzy controller and the reformulated
fuzzy controller have the same fuzzy output ‘‘big’’ with equal
possibility of one. And by (20), we have

π (u|e) =
1

η1(e)
max
ũ
π (u|ũ)π (ũ|e)

= π (u|ũ = b)

where

η1(e) = max
ũ
π (ũ|e) = 1,

which means the two fuzzy controllers will produce the same
crisp output with equal possibility of π (u|ũ = b).
By using the COG method of (28) and π (u|ũ) defined

in Fig. 3, we figure out

uCOG = 6.7(V )

If input signal e = 14◦C, then from Fig. 2 we know π (ẽ =
vl|e) = 0.2, π (ẽ = l|e) = 0.8, and π (ẽ = c|e) = π (ẽ =
h|e) = 0. Then, rule ‘‘if ẽ = vl then ũ = b’’ and rule ‘‘if
ẽ = l then ũ = m’’ will be fired. According to (22), we have

π (ũ = b|e) =
1

η2(e)
max
ẽ
π (ũ = b|ẽ)π (ẽ|e)

= 0.25

π (ũ = m|e) =
1

η2(e)
max
ẽ
π (ũ = m|ẽ)π (ẽ|e)

= 1

where

η2(e) = max
ẽ
π (ẽ|e) = 0.8,

which are the results for the reformulated fuzzy controller.
For the Mamdani fuzzy controller, π (ũ = b|e) = 0.2 and
π (ũ = m|e) = 0.8. And by (20), we have

π (u|e) =
1

η1(e)
max
ũ
π (u|ũ)π (ũ|e)

= max
ũ
{0.25π (u|ũ = b), π(u|ũ = m)}

where

η1(e) = max
ũ
π (ũ|e) = 1,

which are the results for the reformulated fuzzy controller.
For the Mamdani fuzzy controller,

π (u|e) = max
ũ
{0.2π (u|ũ = b), 0.8π (u|ũ = m)}.

By using the COG method of (28) and π (u|ũ) defined
in Fig. 3, we figure out

uCOG = 4.3(V )

which is the result for both fuzzy controllers.
Now, we get the final results. Given room temperature

is 8◦C and 14◦C, both fuzzy controllers will output control
action 6.7 (V) and 4.3 (V), respectively, to the heating system.
However, the two methods do produce different π (u|e).
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C. COMPLETE MODELING OF FUZZIFICATION
MEMBERSHIP
By complete modeling, we mean the fuzzification member-
ship is in form of normalized conditional possibility. As we
discussed earlier in this section, the conditional possibility
induced from the fuzzification membership π (ẽ|e) is non-
normalized. To be a normalized possibility and make fuzzy
sample space complete, we can redefine π (ẽ|e) either by
adjusting the shape of membership function or by introducing
additional values for fuzzy inputs ẽ. Fig. 4 defines member-
ship π (ẽ|e) in different shapes from those of Fig. 2. As we can
see, for every e (∀e), π (ẽ|e) satisfies Axiom 2 of definition 4
and is a normalized possibility. However, membership as
defined in Fig. 2 is more flexible and more common than
that of Fig. 4. Membership π (ẽ|e) defined in Fig. 5 is for
additional values of fuzzy inputs ẽ: ‘‘rather low’’ (rl), ‘‘little
low’’ (l1), and ‘‘little high’’ (lh). Fig. 2 and Fig. 5 together
make sure that membership π (ẽ|e) is a normalized possibility.

FIGURE 4. Membership π(ẽ|e) as normalized possibility.

FIGURE 5. Membership π(ẽ|e) for additional fuzzy inputs.

Be aware that when the defined memberships are all nor-
malized possibilities, η1(e) and η2(e) in (24) will all be one.

VII. CONCLUSION
This work strengthened the role of possibility theory as a
foundation for fuzzy sets, and as a complementary method
to probability theory for handling information with fuzzy
uncertainty. The two theories of fuzzy sets and possibility are
connected at two points: 1) membership function of fuzzy
sets can be interpreted as likelihood function of possibil-
ity; 2) composition of fuzzy relations equals to composition
of conditional possibilities. Specifically, the classic Mam-
dani fuzzy controller is derived rigorously in the framework
of possibility theory. As future works, it is necessary to
explore the application of the reformulated fuzzy controller
to cases where many-to-many rules mapping is desired.

Besides, it would be beneficial to explore the integration
of fuzzy knowledge representation (in form of non-parallel
if-then rules) with neural learning, in the framework of
neural-symbolic computing [40]–[42].
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