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ABSTRACT Appropriate noise background should be taken into account when searching for the peri-
odic or quasi-periodic oscillation buried in red noise. Null hypothesis assuming a conventional first-order
autoregressive (AR(1)) process may lead to misleading conclusions since we know from many other studies
that the noise in astrophysical and geographical sources exhibit the Fourier power-law-like properties.
We improve the detection of periodic signals with the multitaper spectrum and wavelet spectrum by
systematically taking into account a more appropriate null hypothesis (noise background) along with the
multiple testing to test against. The confident level is determined with the noise contents obtained by
using the maximum likelihood estimation (MLE) technique in the time domain, along with the data error
covariance constructed using the fractional differencing. Not only traditional AR(1), but also the generalized
Gauss–Markov, power law, and autoregressive fractionally integrated moving average (ARFIMA) process
are included as possible candidate null hypothesis. The Bayesian Information Criterion (BIC) is adopted to
quantify howwell the candidate noisemodels fit the data under consideration. Ourmethod is demonstrated on
pre-seismic electromagnetic emissions, weight-percentage calcium carbonate data, and sea surface temper-
ature anomaly variability. The result shows that our approach has a more extensive value of the application.

INDEX TERMS Hypothesis test, noise, MLE, wavelet, multitaper method.

I. INTRODUCTION
Detection and significance estimation of periodic or quasi-
periodic oscillation (QPO) from intrinsic variability in the
climatic, geophysical and astrophysical source have received
much attention for over several decades. However, random
errors of observation (typically white, and often complicated
by the presence of systematic errors) and intrinsic random
source variability (e.g. with a characteristic ’red’ noise back-
ground) dominated in the observations greatly complicate the
process of searching for possible weak oscillatory compo-
nents. In principle, harmonic or narrowband spectral features
isolated in the spectrum relative to a suitably defined null
hypothesis (noise background) are considered to be statistical
significant with a certain percent confidence. The confidence
levels (CLs) are linked to a priori assumption regarding the
nature of the noise background, and the significance thresh-
olds are usually determined from the appropriate quantiles of
the chi-squared distribution or Monte Carlo (MC) tests. Due
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to the ease of implementation, a first-order autoregressive
(henceforth AR(1)) process is often assumed to accommo-
date the red noise background assumption requisite in many
science scenarios, particularly climatic. To the best of our
knowledge, the publicly available wavelet-based computer
program developed by Torrence and Compo [1] (hereafter
TC98) and the legacy singular spectral analysis-multitaper
method (SSA-MTM) toolkit [2] (where the MTM-based
algorithm [3] and MCSSA [4] are implemented) are widely
used in a variety of scientific fields, with over 1000 citations
in theWeb of Science. However, the default noise model (i.e.,
AR(1)) built in currently TC98 and SSA-MTM Toolkit may
be insufficient to characterize the noise background of some
astrophysical sources and geodetic records, where power law
(PL) or bending PL is extremely common in nature (see
e.g., [5], [6] and references therein). Consequently, neglect-
ing the noise background nature of the observed spectrum
and directly using TC98 and SSA-MTM as a pure black
box may lead to false detections and incorrect conclusions.
The elementary step of estimating and checking the null
hypothesis (i.e. background noise) is strongly recommended
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and highlighted in [7] and [8]. Such issue is usually ignored
in the standard significance tests, and it seems worthwhile
to re-examine the periodic phenomena in several previously
published reports. In our previous paper [9], we adapt the
TC98 method to take into account the generalized Gauss
Markov (GGM) stochastic model [10] which includes a
AR(1) and PL process as special cases. In this study, we plane
to further discuss the periodic signals detection using multi-
taper and wavelet spectrum analysis but extend them with a
more general non-Gaussian correlated noise as null hypoth-
esis to test against, where the CLs are determined with the
noise contents obtained by using the maximum likelihood
estimation (MLE) technique in the time domain, along with
the data error covariance constructed with the fractional dif-
ferencing [11]. Inspired by the original methods employed
in [10], [12] and [13], not only will GGM noise model, but
other noise models including PL, AR(1) and autoregressive
fractionally integrated moving average (ARFIMA) [14] will
be reexamined as possible candidate null hypothesis to deter-
mine the appropriate CLs for the existence of periodic or
quasi-periodic signals. Furthermore, we pick up from where
we left off in our earlier paper [9] and discuss the multiple
testing effects in the wavelet spectrum, since we know that the
pointwize significance tests adopted in TC98 may generate
false positives results (for details, see [15]).

The rest of the article is structured as follows.
Section 2 describes the stochastic models and their covari-
ance matrices with applications to real data. Section 3 dis-
cusses the real data (e.g., electromagnetic emission (EME)
time series, stratigraphic data and sea surface temperature
(SST) anomaly) and quantifies the performance of our algo-
rithms to examine the evidence for cycles in each. Finally,
Section 4 concludes and outlines ideas for further work.

II. CANDIDATE STOCHASTIC MODELS
Spectrum fitting in the frequency domain is a straightforward
method to estimate the noise in data (see e.g., [16], [17] and
[5]). Here we focus on theMLE technique in the time domain
to estimate the stochastic noise components, because MLE
has two advantages over spectrum fitting: (1) can work with
gappy data, (2) nowindowing and spectral averaging required
[10]. Furthermore, using a fast Toeplitz solver and recursive
procedures proposed by Bos et al. [18], the stochastic noise
components can be estimated by MLE without any computa-
tional burden.

We make the usual assumption that the data can be well
modeled by a sum of deterministic (including trend and peri-
odic oscillation) and stochastic terms

y(ti)=a+ bti+
K∑
k=1

[ck sin(2π fk ti)+dk cos(2π fk ti)]+ εi (1)

where a is the intercept; b is linear rate; ti is time epoch;
the coefficients ck and dk are sine and cosine amplitudes at
frequency fk ; and ε is a vector of independent measurement
errors.

Then the noise components can be estimated by maximiz-
ing the probability function by adjusting the data covariance

lik(v̂,C) =
1

(2π )N/2(det(C))1/2
exp(−0.5v̂TC−1v̂) (2)

or

ln[lik(v̂,C)] = −
1
2

[
N ln(2π )+ ln(det(C)+ v̂C−1v̂)

]
(3)

where det is the determinant of a matrix, C is the covariance
matrix representing the assumed noise in the data, N is the
number of epochs (gaps do not count) and v̂ are the postfit
residuals to the linear function using weighted least squares
with the same covariance matrix C. As can be seen from
the above, our MLE method has the advantage of avoiding
the potential biased noise estimation problem caused by a
strong trend and (quasi) periodic signals, a circumstance
that is presumed common in geophysical, astrophysical, and
cyclostratigraphic records.

Following [12], we construct the covariance matrix using
the variance in front of the sum of the many matrices and
introducing the fraction parameter φ ∈ [0, 1] to control the
distribution of each noise model:

C = σ 2 (φ1E1 + (1− φ1)φ2E2 + · · · + (1− φ1)

× (1− φ2) · · ·φMEM+1) (4)

where σ 2 is the variance of driving white noise (WH) and
Ei is the matrix representing the covariance for M+1 noise
models.

Herewe use the fractional differencing [11] to construct the
covariance matrix of non-Gaussian correlated noise models
as in [10], [12] and [18]. The analytical expressions for
various stochastic models (e.g., PL, ARFIMA and GGM
noise) have been given in [13] and here we only summa-
rize the analytical expressions and their spectral behaviors.
Since higher order AR lag polynomial (AR(n), n > 1) might
actually be associated with signals even though it may give a
better fit the overall observational spectrum (for details, see
[3]), we only consider ARFIMA(1, d , 0) stochastic model
(here we temporally shorten it to ARFI(1) for clarity), which
mathematically defined as

(1− φB)(1− B)dxt = wt (5)

where φ is the AR lag and d is the fractional integration
parameter, which are unknown coefficients need to be esti-
mated; B is the backshift operator defined by Bxt = xt−1;
wi is Gaussian white process with mean zero and variance
σ 2. The term (1− B)d is generalized this expression to frac-
tional differences, which can be interpreted via the binomial
series [11]:

(1− B)d =
∞∑
i=0

(
d
i

)
(−1)iBi =

∞∑
i=0

0(i− d)
0(i+ 1)0(−d)

Bi (6)

The covariance function of ARFI(1) with σ normalized
unity is given by Hosking [11]:

γk =
1

1− φ2
0(1− 2d)
0(1− d)

0(d + k)
0(d)0(1− d + k)
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FIGURE 1. Results of spectral analysis on the EME time series. (a) Filtered EME time series in a time resolution of 10 min from Kalimeris et al. [20].
(b) MTM spectrum result, where black curve represents the adaptively weighted multitaper spectrum (calculated with the bandwidth parameter is
p = 4 and taper K = 7). Blue and red dashed curves represent the 95% CL and Bonferroni corrected 95% CL based on the preferred noise model
with the lowest BIC values. (c) Wavelet spectrum (calculated with a Morlet wavelet with dimensionless frequency w0 = 6). White lines represent
the pointwise significant spectral components (95% CL) assuming a traditional AR(1) null, heavy black lines represent the areawise significant
spectral components (95% CL with a arealsiglevel of 0.9) assuming the preferred noise background and considering multiple testing effects. The
cone of influence (COI), which indicates the region affected by edge effects, is shown with a thick black line. Pointwise significance thresholds are
determined from the chi-square test. AR(1) = first-order autoregressive, WH = white noise, PL = power law, GGM = Generalized Gauss Markov,
and ARFI(1) = Autoregressive Fractionally Integrated Moving Average (1, d , 0), respectively.

×[F(d + k, 1; 1− d + k;φ)

+F(d − h, 1; 1− d − k;φ)− 1] (7)

where 0 is the gamma function,
{
0(n+ 1) = n0(n)
0(n+ 1) = n!

; F is

the hypergeometric function [19], defined as

F(a, b; c; ρ) =
∞∑
i=0

0(a+ i)0(b+ i)0(c)
0(a)0(b)0(c+ i)i!

ρi (8)

The one-sided power spectrum density (PSD) for ARFI(1)
stochastic model is given by

P(f ) =
2σ 2

fs

[2 sin(π f /fs)]−2d

1+ φ2 − 2φ cos(2π f /fs)
(9)

where fs is the sample frequency.
For the case of GGM noise, i.e., (1 − φB)dxt = wt ,

the covariance function with σ normalized unity has the form
of

γk =
0(d + k)φk

0(d)0(1+ k)
× F(d + k, d; 1+ k;φ2) (10)

The one-sided PSD for GGM stochastic model is given by

P(f ) =
2σ 2

fs[1+ φ2 − 2φ cos(2π f /fs)]d
(11)

Similarly, we can obtain the covariance function for the
pure PL and conventional AR(1) stochastic model with
parameters φ and d in special cases.

III. APPLICATIONS TO REAL DATA
A. ELECTROMAGNETIC EMISSION (EME) TIME SERIES
We now discuss some real data sets in the prior literature
and quantify the performance of our algorithm to examine
the evidence for cycles in each. As the first test case we
revisit the kHz electromagnetic emission (EME) time series
in North–South orientation associated with the Athens’ earth-
quake (M = 5.9, 7 September 1999), which were acquired
using a 10 kHz tuned loop antenna installed on a carefully
selected mountainous site at Zakynthos Island (37.76o N,
20.76o E), Greece. Here we only focus on the filtered version
(starts on 00:00:00 (UT) of May 30, 1999, and finishes on
23:59:59 (UT) of September 29, 1999, covering a period
of 123 days with a time resolution of 10 min) of the origi-
nal EME time series, which has been detailed discussed by
Kalimeris et al. [20] with ML96 and TC98 method against
the hypothesis an AR(1) red noise. In this section, we reanal-
ysis the EME time series (see Fig. 1(a)) with the adaptively
weighted multitaper spectrum and TC98 method but using
the CLs calculated by our preferred noise background. The
relative goodness of fit of the candidate noise models in
the data is tested using the minimum Bayesian Information
Criterion (BIC) [21]:

BIC=K · ln[N ]+ 2 ln[L] (12)

where K is the sum of parameters estimated, N is the length
of observations, and L is the aximum likelihood.
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FIGURE 2. Same as Figure 1 but for the wt%CaCO3 data from Suan et al. [23]. Bandwidth parameter p = 2 and tapers K = 3 are used in MTM
spectrum. For clarity, only the results of traditional AR(1) and the preferred noise model with the lowest BIC values are provided.

Five alternative noise models in a total of five differ-
ent combinations (i.e., pure AR(1), AR(1)+WH, PL+WH,
GGM+WH, ARFI(1)+WH, respectively) are adopted as
possible candidate null hypothesis. Prior to spectral analysis,
the original data is linear detrended to improve results at low
frequencies, since we note that such a detrending procedure
does not alter the MLE estimates that are obtained in time
domain. Simply visually compare the spectra of the time
series (the bandwidth parameter is p = 4 and K = 7 tapers
were used) and the estimated noise models, we find that the
pure AR(1) model is not a good description of the tempo-
ral correlation that exists in EME time series, whereas the
AR(1)+WHmodel, which has the lows BIC values, is indeed
preferred to characterize this record (see Fig. 1(b)).

We scale the theoretical preferred noise spectrum by using
the chi-squared distribution to obtain various CLs (for details,
see Appendix A3 in [3]). At these CLs the MTM spectrum
indicates spectral features at extra long-scales ( > 30 days),
diurnal (24h) and semidiurnal (12h) terms are statistically sig-
nificant, whereas spectral features at long-scales (2-10 days)
are not statistical significant at the 95% CL based on a
AR(1)+WHnull. Our result is partially in agreement with the
findings in [20]. Additionally, we find that most spectral fea-
tures (except those at diurnal and semidiurnal hours) are not
statistical significant in the MTM spectrum after applying the
Bonferroni correction [22] by dividing the significance level
(e.g., α = 0.05) by the number of tested data as in [7]. In con-
sistency with the aforementioned MTM methods, Fig. 1(c)
shows that extra long-scales variability modes (> 30 days)
and oscillatory modes at 3-6 days vanish in the high activity

epoch (98.5 ≤ DN ≤ 100.5) in the areawise significance test
(α = 0.005), which are based on the area and shape of
the significant regions proposed by Maraun et al. [15] but
modified here by just using the chi-square test (for details, see
Equation (18) in TC98) but not the MC simulations to reduce
the computation cost. In particular, oscillatory terms between
8 and 10 days become significant at about day number DN=
97, and not at DN = 76 as charmed by Kalimeris et al. [20].
We also find that oscillatory terms between 8 and 10 days
remain in the high activity scale for approximately 3 days
after the main seismic shock occurred at DN= 100.498. Fur-
thermore, we find that the periodicities shorter than 45 min
and the intermittent diurnal/semidiurnal oscillatory modes
are still stable and significant. Based on these results, it seems
plausible that the significant spectral features claimed by
Kalimeris et al. [20] are artifacts of a poor choice of null
‘‘noise’’ hypothesis and a lack of multiple test correction,
and we led to the conclusion that the transition period (82.6
≤ DN ≤ 90.2) before the Athens’ earthquake (M = 5.9,
7 September 1999) defined by Kalimeris et al. [20] may be
unreliable. Anyway, our new results with those found in [20]
can enhance the preseismic character of the recorded kHz
EME time series.

B. WEIGHT-PERCENTAGE CALCIUM CARBONATE
(wt%CaCO3) DATA
The second example is the wt%CaCO3 data sampled at 5 cm
intervals from an about 30mLower Toarcian Peniche section,
Portugal, which is drawn from the stratigraphic literature
of Suan et al. [23]. Using the Blackman-Tukey spectrum
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FIGURE 3. Same as Figure 1 but for the monthly sampled global averaged SSTA data from HadSST3. For clarity, only the results of a traditional AR(1)
process and the preferred noise model with the lowest BIC values are provided.

with the CLs determined by the ML96 method against the
hypothesis an AR(1) process, Suan et al. [23] claim to iden-
tify several cycles with wavelengths from 23 to 238 cm.
However, Vaughan et al. [7] reveal that some cycles claimed
by Suan et al. [23] are artifacts, as evidenced by the calcu-
lated 95% CL with the ‘Bonferroni correction’ and under the
assumption than the underlying noise background is a PL.
Consequently, we reanalyze the wt%CaCO3 data with our
own approach (see Fig. 2(a)). BIC values confirm that in this
case an AR(1) process does not provide a reasonable match
to the data, whereas the GGM+WH model (actually GGM
model since the amplitude of WH is 0), which has the lowest
BIC values, is indeed preferred to characterize this record
(see Fig. 2(b)). Additionally, we note that our AR(1) model
captures the power decay of wt%CaCO3 data worse than that
in [23], because the data in [23] are prior linear and 3rd-order
polynomial de-trended to reshape the spectral data to match
slightly better the assumed AR(1) model. The significance
test based on our preferred noise model reveals that three
spectral peaks at around 142 cm, 65 cm and 25 cm are
exceeding the 95% CL in both MTM. However, these three
peaks are not statistical significant in MTM spectrum when
taking the Bonferroni correction into account (see Fig. 2(b)).
Our MTM result is in agreement with the findings in [7].
However, the cycles with thickness of about 142 cm, 33 cm,
and 25 cm are still statistical significant in wavelet spectrum
when taking the test multiplicity into account (see Fig. 2(c)).
Bear in mind that applying a Bonferroni correction maybe
too strict for the stratigraphic data sets with the depth used
as a proxy for time (see [24] and [25], for a more detailed
discussion of this point). We therefore reiterate that the main
cyclicities with cycle thickness of 147 cm and 23 cm claimed
in [23] has in fact statistical significance.

C. SEA SURFACE TEMPERATURE
In the past there have been a few publications in which
the SST is generally tested against the hypothesis of
an AR(1) process. However, Hall and Manabe [26] and
Fraedrich et al. [27] reveal that the spectra of SST anomaly
(SSTA) are generally inconsistent with an AR(1) process.
In this case, as the last test case for our method we revisit
the Met Office Hadley Centre’s SST data set (HadSST3)
(available at http://www.metoffice.gov.uk/), which was gen-
erated from in situ observations held in the International
Comprehensive Ocean Atmosphere Data Set, ICOADS (see
http://www.cdc.noaa.gov/coads/). In this section, we only
focus on the monthly sampled global average and tropical
(20oS-20oN) SSTA (relative to 1961-1990) span from Jan
1850 to Dec 2016. Detailed description of the dataset and its
production process can be found in [28] and [29]. Fig. 3(b)
confirms that the SST spectra are characterized by a slower
but longer increase of the SST variance from inter-annual
to decadal time scales, making the global averaged SSTA
is significant deviations from the hypothesis a conventional
AR(1) process. Dommenget and Latif [30] pointed out that
the interaction between the mixed layer and the sub-mixed
layer ocean contributes this inconsistent. Moreover, MLE
result shows that the global averaged SSTA is character-
ized by an ARFI(1, 0.4310) +WH process, and the tropi-
cal SSTA is characterized by a GGM+WH process with a
fractional integration parameter of 1.2882 ± 0.1266. Large
fraction ofWH is also detected in theMLE covariance matrix
(0.65262 for global averaged SSTA and 0.513 for tropical
SSTA), revealing that atmospheric disturbances, which is
often explained as aWH response in the high frequency band,
is a main cause for SST variability. Additionally, both two
SSTA spectra have an evident annual peak (see Fig 3(b) and
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FIGURE 4. Same as Figure 1 and Figure 3 but for the monthly sampled tropical SSTA data from HadSST3.

Fig 4(b)), which is statistical significant at the 95% CL in the
MTM spectrum but is not significant when the Bonferroni
correction is taken into account. However, it is interested to
find that semi-annual peak is a weak or absent in the tropical
SSTA spectra, and this peak is instead shifted to slightly lower
frequencies located at ∼1.59 cycle per year. This peak is
stronger and more statistical significant than that of global
average SSTA (see Fig 3(b) and Fig 4(b)), which may be
attributed to the local air-sea interaction forcing in the tropics,
as revealed by Möller et al. [31]. However, interdecadal
variability in global average and tropical SSTA cannot be
clear distinguished from the wavelet scale at the areawise
95 CL with a multiple testing. Concerning the short time-
scales, many significant spectral components are detected in
periodicities ≤ 1-year even taking the test multiplicity into
account, as seen by the successive dark bubbles in the upper
left region of the wavelet spectrum in Fig. 3(c) and Fig. 4(c).
Moreover, the period between around 1850 and 1880 seems to
be distinct from other times, as significance peaks occurs. The
physical interpretation of this time-dependent interrelation
requires further detailed investigation of possible coupling
mechanisms.

IV. CONCLUSION
We have recalled the multitaper and wavelet analyses to
significant test for periodic features embedded in noisy data,
but extend them with a wider range of noise processes
(null hypotheses). An alternative noise estimation method
is adopted based on the maximum likelihood estimation
(MLE) technique in the time domain, along with the data
error covariance constructed using fractional differencing.
Bayesian Information Criterion (BIC) is applied to determine
which of the candidate noise backgrounds is a preferred fit to
the data. The problems due to multiple testing are also inves-
tigated. We exemplify this discussion with EME recordings,

stratigraphic data, and sea surface temperature anomaly. The
importance of checking the noise background is reiterated
for accurately estimating the confidence levels of periodic
(or quasi-periodic) features. Bear in mind that quantifying
the significance of spectral peaks through a strict statistical
approach alone is sufficient and additional validating evi-
dences
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