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ABSTRACT In this paper, a 3D indoor visible light positioning (VLP) system with fast computation time
using received signal strength (RSS) is proposed and experimentally demonstrated. Assisted by the deep
learning techniques, the complexity of the trilateration problem is greatly reduced, and the trilateration
problem can be formulated as a linear mapping leading to faster position estimation than the conventional
estimation. Moreover, a new method of off-line preparation is adopted to minimize the workload of the VLP
system deployment for more practical usage. The proposition is implemented on an atto-cellular VLP unit,
through which the real-time performance and positioning accuracy are demonstrated and validated in a 3D
positioning experiment performed in a space of 1.2 × 1.2 × 2 m3. The experimental results show that a
positioning accuracy of 11.93 cm in confidence of 90% is achieved with 50 times faster the computation
time compared to the conventional scheme.

INDEX TERMS Visible light communication (VLC), visible light positioning (VLP), received signal
strength (RSS), light-emitting diodes (LED), deep learning.

I. INTRODUCTION
Within recent years, indoor visible light positioning (VLP)
services based on visible light communication (VLC) sys-
tems become more and more attractive to researchers as
the LED lighting infrastructure is being deployed worldwide
[1], [2]. Indoor VLP services are able to offer higher accu-
racy readily than other techniques such as Wi-Fi and UWB,
because the inherent characteristic of line-of-sight trans-
mission avoids severe multipath effect which is hazardous
to the achievable accuracy of positioning using Wi-Fi and
UWB. Moreover, visible light is harmless to human bodies
compared to radio frequencies (RFs) and ultraviolet light.
It also has the benefits of cost-sharing with existing lighting
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infrastructure in contrast with infrared light and ultrasonic
waves [3]. Consequently, many researchers are motivated to
push VLP technology forward to practical use by proposing
all kinds of practical VLP systems [4]–[18]. The representa-
tive works among them are summarized in table 1 in conve-
nience of review.

As shown in table 1, almost all those works use received-
signal-strength (RSS) or imaging sensor-based methods, and
most of the proposedVLP systems can use one single detector
to achieve high accuracy and low complexity without extra
motion sensors [4], [5], [8], [11]–[16]. Despite that the imag-
ing sensor-based methods can easily realize a VLP system of
high accuracy and low complexity, such schemes are unable
to integrate with high-speed VLC due to the low frame-rate
of imaging sensor [4], [5], [22]. According to table 1, there
are also a number of VLP systems reported recently that use
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TABLE 1. The state-of-the-art works of indoor VLP.

RSS to achieve high accuracy and low complexity, but few
of them have been experimentally verified in a 3D space [3].
Besides, as for the RSS-based VLP systems, the calibration
during offline preparation is necessary [8], [10]. However,
almost all of those works neglect the offline workload for
users.Worse still, those VLP systems usingmachine-learning
that though achieve good accuracy with low complexity
have the least user friendliness because they require tedious
offline measurements on many reference positions for the
database registration or the neural-network training during
deployment [12], [13], [19].

In addition, the computation speed is another critical
benchmark of the indoor positioning systems as zero-latency
is highly valued in some cases where high-speed intelli-
gent vehicles are used. This target is usually reached by
improving the efficiency of trilateration calculation for three-
dimensional (3D) VLP using RSS. Many researchers con-
tribute novel solutions [20], [21], [23]–[27]. However, some
of the works have not been validated by experiments [20],
[24], [25] or the simplifications of the calculations are still
subject to complexity [21], [23]. There also exist some classic
non-iterative methods, some of which even achieve an excel-
lent computation efficiency by providing closed-form formu-
lations for the trilateration problem [26], [27]. However, they
are not applicable in the case of VLP because they need to
know distance between receivers and transmitters through
various range measurements before solving the trilateration.
In contrast, VLP using RSS usually gives the RSS measure-
ments with unknown distances and unknown heights based
on the channel modeling [14]. Hence, it is unable to measure
the distance directly. Meanwhile, some researchers adopt
machine-learning techniques to realize fingerprinting based
3D VLP system using RSS so as to completely circumvent
the trilateration calculation. Unfortunately, such a system
has tedious offline workload and terrible user friendliness
as stated above [19], [28]. Worse still, the users have to run
the tedious offline measurements every time when the LED
transmitter, the receiver or the environment is changed, which
is not appropriate for practical usage.

In order to address the challenges above, this paper pro-
poses and experimentally demonstrates a practical 3D VLP

system, which retains the distance estimation using RSS
and combines machine learning to simplify the trilatera-
tion solution so that the computation speed can be substan-
tially increased with minimum offline preparation work. The
offline preparation can be conducted involving at most two
reference positions regardless of quantities of LED lamps.
The main contributions of our work are listed as below:

• We for the first time propose and experimentally verify
a new and practical 3D RSS-based VLP system using
only two reference positions for offline preparation.

• We for the first time apply deep learning techniques in
VLP systems using RSS for faster computing speed.

• We investigate the optimal layer size of artificial neural
network (ANN) for the deep learning-based position
estimator to balance the performance and cost.

The rest of our paper is organized as follows. In Section II,
the proposed VLP system is presented in details, ranging
from systematic overview to the deep learning parameters.
Section III demonstrates the experimental work validating
the feasibility of the proposed VLP system in comparison
with the conventional 3D VLP system using RSS. Finally,
the summary of the paper is given in Section IV.

II. PRINCIPLE
This section introduces the principle of the proposed VLP
system, including the overall system model, RSS-based dis-
tance estimation and simplified trilateration solution assisted
by deep learning techniques.

A. SYSTEM MODEL
The RSS-based VLP system is depicted in Fig. 1. As shown
in Fig. 1(a), the VLP system is in the form of cellular at
the transmitter side to realize a full coverage inside a room
in which a certain number of neighboring LED lamps are
grouped into one cellular unit. As is commonly known,
the coverage of one VLP cellular unit is much smaller than
the one using radio frequency, and hence the concept of
cellular VLP system is actually redefined as atto-cellular VLP
system [2]. As the proposition adopts the frequency divi-
sion multiple access (FDMA) scheme, the signal generator
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FIGURE 1. Schematic of the (a) atto-cellular VLP transmitting system and (b) the frequency reuse in the hexagonal cell
pattern.

generates sinusoidal waves with unique frequencies as mod-
ulation signals for every LED transmitter in each atto-cells.
In order to mitigate the interference between neighboring
atto-cells while retaining high spectrum efficiency, the fre-
quency reuse and hexagonal cell pattern design are both intro-
duced [29]. As shown in Fig. 1(b), each atto-cell has three
LED lamps carrying three different carriers, and different
groups of carrier frequencies are allocated to the neighboring
cells. Without loss of generality, Cell #1 is assumed to be
placed in the center of the targeted coverage surrounded
by other six cells. Among those six cells, the ones that
are angular symmetric with respect to Cell #1, share the
same frequency use. Under the same rule, the cells can be
duplicated for a bigger coverage area. In this way, only four
groups of carriers need to be reserved for the whole posi-
tioning network. The details of one cell unit are revealed by
Fig. 2(a). As shown in Fig. 2(a), the bias tees are deployed
to generate DC biased sinewave signals to drive LEDs. The
DC component is used for illumination, while the sinewave
signal component amplified by the current booster is used to
make LED flicker for signal transmission. It is noteworthy
that the flickering is not sensitive to human eyes due to the
high frequency. In this way, the lighting function of LEDs are
not affected and consequently the LEDs can be simultane-
ously used for illumination and positioning. Fig. 2(b) illus-
trates the VLP receiver for users consisting of an avalanche
photodetector coupled with optical blue filter and a digital
localization module. The photodetector simultaneously col-
lects the signal from all LED transmitters and the blue filter
forces the photodetector to collect blue light solely as the
other spectrum is limited in bandwidth by phosphor coating.
The digital localization module is composed of a digitizer,

an RSS estimator and a position estimator. The digitizer
firstly converts the analogue output of photodetector into
digital signals. The RSS estimator subsequently measures
the signal strength at predetermined frequencies, i.e., the
signal strength from individual LED transmitters according
to the FDMA scheme. The measurement is conducted by
means of fast Fourier transformation (FFT) on the digitized
signal. Finally, the position is given by the position estimator
based on the signal attenuation model and the trilateration
method, whereas the deep learning technique is adopted for
performance enhancement.

B. DISTANCE ESTIMATION BASED ON RSS
In addition to introducing the channel attenuation model sim-
ilar as the state-of-art work, this section also formulates the
distance estimation based on RSS for practical usage utilizing
the measured Lambertian order and the measured RSS at the
reference positions.

To start with, the channel modeling is formulated including
the derivation of LED irradiation model. The pattern irradi-
ated by a real LED lamp composing multiple LED chips is
considered herein. The received signal of the k-th receiver at
the position pk from the j-th LED chip in Tx-i is character-
ized as

RSSj,i,pk =
(mi + 1)

2πd2j,i,pk
Ar cosmi (βj,i,pk )Fs(αj,i,pk )

×Lg(αj,i,pk ) cos (αj,i,pk )TSSj,i. (1)

where TSSj,i is the transmitted positioning signal strength
from the j-th LED chip in Tx-i and RSSj,i,pk is the received
strength of the positioning signal from TSSj,i at the position
pk ; mi is the order number of Lambertian radiation pattern
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of the LED chip of Tx-i, which will be measured during the
offline preparation for the VLP system; dj,i,pk is the distance
between the j-th LED chip in Tx-i and the receiver at the
position pk ; Ar is the sensitive area of photodetector; βj,i,pk is
the incidence angle of visible light from the j-th LED chip in
Tx-i, and αj,i,pk is the emission angle of the j-th LED chip in
Tx-i relative to the receiver at the position pk ; Fs is the gain of
the optical blue filter and Lg(αj,i,pk ) is the gain of the optical
concentrator.

Regarding the real LED lamp that usually consists of
a number of LEDs, the received signal from Tx-i is
written as

RSSi,pk =
N∑
j=1

[
mi + 1

2πd2j,i,pk
Ar cosmi (βj,i,pk )Fs(αj,i,pk )

×Lg(αj,i,pk ) cos (αj,i,pk ) TSSj,i

]
, (2)

where N is the number of LED chips in Tx-i. As the
receiver herein is targeted to use plastic filter without lens,
the gain of the blue filter and the optical concentrator are
independent from the incidence angle. Hence, Eq. (2) is
equivalent to

RSSi,pk = Ar · Fs · Lg

×

N∑
j=1

mi + 1

2πd2j,i,pk
cosmi (βj,i,pk ) cos (αj,i,pk )TSSj,i. (3)

As the LED chips in one lamp are close to each other, dj,i,pk
can be approximated to be equal to di,pk which denotes the
distance between Tx-i and the receiver at position pk . Without
loss of generality, the transmitted positioning signal strength
of each LED chip is assumed to be equal. Let TSS denote
the transmitted positioning signal strength shared by all LED
chips, we have

RSSi,pk , Ar · Fs · Lg ·
mi + 1

2πd2i,pk
· TSS

×

N∑
j=1

cosmi (βj,i,pk ) cos (αj,i,pk ). (4)

The receiver is assumed to be fixed and face the ceiling
vertically. This assumption is valid for many typical scenarios
including VLP for autonomous ground vehicles (AGVs) in a
smart workshop and VLP for robots in a smart home. Due to
this assumption, we have,

cos (βj,i,pk ) = cos (αj,i,pk ) =
hpk
di,pk

, (5)

where hpk is the vertical distance from ceiling to the receiver
at position pk . Consequently, Eq. (4) is rewritten as

RSSi,pk ≈ Ar · Fs · Lg ·
mi + 1

2πd2i,pk
· TSS · N · (

hpk
di,pk

)
mi+1

. (6)

FIGURE 2. Schematic of the (a) single-cell transmitting unit and (b) the
VLP receiver.

FIGURE 3. Workflow of (a) offline preparation and (b) online position
estimation of the proposed VLP system.

UsingC to denote the constant terms (Ar ·Fs ·Lg ·TSS ·N/2π ),
Eq. (6) can be simplified as

RSSi,pk ≈ C · (mi + 1) ·
hmi+1pk

dmi+3i,pk

. (7)

According to Eq. (7), di,pk , hpk and consequently the position
can be estimated once the constant C and mi of the spe-
cific VLP system is determined. However, Zheng et al. [10]
and Alam et al. [30] have pointed out that mi in practice
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is not close to the theoretical value and that each LED
lamp has slightly different values for mi. Hence, it is neces-
sary to perform the offline preparation to measure mi using
the reference positions with known position information.
Differing from the previous work [10], [30], [31], our pro-
posed offline preparation needs as minimum as two refer-
ence positions without any information on the number or the
transmitted power strength of lamps. The only requirement is
that the span of the two reference positions should necessarily
represent the localization coverage or the range of SNR. The
workflow of the offline preparation is depicted in Fig. 3(a).
As we can see in Fig. 3(a), there are three steps to fulfill the
offline preparation.

Firstly, the RSS values from Tx-i at the reference positions
a and b are measured. Denoted by Refa,i and Refb,i, respec-
tively, the RSS values can be formulated as,

Refi,a = RSSi,pa = C · (mi + 1) ·
hmi+1pa

dmi+3i,pa

Refi,b = RSSi,pb = C · (mi + 1) ·
hmi+1pb

dmi+3i,pb

.

(8)

where di,pa and di,pb denote the known distance between the
LED Tx-i and the receiver placed at the reference positions
a and b, respectively. Assuming hpa = hpb for convenience
of explanation but without loss of generality, Eq. (8) can be
manipulated as

Refi,a
Refi,b

= (
di,pb
di,pa

)mi+3. (9)

Subsequently, the Lambertian order mi of LED Tx-i is
calculated by

mi = log di,pb
di,pa

(
Refi,a
Refi,b

)− 3. (10)

Last but not the least, the data mi, di,pa , di,pb , hi,pa , hi,pb ,
Refi,a and Refi,b are stored in a database for positioning oper-
ation. In this way, the channel model can be adequately close
to the practical scenario using the data included above, hence
the online position estimation can be more precise facilitated
by the updated channel model.

The online positioning operation exploiting the data
obtained during offline preparation is illustrated by Fig. 3(b).
As we can see in Fig. 3(b), the RSS value from Tx-i at the
unknown position pk is measured at first, which is given
by Eq. (7). Combining Eq. (7) and (8), it can be further
expressed as,

RSSi,pk = Refi,a · (
hpk
hpa

)mi+1 · (
dpa,i
dpk ,i

)mi+3. (11)

Regarding the position estimation by a single-cell unit with
three LED lamps, Eq. (11) can be expanded to three equa-
tions. Substituting the unknown coordinates into Eq. (11),

the trilateration equation sets can be given by

RSS1,pk =Ref1,a · (
r3 − T1,n
hpa

)
(log d1,pb

d1,pa

(
Ref1,a
Ref1,b

))−2

×(
dpa,1√∑3

n=1
(rn − T1,n)2

)
log d1,pb

d1,pa

(
Ref1,a
Ref1,b

)

RSS2,pk =Ref2,a · (
r3 − T2,n
hpa

)
(log d2,pb

d2,pa

(
Ref2,a
Ref2,b

))−2

×(
dpa,2√∑3

n=1
(rn − T2,n)2

)
log d2,pb

d2,pa

(
Ref2,a
Ref2,b

)

RSS3,pk =Ref3,a · (
r3 − T3,n
hpa

)

(logd3,pb
d3,pa

(
Ref3,a
Ref3,b

))−2

×(
dpa,3√∑3

n=1
(rn − T3,n)2

)
log d3,pb

d3,pa

(
Ref3,a
Ref3,b

)

,

(12)

where (r1, r2, r3) is the position coordinate to be estimated,
n represents the n-th dimension and (Tj,1,Tj,2,Tj,3) is the
j-th LED’s coordinate. Conventionally, the position estima-
tor adopts iteration-based methods such as Newton-Raphson
method and Levenberg-Marquard method to solve the equa-
tion numerically hence to complete the position estimation.
However, the solution takes much longer time than expected
if the initial values are inappropriately chosen. To address
the concern, we propose a new deep-learning based estimator
simplifying the trilateration solution which will be elaborated
in the following subsection.

C. SIMPLIFIED TRILATERATION SOLUTION ASSISTED BY
DEEP-LEARNING-BASED POSITION ESTIMATOR
As stated above, the ANN based deep learning technique
is applied in the proposed system to build a novel position
estimator which fulfills the position estimation instead of
directly solving the trilateration equation sets with numerical
methods [32]. In this section, building the deep learning-
based position estimator to simplify the trilateration solution
is elaborated.

The structure of the proposed ANN is illustrated in Fig. 5.
Similar to the conventional position estimator, the input of
ANN is the set of RSS values from all LED lamps, and the
output is the corresponding position coordinates. As shown
in Fig. 5, there are three inputs of RSS and three outputs cor-
responding to the coordinate (r1, r2, r3). There are n hidden
layers, and the activation function is denoted by f . The offline
preparation is twofold. The first stage is to use the two refer-
ence positions to obtain Lambertian orders as in Eq. 10. After
the calibrated irradiation pattern and channel model are fully
acquired, the second stage is initiated by training the ANN
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with the theoretical RSS values derived from the calibrated
channel modeling to acquire those parameters of ANN, such
as Wi,j, bi,j, etc. As the first stage of offline preparation has
fully calibrated the irradiation pattern and channel model,
a large dataset containing true positions and corresponding
RSS values can be derived numerically based on Eq. (12)
to train the ANN. The dataset for training herein contains
80631RSS samples alongwith the respective position coordi-
nates. The locations of the samples form a grid with 5-cm res-
olution in the space of 2.5×2.5×1.5 m3. We resort the class
of MLPRegressor from Scikit-learn library in Python [33] to
train ANN with the dataset collected numerically as stated
above. Overall, we train the ANN using backpropagation
algorithm with 70% of the dataset, and we validate and test
the ANN with 10% and 20% of the dataset, respectively. The
learning rate is set as a constant value of 0.001. All the crucial
parameters of ANN and the deep-learning setup are listed
in Table 2. The architect and the scale of ANN and alpha
parameter for L2 regularization are optimally determined.

TABLE 2. Parameters of ANN and deep learning setup.

Among those parameters, we mainly focus on the total
neuron numbers and the number of hidden layers. As deep
learning technique involves multiple hidden layers and a
great number of neurons, it is important to define a suitable
architect and an appropriate scale of ANN because too many
neurons or hidden layers may lead to overfitting while insuf-
ficient neurons may fail to achieve good results due to the
lack of degrees of freedom [34]. We test quite a few ANNs
with multiple hidden layers to obtain the optimal hidden layer
size of the ANN. Feeding the dataset for test (i.e., 20% of the
80631 samples) into the ANNs to be evaluated, we calculate
and compare the mean error and max error of the output as
metrics for ANN performance evaluation. In addition, ANN
with single hidden layer is also investigated to quantify the
advantage of deep learning technique. According to Fig. 4(a),
it can be found that ANN with multiple hidden layers
(i.e., the deep learning technique) outperforms that with a
single hidden layer. With the same total neuron number
applied, ANN with 4 hidden layers can roughly achieve
half of the mean error as compared to ANN with a single

FIGURE 4. Training performance vs. (a) total neuron numbers and
(b) number of hidden layers.

hidden layer. It implies that the deep learning techniques
can fit the non-linearity in the trilateration problem more
precisely. The result of Fig. 4(a) has also explained the
motivation of utilizing deep learning methods in our works:
to decrease the computation time while retaining the best
positioning accuracy. It is true that other learning meth-
ods can also achieve this goal under certain configurations.
However, using deep learning method can readily achieve
better positioning accuracy. In preliminary study of our sce-
nario, it is also found that the total number of neurons
for ANNs with multiple hidden layers generally affects the
overall performance regardless of the number of hidden
layers. Therefore, we firstly opt to study the ANN with
4 hidden layers to obtain the optimal total neuron numbers.
As observed in Fig. 4(a), the average positioning error is
significantly reduced with increase of total neuron numbers
when less than 700. The performance is almost the same
when the total neuron number exceeding 700, thus we opt
to use 700 neuron numbers to build the optimal ANN. Sub-
sequently, we investigate and compare the specific hidden
layer size to acquire the optimal architect of ANN for our
scenario. Fig. 4(b) depicts the training performance of the
ANNs with the optimal total neuron number but differ-
ent numbers of hidden layers. Two typical layer architects
are also considered. One is in the form of dichotomization
(e.g., (350, 175, 88, 88)), while the other evenly distribute
neurons into each layer (e.g., (175, 175, 175, 175)). Generally,
the difference of their performances is minor. Taking both
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FIGURE 5. The structure of proposed ANN.

FIGURE 6. Training performance vs. alpha parameters.

FIGURE 7. Online consumed time of trilateration solution vs. the number
of RSS measurement sets comparing deep-learning-based method and
the conventional iteration-based method.

effectiveness and complexity into account, we eventually opt
for layer size (140, 140, 140, 140, 140) to build the ANN.

In order to mitigate the overfitting effect, we also investi-
gate the optimal alpha parameter for L2 regularization term
which penalizes weights with large magnitudes [33]. Like-
wise, we use the max positioning error from test dataset as the
metrics for performance evaluation. The positioning errors
with different alpha parameters are concluded in Fig. 6. It is
evident that the max error increases with alpha value, thus we
opt for 1e-5 for alpha to build the ANNwith optimal architect.

During the design, the real-time performance is ana-
lyzed by comparing with the typical numerical method,
i.e., Newton-Raphson method, in terms of computation time.
It should be noted that this comparison is just to show the
superior of our proposed method over the iterative methods
in terms of computation time. Hence, we just opt for Newton

FIGURE 8. Experimental setup.

FIGURE 9. Electrical spectrum of the signal received at the coordinate of
(0.4560, 0.1966, 2.006).

Raphson as a typical and representative iterative method for
comparison. As is commonly known, the time complexity
for Newton-Raphson method is O(m × n3), while for deep
learning-based solution, the worst case of the ANN-based
mapping is only O(N 2

neurons) [35], [36]. Herein, m is the iter-
ation times, n is the number of equations, and Nneurons is the
number of neurons of the trained ANN. Given that the total
number of neurons is constant for an ANN, O(N 2

neurons) =
O(1), thus the complexity is far less than theNewton-Raphson
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FIGURE 10. 3D Position estimation at heights of (a) 1.094 m, (b) 0.794 m and (c) 0.494 m.

FIGURE 11. Horizontal 2D positioning error and vertical error at heights of (a) 1.094 m, (b) 0.794 m and (c) 0.494 m.

method [36], [37]. Moreover, the deep-learning-assisted solu-
tion is theoretically advantageous than the Newton-Raphson
method, because it is non-iterative and its time complexity is
not related with problem size. To further quantify the advan-
tage, we directly simulate and compare the time consumed by
the trilateration solution using Newton-Raphson method and
the simplified trilateration solution using deep learning tech-
nique. Fig. 7 shows that the computation time of conventional
trilateration solution using Newton-Raphson method can be
extremely shortened by one order of magnitude thanks to the
deep learning technique. In conclusion, the deep learning-
based position estimator can fully achieve the function of
conventional estimator with much faster speed. In addition,
we should note that the computation time for comparison
herein is only the online consumed time. It is acknowledged
that the deep-learning technique is superior over the conven-
tional computationmethods regarding the online computation
time but inevitably costs more time during offline prepara-
tion. Fortunately, the extra offline training hardly adds extra
labor intensity, and the training is not necessarily frequent
because the parameters of the deep neural network are sta-
ble once the deployment completed. Therefore, our propo-
sition is worth the effort especially for the scenarios where
zero-latency is appreciated.

III. EXPERIMENTAL DEMONSTRATION
A. EXPERIMENTAL SETUP
The atto-cellular VLP system for experimental investiga-
tion is implemented. The signal flow is same as illustrated
in Fig. 2, and Fig. 8 is the photograph of the experimental
setup. Three LED (Lumiled LXK8-PW50-0016) lamps were
used as transmitters which were mounted on a horizontal
panel with a height of 2.2 m. The power of each LED
lamp was 9 W (27 W for one cell unit), and the diver-
gence angle was 120◦. The DC bias point was 200 mA.
The illumination level at the receiving plane under the cell
unit was 380 lux which has reached the standard of indoor
illumination. The modulation index was set as 0.5. As we
constrained DC bias point and modulation index into the
linear region, nonlinearity was not obviously observed. Given
that the frequency response of the LED chips used in the
experiment is only 7 MHz, we opted to allocate carrier
frequencies of 1 MHz, 1.2 MHz and 1.4 MHz to LED#1,
LED#2 and LED#3, respectively. Using those relatively low
RF frequencies is beneficial to achieve reasonable SNR and
hence acceptable positioning accuracy. The RF carriers are
generated from a signal generator (Spectrum M4x.6622-x4)
and amplified by the current boosters (Analog Devices Inc.
AD811 and Burr-Brown BUF634) before they are used to

VOLUME 7, 2019 93993



P. Du et al.: Experimental Demonstration of 3D VLP Using RSS With Low-Complexity Trilateration

FIGURE 12. 95% confidence error ellipsoids at (a) the center point (0.446, 0.2141, 2.0060), (b) the edge point (0.646, −0.7859, 2.0060) and (c) the
corner point (1.2460, −0.7859, 2.0060).

drive the LEDs. The receiver which is mounted on a trolley is
composed of an avalanche photo-diode module (Hamamatsu
S8664-50K), an oscilloscope (Tektronix MSO3102) and a
laptop. The avalanche photo-diode module is fixed facing the
ceiling without tilting angles.

B. EXPERIMENTAL RESULTS AND DISCUSSION
As shown in Fig 8, the origin of the systemwas on the ceiling.
As is commonly known, trilateration depends strongly on
the LEDs’ locations. Hence, the optimal LED arrangement
from the previous works was adopted for our experiments
[38], [39]. The coordinates of the LEDs were (0.425, 0.375,
0), (0.675, 0.125, 0) and (0.225, 0.125, 0), respectively.
Fig. 9 shows the spectrummeasured at one reference position
where the receiver has equidistance between the LED lamps.
As seen in Fig. 9, the power received from different lamps
are still different although the distances from the receiver
to the lamps are equal, which is mainly due to the inclined
frequency response. Worse still, the frequency responses are
inevitably and slightly different among LED lamps accord-
ing to observations on the received power of LED#1 and
LED#2. In turn, it also explains the necessity of performing
the offline preparation and maximizing the usage of ratio
RSS. In the experiment, it is noteworthy that only two ref-
erence positions (marked by cyan triangles in Fig. 10) are
involved in our proposition to perform the offline preparation.

The coordinates of those two reference positions were
(0.4460, 0.2141, 2) and (0.6660, −0.9059, 2), respectively.
The effort of offline preparation has been effectively mini-
mized. According to the offline preparation, the calibrated
Lambertian order for the three lamps is 1.7131, 2.0937 and
2.1129, respectively. It can be seen that the calibrated Lam-
bertian order can be so different even for same LED lamps.
This is most likely due to two causes: 1) the imperfect
parameter settings in the realistic setups compared to the
theoretical propagation model; 2) and the possible bias errors
of measuring RSS in the offline preparation. For instance,
the gain of optical receiver is likely to slightly change with
the incidence angles leading to imperfect removal of C in
Eq. 9. All those errors will be reflected by the calculated
Lambertian order. On the other hand, the possible bias errors
of measuring RSS on single frequency will be also reflected
by the calibrated Lambertian order.

As constrained by the experimental environment, we only
choose around one quarter of the illumination coverage of
LED lamps to conduct experiment, the area of which is
around 1.2×2 m2. Considering the ceiling height, the 3D
positioning space is 1.2×1.2×2 m3, and the actual coverage
for practical usage will be even larger. During the experiment,
6 × 6 × 3 locations were estimated (marked by red crosses
in Fig. 10) with 10 times for each position. The position
estimations are shown in Fig. 10, which are grouped into three
vertical layers marked by different colors. The heights of the
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TABLE 3. Comparisons among state-of-the-art works of 3D indoor VLP.

FIGURE 13. (a) Positioning error and (b) Computation time of position
estimation for our proposition and the conventional 3D positioning
method.

vertical layers were 0.494 m, 0.794 m and 1.094 m, respec-
tively. As can be observed, most of the position estimations
are close to the true positions. The positioning errors of those
three heights are further concluded by Fig. 11 in terms of hor-
izontal errors and vertical errors. In most cases, Z-coordinate
is worse than the X-Y coordinate, but the 90% vertical error
is still less than 12cm, which is still in an acceptable range.
Furthermore, we investigated the error ellipsoid at few typical
positions at the center, edge and corner of the coverage area.
The X-Y projection and X-Z projection of 95% confidence
error ellipsoids in Fig. 12 were plotted based on 10 times
measurements at those positions. According to Fig. 12, a con-
clusion can be reached: the bias error of position estimation
is a major concern, and the positioning performance in the
central area is much better that in the edge or the corner of
the coverage area.

The overall error of localization is also summarized
in Fig. 13(a) as compared to the localization error of
the conventional scheme using the traditional trilateration
method [8]. It can be seen that the mean and the 90% errors
are 8.92 and 11.93 cm, respectively, which are almost same as
the localization accuracy of the conventional scheme. In addi-
tion, the coverage area with such an equivalent positioning
accuracy can be estimated up to 2.4×2.4 m2 because the area
for testing is just one quarter section of the illumination cover-
age. More importantly, our proposition successfully achieves
50 times faster computing speed than the conventional sys-
tem, as illustrated by Fig. 13(b). As stated in Section II,
the improvement in the online consumed time is important to
those scenarios where zero-latency is highly valued. In con-
clusion, the proposed system significantly shortens the online
computation time due to the adoption of the deep learning
techniques, and reduces the labor intensity due to the pro-
posed work of minimum offline preparation, while retaining
high positioning accuracy, as compared to the conventional
scheme.

IV. CONCLUSION
In this paper, a practical 3D VLP system using RSS with low-
complexity trilateration assisted by deep learning is proposed
to address: 1) the complicated solution to the trilateration
problem; 2) the shortcoming of the previous existing scheme
relying on tedious offline preparation. The proposed VLP
system is elaborated by separately introducing the chan-
nel modeling, the Lambertian order measurement in offline
preparation and the online position estimation simplified by
deep learning technique along with theoretical derivations.
Moreover, the proposed simplified position estimation is the-
oretically proved to outperform the existing iteration-based
trilateration solution in terms of the time complexity. Finally,
the whole proposition is realized as an atto-cellular 3D VLP
system. Compared with the conventional VLP using RSS,
the feasibility of the proposed scheme has been adequately
validated by a 3D positioning experiment performed in a
space of 1.2 × 1.2 × 2 m3. The experimental results show
that a positioning accuracy of 11.93 cm in confidence of 90%
can be achieved with 50 times faster computation time as
compared to the conventional system.

The proposed scheme featuring the minimum offline
preparation work retains the distance estimation using RSS
and incorporates deep learning techniques to simplify the
trilateration solution, and hence the real-time performance
can be easily guaranteed. Moreover, our work is further
compared with the state-of-art of indoor 3D VLP system as
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shown in table 3. Overall, our proposed work can achieve
an equivalent accuracy but with low hardware complexities
and minimum offline workloads. In conclusion, our proposed
work is a competitive option among them. It is noteworthy
that capabilities of utilizing deep learning can go beyond
what this work has revealed. For instance, our works can be
further modified to address the complicated calculation of
arbitrary tilting angles and sparse online training for accuracy
enhancement. Both exciting prospects will be discussed in
our future works.
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