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ABSTRACT For most deep learning practitioners, recurrent networks are often used for sequence modeling.
However, recent researches indicate that convolutional architectures may be used to optimize recurrent
networks on some machine translation tasks. Problems here are which architecture we should use for a
new sequence modeling. By integrating and systematically evaluating the general convolution and recurrent
architecture used for sequence modeling, a convolution gated recurrent unit (CNN-GRU) network is
proposed for the state-of-charge (SOC) estimation of lithium-ion batteries in this paper. Deep-learning
models are well suited for SOC estimation because a battery management system is time-varying and non-
linear. The CNN-GRU model is trained using data collected from the battery-discharging processes, such
as the dynamic stress test and the federal urban driving schedule. The experimental results show that the
proposed method can achieve higher estimation accuracy than two commonly used deep learning models
(recurrent neural network and gated recurrent unit) and two traditional machine learning approaches (support
vector machine and extreme learning machine) for SOC estimation of lithium-ion batteries.

INDEX TERMS State-of-charge estimation, convolutional gated recurrent unit, lithium-ion battery.

I. INTRODUCTION

With the continuous development of electric vehicles,
lithium-ion batteries have become the mainstream of energy
storage systems with their high energy, high power density
and long life [1]. In order to ensure the safe and reliable
operation of the battery, a battery management system is
needed to monitor the lithium-ion battery to extend the battery
life [2]. State-of-charge (SOC) estimation is one of the main
contents of battery management system research. The SOC
indicates the rate of the conserved energy of a battery to the
overall conserved energy.

There are many mature SOC estimation methods that have
been developed and applied, with Coulomb counting being
the most common one [3]. In the Coulomb counting, the SOC
value is obtained by integrating the current on the time
axis. Although the Coulomb counting is easy to calculate,

The associate editor coordinating the review of this manuscript and
approving it for publication was Giambattista Gruosso.

VOLUME 7, 2019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

the measurement and computation errors are accumulated
during the integration process, and the SOC initial value
is not easily obtained. Therefore, in this method, the SOC
estimation is easily deviated from the actual value. The
voltage-based method first measures the open circuit voltage
and then estimates the SOC by looking up the OCV-SOC
(Open Circuit Voltage State) table. However, these methods
cannot perform well for LiFePO,4 battery because of their
non-stationary nature of the discharge process. Moreover,
in voltage-based approaches, the battery should be turned on
for a period of time, waiting for the open-circuit voltage to
reach a stable state and measuring the open-circuit voltage
value. Thus, it is not practical in applications where the
battery cannot be opened from the electrical circuits [4], [5].
Impedance spectroscopy is another commonly used method
for SOC estimation [6]. However, this approach is appropriate
in laboratory tests but requires some additional measurements
that are not practical applications [4], [S]. Kim et al. took
temperature as one of the input variables of the first order
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dynamic circuit model. However, this model does not con-
sider the effect of temperature on OCV-SOC [7]. Lee et al.
developed a SOC estimation method which is on the basis of
a fuzzy neural network [8]. This method was tested only in the
case of constant current discharge. However, in actual situa-
tions, many batteries cannot be discharged in this state. These
existing SOC estimation methods have their corresponding
shortcomings that we have mentioned above. In this paper,
we aim at developing a SOC estimation algorithm on the
basis of deep-learning methods for following reasons. Firstly,
a deep learning method can adaptively learn the network
parameters and parameterize the model itself, thus reducing
the workload of the researchers. Secondly, with the emer-
gence of GPU, training time has been greatly reduced, big
data can be transmitted to server in the cloud for off-line
training. Thirdly, compared with traditional methods, it is
more convenient to add temperature and other factors to train
our models.

Advances in deep learning models, particularly recur-
rent neural networks (RNN) and long short term memory
(LSTM), provide some useful ways to solve this problem
[9]-[14]. Lipu et al. proposed a recurrent nonlinear autore-
gressive with exogenous input neural network model for SOC
estimation of battery [15]. David et al. also applied this
model to estimate the SOC of a battery pack of a Nissan
Leaf electric vehicle [16]. The intuitive appeal of recurrent
modelling is that the hidden state can act as a representation
of everything that has been seen in the sequence so far. Basic
RNN architectures are difficult to train [17], [18], so it is
often replaced by more complex architectures, such as the
LSTM [11], [19] and the GRU [20], [21]. As convolutional
networks have been successfully used in sequences analysis
for decades, other related works tried the combined archi-
tecture of RNN and CNN. These work include convolutional
LSTM, which inserts a convolutional layer in LSTM to allow
additional structures to be used in the recurrent layer and the
Quasi-RNN model [22] which interlaces recurrent layers with
convolutional layers. Although a number of evaluations of the
RNN architecture of representative sequence modelling tasks
have been conducted, we have not realized a thorough com-
parison of the convolution and rotation methods of sequence
modelling. Yin et al. conducted a comparison between convo-
lutional and recurrent networks for classification tasks [23].
In contrast, sequence modelling calls for architectures that
can synthesize whole sequences, element by element. This
is especially interesting given the recent success of the con-
volutional architecture mentioned in this area. Our work aims
to compare recurrent architectures with and without general
convolution for sequence modelling tasks.

In this study, a convolutional gated recurrent unit (CNN-
GRU) is proposed for SOC estimation of lithium-ion batter-
ies. The proposed CNN-GRU network is trained and tested
using data collected from federal urban driven schedule
(FUDS), dynamic stress test (DST), and US06 test under
various temperatures. Experimental results show that the pro-
posed network outperforms popular deep-learning methods
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like GRU and RNN and traditional machine learning methods
such as extreme learning machine (ELM) and support vector
machine (SVM) in terms of estimation errors like RMSE
and MAE, with all models well trained on lithium-ion bat-
tery datasets. This paper is organized as follows. Section II
describes the structure of convolution gated recurrent unit.
Section III describes the data and experiment. Section IV
shows the estimation procedures and results. Section V
concludes.

Il. CONVOLUTION GATED RECURRENT
UNIT NEURAL NETWORKS
A. THEORY OF GRU
Cho et al. [20] proposes a GRU method that allows each
recurrent unit to adaptively capture sequence dependencies
over various lengths of time. The GRU has a gating structure
which controls the flow of information inside the unit. In the
following process, we denote x; as current input, h;_ is the
output of previous stage.
1) Update gate.
The update gate z; is computed by

2 = (Wox + Ughy—1). (1

An update gate 7, determines how much information
the unit will update.

2) Reset gate.
The reset gate rj’ is calculated by following equation,

rl = o(Wex, + Uphy—1), )

but the weight matrix is different. Reset gates deter-
mine how much of the information hidden at the last
moment needs to be forgotten. When the value is close
to 0, it means that the j-th information of the previous
moment is forgotten in the current memory content
(explained in the following text), and close to 1 indi-
cates that it will continue to be retained in the current
memory content.
3) Determine the current memory content.

In addition to multiplying the weight matrix as above
two gates, Hadamard product of the reset gate results r;
and h,_ is calculated, i.e. the corresponding elements
are multiplied. Because r; is composed of vectors from
0 to 1, the significance of Hadamard product is to use
the reset gate to decide how much of the hidden state
of the content is to be forgotten in the current memory
content. As described at the reset gate, the value close
to O indicates that the information is forgotten and close
to 1 preserves the information. Finally, the two parts of
information are added into the tanh activation function,
and the results are scaled down to - 1 to 1.

7 = tanh(Wyx, + UG, - hy_1))., 3)

where 7, is a set of reset gates and - is an element-wise
multiplication. When off (7] close to 0), the reset gate
effectively makes the unit act as if it is reading the first
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symbol of an input sequence, allowing it to forget the
previously computed state.

4) Determine the information retained by the hidden layer
at the current time.
Finally, the network needs to compute the %, vector,
which will retain the information of the current cell
and pass it to the next cell. In this process, using the
update gate, on the one hand, such as the first item of
the formula, it determines how much information in the
h;—1 of the previous moment needs to be retained in the
hidden unit /4, at this time. On the other hand, as the sec-
ond item of the formula, the information that needs to
be forgotten is expressed by (1 —z)) and updated by the
corresponding content of the memory at this moment.
In this way, the update door can determine what content
needs to be collected in the current memory and the last
hidden layer respectively.

o= =2y + 2k, 0)
See Figure 1 for the graphical illustration of the GRU cell.

FIGURE 1. Structure of a GRU cell.

B. CONVOLUTION GRU

We now present the CNN-GRU network. Our architecture is
inspired by convolutional architectures for sequential data,
see [24]-[26] for references.

As we know, establishing a suitable estimation model is
important to ensure satisfactory estimation accuracy. The
SOC typically exhibit non-stationary and non-linear behav-
ior, deeper architectures are well suited to make the network
capture the non-linear properties. Therefore, this paper pro-
poses a new deep learning model CNN-GRU for SOC estima-
tion. Specifically, the CNN-GRU extracts features through a
convolutional layer and performs time series prediction by
stacking multiple GRU layers. Similar to other deep neu-
ral network models, the training procedure of CNN-GRU
is implemented by using back propagation and gradient
descent. The purpose of the training process is to reduce
the root mean square error. In our applications, the self-
adaptive learning rate optimization algorithm called AdaGrad

VOLUME 7, 2019

is adopted. The optimization procedures of AdaGrad are
as follows:

(e00]
Qe = —, Q)
Vi 8 te
Ve = UWVe—1 — Uefe, (6)
Be = Be—1 + Ve, @)

where e is the epoch label; ap and «, are initial learning rate
and learning rate in epoch e, respectively; € is a minimum
value to ensure the denominator greater than O; g, denotes the
gradient and p denotes the momentum; S, denotes parame-
ters value and v, is the updating value at the e th epoch.
CNN-GRU is based on following principles: the network
will not leak to the future. Therefore, the CNN-GRU uses
causal convolutions, which means an output at time ¢ is only
convolved with data at time ¢ and time points before time 7.
The key equation of CNN-GRU are shown below:

% — / x(0)g(s — 1), ®)
= o(WE + Uchi_1), ©)
rjl = U(Wr}} + Urh[—l)j’ (10)
"h’{ = tanh(W),%, + U(r; - he_1)Y, (11
W= (-2 _, +2H, (12)

where g(s — ) denotes the convolution function.

C. DISCUSSION
In this section, we discuss the effect of a one-dimensional
convolution layer in this experiment.

Firstly, it is well known that one-dimensional convolution
layer can preprocess data. By choosing the weight of convo-
lution kernel and the width of window, different data features
can be extracted to better serve as input of GRU layer.

Secondly, another function of the convolution layer is to
make better use of the data before the current time point. From
the mathematical definition of convolution, see following
convolution equation

% = / x()gls — 1),

it is equivalent to weighted average of current and past time
points. In [27], average current and average voltage are also
used as input parameters to estimate SOC. However, in this
paper, we do not directly take average current and average
voltage as input parameters. Instead, we let the convolution
layer extract similar information adaptively and use it as input
of GRU layer.

Thirdly, flexible receive field size. The CNN-GRU can
change the size of its receive field in a number of ways.
For example, using a larger expansion factor or increasing
the filter size to stack more expanded convolution layers is
a viable option. Therefore, CNN-GRU can easily adapt to
different fields.

Finally, a convolution layer in the first place is similar to
impose fast Fourier transform or wavelet transform on the
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FIGURE 3. Structure of a 1-D convolution layer.
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FIGURE 4. Flowchat of the training process.

raw data. However, the major difference here is that in fast
Fourier transform or wavelet transform we use fixed kernel
function and predetermined width of window. But in our
experiment, the 1-D convolution layer is part of the whole
neural network, which means all these parameters (weight
and width of window) will be iteratively trained. Therefore,
the network can self-adaptively select these parameters to
reduce the estimation error.

The structure of convolution layer is shown in Figure 3.
The flowcharts of the proposed method for SOC estimation
is given in Figure 4.

lll. DATA AND EXPERIMENT
The battery tester consists of a battery testing system (arbin
BT2000 tester) which loads and samples batteries, a host
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with Arbin MITs Pro on-line experimental control and data
recording software, and a Pycharm data analysis soft-
ware, as shown in Figure 7. The BAK 18650 battery
(Li(NiCoMn)O,), was used in the test, and the main param-
eters are in Table 1. The Federal Urban Driving Program
(FUDS) and the dynamic stress test (DST) were conducted
on the battery test bench at different temperatures for model
evaluation, respectively, see following descriptions.

A. TRAINING AND TESTING DATA

Training data: the Federal Urban Driving Program (FUDS) is
a dynamic performance test based on the time-speed curve of
a vehicle in the automotive industry [28]. In laboratory tests,
dynamic current sequences are transmitted over time-speed
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FIGURE 6. Data from FUDS profile, (a) current of FUDS test; (b) voltage of FUDS test; (c) SOC of FUDS test.

TABLE 1. Specifications of the test samples.

Type B18650CD Cathode Li(NiMnCo)Os AnodeSi/C
Nominal capacity 1.3Ah
Nominal voltage 3.6V
Charge voltage 4.2V
Discharge cut-off voltage| 2.5V
End of charge current 0.01C

curves to control battery charging or discharging and are used
in battery performance testing. The current of FUDS causes
the battery to discharge, thus SOC varies from 100% SOC at
3.6 V to empty state at 2 V. The FUDS test was conducted
at 0°C, 10°C, 20°C, room temperature (26°C), 30°C, 40°C,
50°C. The SOC curve derived by Coulomb counting and
measured current, voltage profile at room temperature are
displayed in Figure 6.

Testing data: The dynamic electrical behavior of the bat-
tery was studied using DST profile. It was designed by the
American Advanced Battery Alliance (USABC) to simulate
a variable power discharge mechanism and represents the
expected demand for electric vehicle batteries [28]. In our
tests, the completed DST cycle was 360 seconds. During
the discharge process, the DST runs from fully charged at
3.6 V to empty at 2 V continuously over five cycles in a
discharge process. In our test, positive current corresponds
to discharge processes and negative current corresponds to
charge processes. The current and voltage curves at room
temperature and the corresponding SOC curve are shown
in Figure 6.

The structure of the input data of the network is [Current,
Voltage, Temperature], where the temperature is controlled
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to oscillate around the preset temperature. The output data of
the network is the estimation value of SOC.

Real values of SOC: The target value is calculated by
Coulomb counting method. In this method, the SOC value
is obtained by integrating the current on the time axis, see
following equation.

[ idt
SOC = SOCy — c 13)

n

where SOCy is the initial value of SOC, i is the battery
current, C, renpresents the nominal capacity and ¢ is the time.

B. EXPERIMENT

1) Experiment I: Hyper-parameter selection of the pro-
posed method.

2) Experiment II: Comparative studies with deep-learning
method such as RNN and GRU and with traditional
machine learning approaches such as ELM [29] and
SVM [30].

3) Experiment III: Testing robustness of the proposed
method using different current discharging profile such
as US06.

4) Experiment IV: SOC estimation at various temperature
conditions using proposed method.
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FIGURE 7. Schematic of the battery test bench.
TABLE 2. Experiment I, hyper-parameters selection.

Model RMSE MAE
CNN(3*3)+GRU(150)+GRU(80) 0.0217 0.0198
CNN(6%3)+GRU(150)+GRU(80) 0.0184 0.0147
CNN(8*3)+GRU(150)+GRU(80) 0.0167 0.0133
CNN(8%3)+GRU(250)+GRU(80) 0.0185 0.0147
CNN(8*3)+GRU(100)+GRU(50) 0.0298 0.0288

CNN(8*3)+GRU(20)+GRU(10) 0.0492 0.0357
CNN(8*3)+GRU(150) 0.0176 0.0140

IV. TRAINING AND TESTING RESULTS

A. EXPERIMENT I: HYPER-PARAMETERS SELECTION

The architecture of the deep learning method has a great
impact on network performance. In this section, several tri-
als with different network structures are conducted to help
determine proper hyper-parameters including the size of the
convolution layer, the hidden layer, and hidden unit in each
layer for the proposed network. The performance of the net-
work is evaluated using mean absolute error (MAE) and root
mean square error (RMSE), which are defined as,

T
1 .
MAE = (Zl lye —yt|) : (14)

5)

where y; and y; denote the estimated value and true value,
respectively.
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Some network specifications and results of the trials are
summarized in Table 2. From the table, we see that although
generally the network performance is improved with more
hidden layers and more hidden nodes incorporated, the com-
putational cost increases and more importantly, the risk of
over-fitting increases. For example, first GRU layer with
250 nodes (Table 2, 4th row) yields larger estimation error
than with 150 nodes (Table 2, row 3). Based on the eval-
uation results, two GRU layers are used. The structure
of the network is shown in Figure 4, where 8 filters are
adopted in the convolutional layer, followed by two stacked
GRU layers, with 150 and 80 nodes, respectively. Finally,
a fully connected layer is constructed for SOC regression.
Other hyper-parameters, such as the epoch number, initial
learning rate and momentum can be determined likewise.
Specifically, 500 epoches are used, with initial learning
rate and momentum set to 0.001 and 0.8, respectively.
The learning rate is updated using AdaGrad [31] for faster
convergence.
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FIGURE 8. Experiment Il, comparative studies with RNN, GRU, ELM and SVM; (a) CNN-GRU (b) GRU; (c) RNN; (d) ELM;

(e) SYM.

Figure 8 (a) shows the estimated SOC for DST profile with
the above specified hyper-parameters. The true SOC curve is
calculated by Coulomb counting method, since the battery is
discharged from 100% SOC and the current sensor is properly
calibrated, the integration error is negligible.

In conclusion, as with other deep learning methods,
there are many hyper-parameters in the CNN-GRU network.
Unfortunately, there is no mature way to properly select these
hyper-parameters to ensure satisfactory results. In this paper,
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all of these hyper-parameters are manually and empirically
selected by several attempts.

B. EXPERIMENT II: SOC ESTIMATION FOR FULLY
CHARGED BATTERY UNDER ROOM TEMPERATURE

USING DIFFERENT MODELS

In this section, the effectiveness and superiority of the pro-
posed method are verified. In the experiment, the data from
FUDS test and DST test are input into the CNN-GRU, GRU,
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TABLE 3. Experiment Il, comparative studies with RNN, GRU, ELM and SVM.

Method RMSE MAE Average testing time (ms)
RNN 0.0184 0.0147 0.0411
GRU 0.0177 0.0147 0.0580

CNN-GRU 0.0167 0.0133 0.0435
ELM 0.0644 0.0480 0.0072
SVM 0.0583 0.0425 0.1757
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FIGURE 9. Expetiment Ill, (a) FUDS-US06-30°C; (b) FUDS-US06-40°C; (c) DST-US06-30°C; (d) DST-US06-40°C.

RNN, ELM, and SVM, respectively. The experiments are
conducted on the same PC with CPU Intel(R) Core(TM)
i7-2600 CPU, 3.40 GHz.

Figure 8 and Table 3 present the SOC estimation of the
proposed network, where ELM, SVM, RNN, and GRU are
implemented for comparison. The initial SOC is 100% since
the battery is fully charged. The tracking results are shown
in Figure 8. Table 3 summarizes all the results. The proposed
method outperforms traditional machine learning approaches
like ELM and SVM. The predicted values of ELM and
SVM oscillate greatly around the real value, which results
in large errors. The three deep learning methods can obtain
satisfactory estimation results. The estimation accuracy of
CNN-GRU is slightly better than the other two methods.
The testing time of all the training models are less than
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1 millisecond, which is fast enough for real-time applications.
Specifically, the three deep-learning based models have very
close computation time, the additional CNN layer has minor
affects on the computational cost.

C. EXPERIMENT IlI: ROBUSTNESS OF THE PROPOSED
METHOD AGAINST DIFFERENT LOADING PROFILES

In reality, battery loading varies greatly under different bat-
tery usages. For instance, electric vehicles driving in city
and highway corresponds to different loading behaviours.
In this section, the robustness of the proposed method against
different loading profiles are considered by using data from
different loading profiles from training and testing, respec-
tively. For this purpose, additional experiments were done
to collect data under a new loading profile - US06 [28] at
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TABLE 4. Experiment IlI: Estimation results using CNN-GRU.

Data (training and testing) RMSE MAE
FUDS-US06-30°C 0.0198 0.0168
FUDS-US06-40°C 0.0098 0.0078

DST-US06-30°C 0.0211 0.0168
DST-US06-40°C 0.0130 0.0096
1.0 { — Real 1.0{ — Real
Prediction Frgd\(t\on
0.6 iy ! 0.6 1
(a) (b)
109 — Real 1.0 — Real
Prediction Prediction
0.6 0.6 1
. 6 20‘00 4060 6060 BdOO . 6 2600 4060 60‘00 80b0
(© (C)

FIGURE 10. Experiment IV, (a) 0°C; (b) 10°C; (c) room temperature; (d) 40°C.

different temperatures. In the first experiment, we use data
from FUDS test for training and data from US06 for testing.
In the second experiment, we use data from DST for train-
ing and US06 for testing. Moreover, these experiments are
repeated under 30°C, and 40°C, respectively. The network
hyper-parameters are determined as in experiment I. The
estimation results of all the tests are shown Figure 9, while the
statistical results are tabulated in Table 4. For the all the tests,
the maximum RMSE and MAE are within 2.2%, which is
quite satisfying. Thus we conclude that the proposed method
can be applied to various discharging patterns.

D. EXPERIMENT IV: SOC ESTIMATION AT
VARIOUS TEMPERATURES

Ambient temperature has a great impact on the accuracy of
SOC estimation. Traditionally, in model-based approaches,
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new battery model must be developed to take temperature into
consideration. Unlike model-based approaches, which relies
heavily on the accuracy of the underlying battery model and
estimation algorithms, the deep learning method requires no
battery model and can directly take temperature as an input
factor to train the proposed neural network.

To see the influence of ambient temperature, in this section,
we use FUDS data at 0°C, 10°C, 20°C, 30°C, 40°C and 50°C
to train the proposed CNN-GRU neural network. The trained
neural network, which maps the input vectors including cur-
rent, voltage and temperature to the output SOC, is then tested
with input data from various temperatures, including room
temperature (around 26°C).

Figure 10 shows the SOC estimation results of the pro-
posed method, while Table 5 lists the RMSEs and MAEs
for all tests. Generally, the estimation performance under
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TABLE 5. Experiment IV, estimation results under different temperatures using CNN-GRU.

Temperature RMSE MAE
0°C 0.0436 0.0304
10°C 0.0267 0.0195
26°C 0.0154 0.0126
40°C 0.0130 0.0095
50°C 0.0205 0.0164
different temperatures is satisfying, with maximum RMSE REFERENCES

and MAE around 4%. Moreover, although no data at room
temperature is used as the network training data, the SOC
estimation performance at room temperature is satisfying,
with RMSE and MAE within 2%. Finally, the worst perfor-
mance happens at 0°C. The reason is that lithium-ion batteries
have poor performance and more complex internal dynamics
at low temperature, thus it is much harder for the proposed
network to obtain useful features.

In short, by adding temperature into the network input,
the proposed network can be easily extended to consider the
influence of ambient temperature on battery SOC estima-
tion. Overall, the proposed method can give relatively good
SOC estimation at various temperatures. Moreover, the pro-
posed network can present satisfying estimation results at an
untrained temperature.

V. CONCLUSIONS AND DISCUSSION

Deep learning methods perform well in our experiments.
Firstly, CNN-GRU can directly map battery measurement
signals such as voltage, current, and temperature to SOC,
avoiding complex model construction processes and compu-
tational inference algorithms such as Kalman filters used in
traditional SOC estimation. Secondly, CNN-GRU can learn
all parameters in the whole neural network by itself; releasing
researchers from manual engineering and parameterizing the
models themselves. In the traditional method, the algorithm
can only be run in the field after fitting the parameters to the
battery model and determining the time-consuming covari-
ance matrix in the Kalman filter. Thirdly, the CNN-GRU
network can learn to estimate the SOC under various ambi-
ent temperature conditions, which is very useful and easy
to implement because in existing SOC estimation methods,
different models or different lookup tables must be used
for different ambient temperatures. Fourthly, the proposed
method outperforms popular deep learning methods like
RNN and GRU and traditional machine learning approaches
like ELM and SVM in terms of estimation errors like RMSE
and MAE. The computation time is fast enough for real-time
applications. Finally, repeated use will affect the dynamic
performance of the battery. In order to consider the effect
of battery aging, we recommend that network parameters be
updated regularly. In our experience, two months or even
longer intervals are acceptable because the battery aging
process is slow.
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