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ABSTRACT Massive multiple-input multiple-output (MIMO) with frequency division duplex (FDD) mode
is a promising approach to increasing system capacity and link robustness for the fifth generation (5G)
wireless cellular systems. The premise of these advantages is the accurate downlink channel state infor-
mation (CSI) fed back from user equipment. However, conventional feedback methods have difficulties in
reducing feedback overhead due to significant amount of base station (BS) antennas in massive MIMO
systems. Recently, deep learning (DL)-based CSI feedback conquers many difficulties, yet still shows
insufficiency to decrease the occupation of uplink bandwidth resources. In this paper, to solve this issue,
we combine DL and superimposed coding (SC) for CSI feedback, in which the downlink CSI is spread
and then superimposed on uplink user data sequences (UL-US) toward the BS. Then, a multi-task neural
network (NN) architecture is proposed at BS to recover the downlink CSI and UL-US by unfolding two
iterations of the minimum mean-squared error (MMSE) criterion-based interference reduction. In addition,
for a network training, a subnet-by-subnet approach is exploited to facilitate the parameter tuning and
expedite the convergence rate. Compared with standalone SC-based CSI scheme, our multi-task NN, trained
in a specific signal-to-noise ratio (SNR) and power proportional coefficient (PPC), consistently improves
the estimation of downlink CSI with similar or better UL-US detection under SNR and PPC varying.

INDEX TERMS Channel state information (CSI), deep learning (DL), superimposed coding (SC), feedback,
massive multiple-input multiple-output (MIMO).

I. INTRODUCTION
As one of the key technologies in the fifth generation
(5G) wireless communication system, massive multiple-
input multiple-output (MIMO) has now motivated a growing
research interest [1]. In massive MIMO systems, hundreds
of antenna elements are deployed at the base station (BS).
Combined with a pre-coding scheme, such as minimum
mean-squared error (MMSE), these antennas provide an
effective way to exploit the spatial degrees of freedom,
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which significantly enhance system performance, e.g., sys-
tem capacity, energy efficiency, and link robustness [2]–[8].

In massive MIMO systems, the accurate channel state
information (CSI) is required by BSs for downlink beam-
forming user selection [9]. In the time division duplex (TDD)
mode, the CSI of downlink can be estimated by the uplink
channel for the reciprocity property [10]. However, in the
frequency division duplex (FDD)mode, the reciprocity-based
CSI is not available. Thus, the downlink CSI should be esti-
mated by users and fed back to the BS. This CSI feedback
incurs significant overhead in massive MIMO systems due
to large number of antennas. Since FDD mode is perva-
sively deployed for delay sensitive and traffic symmetric
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applications, it is of great importance to reduce the CSI
feedback overhead in FDD mode.

The codebook-based CSI feedback has been widely
applied [11]. In FDD massive MIMO systems, however,
the large number of antennas requires correspondingly
expanded codebook size to guarantee an acceptable CSI-
accuracy [12]. Subject to the curse of dimensionality,
the overhead of the codebook-based feedback becomes sub-
stantial for massive MIMO systems [13]–[15]. To address
the aforementioned problems, the compressive sensing (CS)-
based CSI feedback approaches are proposed to reduce
the channel dimension by exploiting the sparse structures
of CSI [12], [14]–[16] (e.g., CSI’s temporal correla-
tion [12], CSI’s spatial correlation [14]–[16], and the sparsity-
enhancing basis for CSI [14], etc.). It is well known that,
the sparsity of CSI is only approximated for specific mod-
els [3], [4], beyond which, the general assumption of chan-
nel sparsity could not be guaranteed. Thus, existing CS-
based algorithms may have practical issues in case of model
mismatch.

Recently, the deep learning (DL) based physical-layer
technique shows its promising prospects in wireless com-
munication system [3]–[9], [17]–[21] and the comprehensive
overview could be found in [18]–[20]. Compared with the
CS-based CSI feedback, DL-based methods (e.g., [3] and [4])
outperformmany existing CS schemes in feedback reduction.
Despite all this, an efficient DL-based CSI feedback to further
improve the occupation of the uplink bandwidth resource is
still highly desired.

A. RELATED WORKS
The literature of DL-based CSI feedback for FDD mas-
sive MIMO systems mainly concentrates on feedback reduc-
tion [3]–[6]. In [3], a deep neural network (DNN) called
CsiNet has been developed for CSI feedback. The CsiNet is
based on autoencoder of DNN, where the encoder learns to
compress the original channel matrices to some codewords
and the decoder learns the inverse transformation from com-
pressed codewords through training data. Compared to the
CS-based algorithms, the CsiNet was more effective in reduc-
ing the CSI dimensionality. However, the CSI is indepen-
dently reconstructed in CsiNet and thus it is not suitable for
practical application in time-varying channels due to the igno-
rance of time correlation. To remedy this defect, a CsiNet-
long short-term memory (CsiNet-LSTM) has been proposed
in [4] to enhance recovery quality of CSI by learning spa-
tial structures and time correlation of time-varying massive
MIMO channels. However, the investigation in [5] indicated
that both [3] and [4] (i.e., CsiNet and CsiNet-LSTM) are
not sufficient for tracking the temporal correlations due to
the employment of linear fully-connected networks (FCNs)
for CSI compression. By incorporating a LSTM module and
FCN in a neural network (NN) architecture, the recurrent
compression and uncompression modules were formed in [5]
to effectively capture the temporal and frequency correlations

of wireless channels. Considering feedback error and feed-
back delay, a deep autoencoder based CSI feedback was
proposed in [6]. Although the DL-based CSI feedback meth-
ods in [3]–[6] exhibite excellent performance in feedback
reduction, the uplink bandwidth resources are still occupied
to some extent.

Without any occupation of uplink bandwidth resources, [7]
and [8] estimated downlink CSI from uplink CSI by using
DL approach. In [7], the core idea was that since the same
propagating environment was shared for both uplink and
downlink channels, the environment information could be
applied to downlink channel cases after it was extracted from
uplink channel response. Similar to [7], a NN-based scheme
for extrapolating downlink CSI from observed uplink CSI
has been proposed in [8], where the underlying physical
relation between the downlink and uplink frequency bands
was exploited to construct the learning architecture. Need to
mention that, the methods in [7] usually needs to retrain the
NN when the environment information changes significantly.
For example, for a well-trained equipment, its extracted envi-
ronment information (e.g., the shapes of buildings, streets
and mountains, the materials that objects are made up, etc)
from one city would no longer be applicable for another. The
method in [8] will encounter poor CSI recovery performance
in the environment of wide band interval between downlink
and uplink frequency bands.

Besides the DL-based CSI feedback approaches, the super-
imposed coding (SC), which is similar the non-orthogonal
multiple access scheme [21], is also proposed for CSI
feedback to avoid the occupation of uplink bandwidth
resources [22]. This is accomplished by spreading and super-
imposing the downlink CSI on the uplink user data sequences
(UL-US) to feed back to BS [22]. But still, this method is
challenged by the difficulties of cancelling the interference
between CSI and UL-US.

As a whole, the DL-based and SC-based CSI feedback
methods still face huge challenge, which can be summarized
as follows:

• Concentrated on feedback reduction, the DL-based
CSI feedback methods, e.g., the methods in [3]–[6],
inevitably occupy uplink bandwidth resources.

• Although the occupation of uplink bandwidth resources
can be avoided, the methods that estimate downlink
CSI from uplink CSI in [7] and [8] usually limit the
applications in mobile or wide frequency-band interval
environment.

• The SC-based CSI feedback [22] can also avoid the
occupation of uplink bandwidth resources, while facing
with huge challenge to cancel the interference between
downlink CSI and UL-US due to the lack of good solu-
tions in previous works.

Motivated by DL-based CSI feedback methods, we com-
bine DL technique and SC technique for CSI feedback to
overcome these challenges mentioned above.
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B. CONTRIBUTIONS
In this paper, we combine DL technique and SC technique
for CSI feedback. The main contributions of our work are
summarized as follows:

• The SC-based CSI feedback (e.g., [22]) is introduced
in user equipment. Therefore, the occupation of uplink
bandwidth resource is thoroughly avoided, which is dif-
ferent from the DL-based methods in [3]–[6]. In par-
ticular, the DL-based methods by using uplink CSI to
estimate downlink CSI in [7] and [8] are not adopted for
a wider application in mobile or wide frequency-band
interval environment.

• A multi-layer NN (i.e., a DNN) is constructed at BS by
with the unfolding idea from [23]–[25]. Compared to
the SC-based CSI feedback [22] with perfectly known
noise variance, this multi-layer NNmethod improves the
performance of downlink CSI recovery without obvious
change of bit error rate (BER) of UL-US. Note that
the iteration algorithm according to minimum mean-
squared error (MMSE) criterion in [22] requires to know
the noise variance. Our unfolded iteration can work well
without any knowledge of link noise. That is, both the
recovery of downlink CSI and the BER of UL-US are
actually improved compared to SC-based CSI feedback
in [22] due to the inevitable estimation errors of noise
variance.

• A subnet-by-subnet method, inspired by layer-by-layer
training in [26], is exploited to train the designed DNN.
This method facilitates the parameter tuning and expe-
dites the convergence rate.

The remainder of this paper is structured as follows:
In Section II, we present the SC-based CSI feedback to for-
mulate a learning problem. The proposed method, i.e., deep
learning for CSI feedback is presented in Section III, and the
numerical results are given in IV. Finally, SectionV concludes
our work.

Notations: Boldface letters are used to denote matrices and
column vectors;(·)T , (·)H , (·)† and E {·} denote the transpose,
conjugate transpose, matrix pseudo-inverse, and statistical
expectation respectively; Re (·) and Im (·) denote the real
and imaginary parts of a complex number, complex vec-
tor or complex matrix; IP is the identity matrix of size P×P;
BN (·) denotes the operation of batch normalization; ‖·‖2 is
the Euclidean norm; and 0 is the matrix or vector with all zero
elements.

II. PROBLEM FORMULATION
In this section, the SC-based CSI feedback is first elaborated
in II-A, and a SC-baseline is also formed for ease of com-
parison and description. Then, in II-B, based on this baseline,
we form a multi-task learning for SC-based CSI feedback.

A. SC-BASED CSI FEEDBACK
In [22], the MIMO system consists of a BS with N antennas
and U single-antenna users. The transmitting signal Xu of

user-u, u = 1, 2, · · · ,U , is denoted as

Xu =

√
ρEu
N

HuPTu +
√
(1− ρ)EuDu, (1)

where, ρ ∈ [0, 1] stands for the power proportional coeffi-
cient (PPC). For each user-u, Eu represents the transmitting
power; Hu is the 1 × N downlink CSI from BS to user-u,
whose elements are independent and identically distributed
(i.i.d) complex Gaussian variable with zero mean and vari-
ance 1

/
N ; Pu ∈ RM×N is a spreading matrix, satisfying

PTu Pu = M IN ; Du ∈ C1×M denotes UL-US; and M is the
frame length (or UL-US length).

The received signal at BS from user-u, denoted as ru,
is given by [22]

ru = GuXu + Nu, (2)

where, ru isN×M signal block captured fromN BS antennas;
Gu ∈ CN×1 is uplink channel vector, i.e., uplink CSI; the
feedback link noise is denoted by Nu, which is a N × M
complex matrix. Each element of Nu is modeled as i.i.d
complex additive white Gaussian noise (AWGN) with zero
mean and variance σ 2

u .
Assuming perfect synchronization, perfect uplink channel

estimation (i.e., Gu can be known), and perfect noise vari-
ance estimation (i.e., σ 2

u is known) to be available at the
BS, we form a ‘‘SC-baseline’’ for DL-based CSI feedback.
Referring to [22], the iteration procedure of ‘‘SC-baseline’’,
which is utilized to recover downlink CSI and UL-US on the
basis of MMSE criterion, is given as follows:

1) Initialization: k = 0, r(0)u ← ru.

2) MMSE estimation of downlink CSI (i.e.,
^

H
(k)

u ): Com-
pute Z(k)u = r(k)u Pu

/
M to despread the updated signal

r(k)u , and then estimate the downlink CSI according to
MMSE criterion, i.e.,

^

H
(k)

u = M
√
ρEuN

{
[N + (M − N ) ρ]

× EuGH
u Gu + Nσ 2

u

}−1
GH
u Z

(k)
u . (3)

3) Eliminate the interference of downlink CSI:

r(k)u ← r(k)u −

√
ρEu
N

Gu
^

H
(k)

u PTu . (4)

4) MMSE detection of UL-US (i.e.,
^

D
(k)

u )

^

D
(k)

u =
√
(1−ρ)Eu

{
(1−ρ)EuGH

u Gu+σ
2
u

}−1
×GH

u r
(k)
u

(5)

5) Cancellation of UL-US’s interference:

r(k)u ← r(k)u −
√
(1− ρ)EuGu

^

D
(k)

u . (6)

6) k = k + 1 and return to step 2) if k is within iteration
limit.
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FIGURE 1. System model of the multi-task learning for SC-based CSI feedback.

It should be noted that, to form a comparison baseline,
the maximum likelihood detection of UL-US and maximum
likelihood estimation of downlink CSI, is impractical due to
the extremely high computational complexity in a massive
MIMO system. Therefore, the MMSE criterion is considered
here for SC-baseline. After several iterations, the MMSE
estimation of downlink CSI and the MMSE detection of
UL-US could be converged.

B. LEARNING TASK FOR SC-BASED CSI FEEDBACK
To further improve the SC-based CSI feedback, we combine
the DL and SC for CSI feedback by exploiting the advantages
of SC and DL techniques. The whole system model is given
in Fig. 1. For user-u, the downlink CSI (i.e., Hu) is spread
firstly. Then the weighted downlink CSI and UL-US are
superimposed together to form signal Xu, as given in (1).
Over the attenuation of the uplink channel Gu and link noise
Nu, the transmitted Xu from user-u is received at BS. Expe-
riencing the operation of radio frequency (RF) front-end,
the received signal ru is expressed in (2). With the received
signal ru, the main task of BS is to recover downlink CSI and
detect UL-US by using DL technique.

Similar to the assumption of [22] and [24], the uplink chan-
nel Gu (i.e., the uplink CSI) is known to the BS in advance.
In [24], the knowledge of CSI is used to form maximum like-
lihood optimization for DL-based MIMO detection problem.
However, the complicated NN architecture (e.g., 30 layers
in [24]), long training time (e.g., 3 days in [24]), and difficult
parameter tuning, etc., cause its application difficulties in
different scenarios. Besides the detection of UL-US (i.e.,Du),
the estimation of downlink CSI (i.e.,Hu) is also needed at the
BS. This is a typical multi-task problem in NN [27], which
encounters more difficulties than the single-task detection
(e.g., [24]). Therefore, to simplify implementation complex-
ity, amulti-taskNN architecture is structured by unfolding the
iterations of SC-baseline under MMSE criterion. Naturally,
other baselines and corresponding NN architectures formed
according to the same approach can also be considered, which
will not affect the fairness of the comparison.

Although the known uplink CSI Gu is exploited in
SC-baseline under MMSE criterion, we are still trying to
develop a multi-task NN that has no uplink CSI as input
but outperforms SC-baseline. Thus, a coarse estimation of
Xu is employed to circumvent the explicit uplink CSI Gu.
To do this, the NN architecture can be simplified and thus
accelerates network convergence. Then, the estimated X̂u
passes through a multi-layer NN (i.e., a DNN) to solve the
multi-task problem, i.e., to recover downlink CSI (denoted
as Ĥu) and to detect UL-US (denoted as D̂u). This will be
elaborated in the next section.

III. DEEP LEARNING FOR CSI FEEDBACK
In traditional SC-based CSI feedback [22], the main task of
BS is to recover downlink CSI and detect UL-US. In our
proposed DL-based CSI solution, this is also the main task
at BS. From II-B, a coarse estimation is employed for sim-
plification and convergence acceleration of designed DNN.
In this section, the coarse estimation is first described and
then followed by our multi-layer NN design, in which the
downlink CSI recovery and UL-US detection is addressed by
solving a multi-task problem.

A. COARSE ESTIMATION
The benefit of a coarse estimation is to eliminate the interfer-
ence of uplink channel. When the uplink CSI is not used as
network input, theNN architecture can be simplified, and thus
improves the convergence rate of offline training. According
to the received signal ru at BS, the coarse estimation can be
given by

X̂u = G†
uru = Xu +G†

uNu. (7)

Then, the estimated X̂u is delivered to a multi-layer NN, and
a multi-task problem is solved in the next subsection.

B. MULTI-TASK DL NETWORK
To solve ourmulti-task problem (i.e., to recover downlinkCSI
Hu and to detect UL-USDu), a multi-layer NN is constructed
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FIGURE 2. Multi-layer NN architecture.

by unfolding the iteration of SC-baseline in II-A. In [22], sim-
ulations show that with three iterations, the SC-based feed-
back algorithm nearly converges. According to our design
and experiment, we observed that unfolding two iterations
is enough. Unfolding with more iterations could not obtain
significant improvement to recover downlink CSI andUL-US
but merely increase the complexity of NN. Thus, without
special explanation, the unfolding operation in the rest of this
paper is applied on a two iterations’ SC-baseline, and this
forms a four subnets’ NN. Need to mention that, this subnet
structure is flexible for unfolding three ormore iterations. The
designed multi-layer NN is illuminated in Fig. 2.

1) NETWORK FUNCTION SUMMARY
For ease of description, we denote four subnets as CSI-NET1,
DET-NET1, CSI-NET2, and DET-NET2, respectively. The
functionality of the network components is summarized as
follows:
• CSI-NETi corresponds to the MMSE estimation of
downlink CSI (i.e., (3) in SC-baseline), while i = 1, 2
represents the first and second iteration, respectively.

• DET-NET1 and DET-NET2 respectively detect UL-US
(i.e., (5) in SC-baseline) in the first and second iteration.

• Some known parameters and iteration procedure, cor-
responding to (4) and (6) in SC-baseline, are exploited
as expert knowledge to implement interference reduc-
tion. In addition, this expert knowledge is also utilized
to improve network performance, e.g., the convergence
acceleration [28].

2) NETWORK ARCHITECTURE
In Fig. 2, each of the four subnets consists of an input
layer, a hidden layer, and an output layer with a fully

connected (FC) mode. These subnets look straightforward,
but they are very conducive to parameter tuning in III-C. The
architecture is given as follows:

• CSI-NET1, DET-NET1, CSI-NET2, andDET-NET2 are
successively cascaded to form a multi-task network.
In addition, some expert knowledge is inserted between
two cascaded subnets to implement interference
reduction.

• For CSI-NET1 or CSI-NET2 (DET-NET1 or DET-
NET2), the neuron numbers of input layer, hidden layer,
and output layer are 2N (2M ), 16N (16M ), and 2N
(2M ), respectively.

• For each subnet, the batch normalization (BN), which
is used to accelerate convergence and prevent overfit-
ting [29], is employed to normalize input layer and
hidden layer. To do so, the inputs of these layers will
have zero mean and unit variance.

• For each subnet, the hidden layer adopts activation func-
tion ‘‘swish’’, defined as swish (x)= x

/(
1+ e−x

)
, for a

usual good performance [30], [31]. Linear activation is
employed for other layers which are not listed here.

• The outputs of CSI-NET2 and DET-NET2 are the
estimated downlink CSI Ĥu and detected UL-US D̂u,
respectively.

3) NETWORK PROCESSING
• Data Preprocessing

In the common framework ofmachine learning, the data set
has to be real value. However, signals in wireless systems are
complex valued. Thus, to make the NN architecture in Fig. 2
works, the data preprocessing is first given. The complex
vectors of downlink CSI Hu ∈ C1×N , UL-US Du ∈ C1×M
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and estimated X̂u ∈ C1×M (see the coarse estimation in
III-A) are reshaped as real valued vectors H̃u ∈ R2N×1,
D̃u ∈ R2M×1 and X̃u ∈ R2M×1, respectively, i.e.,

H̃u = [Re (Hu) , Im (Hu)]T , (8)

D̃u = [Re (Du) , Im (Du)]T , (9)

X̃u =

[
Re
(
X̂u

)
, Im

(
X̂u

)]T
. (10)

To match real valued vectors operation, we also transform the
spreading matrix Pu ∈ RM×N as

P̃u =
[
Pu 0
0 Pu

]
. (11)

Then, the reshaped real valued vector X̃u is used as the input
of the process in TABLE 1.

TABLE 1. Processing procedure.

• Processing Procedure
The procedure of proposed NN is given in TABLE 1,

and some steps are explained as follows. For the sake of
convenience, we useWX1 (bX1) to denote the weight matrices
(bias vectors) for hidden layer, while and WX2 (bX2) for
output layer, respectively. Where X = Ci or Di represent the
CSI-NETi and DET-NETi, i = 1, 2, respectively.
Despreading: With the mapped real valued vector X̃u,

a despreading (see (0-1) in TABLE 1) is employed to reduce
UL-US interference. The corresponding despreading at BS
can be expressed as

H̃(1)u = P̃Tu X̃u, (12)

where P̃Tu is obtained by transforming Pu according to (11).
The despreading is used to reduce UL-US interference, which
is corresponded to the despreading in (3).

Estimation of downlink CSI: The step (1-1) and (2-1) in
TABLE 1 are used to estimate downlink CSI according to

CSI-NET1 and CSI-NET2, respectively. These estimations
can be given by

Ĥ(i)u =WCi2BN
(
swish

(
WCi1BN

(
H̃(i)u

)
+ bCi1

))
+ bCi2.

(13)

where WCi1 ∈ R16N×2N , WCi2 ∈ R2N×16N , bCi1 ∈ R16N×1

and bCi2 ∈ R2N×1. The operations in (13) correspond to the
MMSE estimation of downlink CSI of the ith iteration in (3).

Reduction of downlinkCSI interference:We use the step
(1-2) and (2-2) in TABLE 1 to reduce the downlink CSI inter-
ference. According to Ĥ(i)u , X̃u, and the expert knowledge,
the interference reduction can be given by

D̃(i)u = X̃u −

√
ρEu
N

P̃uĤ(i)u , i = 1, 2. (14)

where the known P̃u,Eu, ρ,N and the structure of interference
reduction are viewed as expert knowledge. These interference
reductions are related to the ith iteration in (4).
Detection of UL-US: The UL-US detections are given in

step (1-3) and (2-3) based on DET-NET1 and DET-NET2,
respectively. The detection can be expressed as

D̂(i)u =WDi2BN
(
swish

(
WDi1BN

(
D̃(i)u

)
+ bDi1

))
+ bDi2.

(15)

whereWDi1 ∈ R16M×2M ,WDi2 ∈ R2M×16M , bDi1 ∈ R16M×1

and bDi2 ∈ R2M×1. In (15), the detection is related to the
MMSE detection of UL-US of ith iteration in (5).

UL-US interference reduction: In TABLE 1, the
step (1-4) is used to reduce the UL-US interference, which
can be given by

H̃(2)u = X̃u −
√
(1− ρ)EuD̂(1)u , (16)

where Eu, ρ, and the structure of interference reduction are
known as expert knowledge. This step is corresponded to the
interference reduction in (6).

By the end of our multi-task network, Ĥu = Ĥ(2)u and
D̂u = D̂(2)u , or say the outputs of CSI-NET2 and DET-NET2,
are the ultimate outputs of downlink CSI estimation and
UL-US detection, respectively.

C. MODEL TRAINING SPECIFICATION
Training a multi-task deep network is usually challenged by
vanishing gradient, initialization sensitivity, activation satura-
tion, and model over-fitting [24], [32]–[34], etc. To overcome
these challenges, the commonmethod is to solve an optimiza-
tion problem by using the gradients of each task to update the
shared parameters [33]. However, the task imbalances impede
proper training [34], and result in enormous difficulties for
parameter tuning.

1) SUBNET-BY-SUBNET TRAINING
To address the challenge of paramter tuning, we come up
with a subnet-by-subnet training pattern inspired by the
layer-by-layer training in [26]. Specifically, CSI-NET1 is
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first trained independently until it converges. Then the
weight matrices and bias vectors of CSI-NET1 are fixed and
applied to train the next subnet in sequence, i.e., DET-NET1,
CSI-NET2 and DET-NET2. The detailed training procedure
is given in TABLE 2.

TABLE 2. Subnet-by-subnet training.

In the following paragraphs, we first give loss functions
involved in training. Then, the initialization of weight matri-
ces and bias vectors are presented. Finally, we explain how to
prepare training data.

2) LOSS FUNCTIONS
To train each subnet, the criterion of minimizing the mean
squared error (MSE) is used. The loss function for CSI-NETi
is expressed as

LossCSI-NETi =
1
T1,i

T1,i∑
t=1

∥∥∥H̃u − Ĥ(i)u
∥∥∥2
2
, i = 1, 2, (17)

where T1,i is the total number of samples in training set of
CSI-NETi training, H̃u is the real representation of com-
plex vector Hu (see (11)). Similarly, the loss function for
DET-NETi can be given by

LossDET-NETi =
1
T2,i

T2,i∑
j=1

∥∥∥D̃u − D̂(i)u
∥∥∥2
2
, i = 1, 2, (18)

where T2,i is the total number of samples in the training set
of DET-NETi training.

3) WEIGHT AND BIAS INITIALIZATION
Appropriate initialization can effectively avoid gradient
exploding or vanishing problem [35]. Thus, the initialization
of weight matrices and bias vectors should be carefully con-
sidered. In this paper, we initialize weight matrices on the
basis of the method in [35].

For the training of CSI-NETi (i = 1, 2), elements ofWCi1
and WCi2, are initialized as the i.i.d. Gaussian distribution
with 0 mean and variance 1/(8N ) and 1/N , respectively.

Similarly, for the training of DET-NETi, elements of WDi1
and WDi2 are initialized as the i.i.d. Gaussian distribution
with 0 mean and variance 1/(8M ) and 1/M , respectively.
Elements of all bias vectors (i.e., bCi1, bCi2, bDi1, and bDi2)
are initialized as zeros.

4) DATA PREPARATION FOR TRAINING
The training set is acquired by a simulation approach,
in which significant amount of data samples are generated
to train a DNN. Specially, these data samples are generated
as follows.

Pu consists of N Walsh codes of length M , satisfying
PTu Pu = M IN ; and P̃u is obtained from Pu according
to (11). Hu and Gu are randomly generated on the basis of
the distribution CN

(
0,
(
1
/
N
)
IN
)
. Then complex valuedHu

is converted to a real valued H̃u by using (8). The uplink
and downlink channels (i.e., Hu and Gu) are assumed to be
stable during one frame, but varying from one to another
[36], [37]. Elements of link noiseNu follow the distribution of
CN

(
0, σ 2

u
)
. {Du} is created by quadrature-phase-shift-keying

(QPSK) symbol set generated by modulating a Bernoulli
sequence

{
sj
}
, and then are mapped to

{
D̃u

}
according to (9).

By using {Hu}, {Du}, {Gu} and {Nu}, we derive training data
sets

{
X̃u

}
according to (1), (2), (7) and (10). The training

labels of estimating {Hu} in CSI-NET1 and CSI-NET2 are
set as

{
H̃u

}
. To detect {Du}, the labels used for training

DET-NET1 and DET-NET2 are set as
{
D̃u

}
.

IV. SIMULATION RESULTS
In this section, the performance comparison is made between
the proposed DL-based scheme and SC-baseline [22] (pre-
sented in II-A) under different conditions. Some definitions
involved in simulations are first given as following. The
signal-to-noise ratio (SNR) in decibel (dB) of the received
signal from user-u at BS is defined as

SNR = 10 log10

(
Eu
σ 2
u

)
. (19)

Normalized MSE (NMSE) is used to evaluate the recovery of
downlink CSI, which is defined as

NMSE = E


∥∥∥H̃u − Ĥu

∥∥∥2
2∥∥∥H̃u

∥∥∥2
2

 . (20)

In the NN training phase, the PPC ρ and frame length
(or UL-US length) M are set to ρ = 0.2 and M = 512,
respectively. Training set

{
X̃u

}
has 200,000 samples, and

the batch size is 200 samples. During training, the SNR is
set to 5dB. We use Adam Optimizer as the training opti-
mization algorithm [38] with parameters β1 = 0.99 and
β2 = 0.999 [39]. The learning rates is set to 0.0001.
The maximum number of iterations is 15,000. For each
subnet training, the L2 regularization [40] is adopted (see
subsection 7.2.1 in [40]). Three downlink CSI lengths
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(i.e., N = 16, N = 32, and N = 64) are considered. Thus,
three trained network models are obtained after training.

The testing data are generated by utilizing the same
method of generating the training data. For SNR ≤

10dB, 200,000 testing samples are employed, while for
SNR > 10dB,we stop the testingwhen at least 1000-bit errors
are observed. For the SC-baseline method, three iterations are
employed.

The training and testing of proposed method are car-
ried out on a server with NVIDIA TITAN RTX GPU and
Intel Xeon(R) E5-2620 CPU 2.1GHz×16, and the results of
SC-baseline are obtained by using Matlab simulation on
the server CPU due to the lack of a GPU solution. With
subnet-by-subnet training, each subnet in a network model
(e.g., the model of N = 64) is converged after 10,000 iter-
ations. Totally, it takes no more than 80 minutes to train
a whole network model (including four subnets), which is
significantly faster than the case in [24] (about 3 days).

To verify the effectiveness of trained NN for the case
where the test PPC and frame length are the same as that of
training phase (i.e., ρ = 0.2 and M = 512), we first test the
NMSE and BER performance and compare them against the
SC-baseline. The performance curves are given in
Fig. 3 and Fig. 4, respectively.

FIGURE 3. NMSE versus SNR, where ρ = 0.2, M = 512.

Fig. 3 shows that the NMSE of each model (i.e., N = 16,
N = 32, and N = 64) outperforms the SC-baseline,
especially at high SNR. Although SNR = 5dB is adopted
in training phase, the three trained network models work
well in the entire SNR span varying from 0dB to 14dB.
Thus, it is obvious that the designed and trained subnets
(i.e., CSI-NET1 and CSI-NET2) have a good generalization
ability for NMSE improvement.

In Fig. 4, the trained NNs and SC-baseline obtain almost
identical BER when SNR is not greater than 10dB. For
the case where N = 64 and SNR ≥ 12dB, the BER of
SC-baseline is slightly better than our trained NN. One reason

FIGURE 4. BER versus SNR, where ρ = 0.2, M = 512.

FIGURE 5. NMSE versus SNR, where N = 64, M = 512.

for this is that a bigger N would result in a smaller spread-
ing gain and then deteriorate NN’s learning ability. Another
reason is likely that the testing SNR (14dB) is far from the
training SNR (5dB). This can be confirmed that without
changing the testing process, the NN trained at SNR = 14dB
obtains similar testing BER as that of SC-baseline at 14dB.
To resolve this kind of generalization degradation, themethod
that obtains training data from multiple SNRs in [24] can be
used. Although the similar BER cannot be obtained when
N = 64 and SNR ≥ 12dB, its BER performance in Fig. 4 is
only slightly degraded. Especially, only one SNR (i.e., SNR =
5dB) is employed in our NN training, which bring us great
benefits of practicality to avoid the difficulty of capturing
multi-SNR data.

To demonstrate the impact of PPC ρ on the trained
NNs, the BER and NMSE performances are given from
Fig. 5 to Fig. 10. Note that, from Fig. 5 to Fig. 10, the NN
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FIGURE 6. BER versus SNR, where N = 64, M = 512.

FIGURE 7. NMSE versus SNR, where N = 32, M = 512.

training adopts ρ = 0.2, while ρ = 0.05, ρ = 0.10, and
ρ = 0.15 are employed for testing. We use these simulations
to illuminate that our NN has excellent generalization and
robustness against the impact of PPC.

Given downlink CSI lengths N = 64, 32, and 16, Fig. 5,
Fig. 7 and Fig. 9 illustrate the NMSE performance with SNR
varying from 0dB to 14dB. Especially for relatively high
SNR, e.g. SNR ≥ 4dB, it is obvious that the trained NNs
evidently improve the NMSEwhen compared to SC-baseline.
At the low SNR regime (e.g., SNR ≤ 2dB) in Fig. 5 and Fig. 7,
however, the NMSE of trained NNs is slightly inferior than
that of SC-baseline. For example, in Fig. 7, the NMSE curve
of the proposed method is a little higher than the baseline
curve when ρ = 0.05 and SNR ≤ 2dB. This situation is

FIGURE 8. BER versus SNR, where N = 32, M = 512.

similar to that in Fig. 4, where the decrease of spreading
gain is a cause of the degradation of NN’s learning ability.
Although slightly inferior to the SC-baseline in certain low
SNR regimes, our NN still shows prominent improvement in
majority SNR regimes. On account of the training require-
ments (only one training PPC and one training SNR) and
noise knowledge (without the knowledge of noise variance),
the DL-based CSI feedback is still attractive.

To validate the generalization and robustness of BER
against the impact of PPC, the BER performance is given
in Fig. 6, Fig. 8 and Fig. 10 with N = 64, N = 32, and
N = 16, respectively. These figures reflect that, compared
with the SC-baseline, our trained NN could achieve a simi-
lar or better BER performance. Especially, at the high SNR
regime (e.g., SNR ≥ 10dB), Fig. 6 shows BER improvement
for the cases where ρ = 0.05 and ρ = 0.10. A slight BER
improvement is also observed in Fig. 8. The reason is likely
that a small PPC avoids the generalization deterioration of
BER performance due to the small superimposed interference
from downlink CSI. It is worth noting that, the training PPC
and SNR are fixed as ρ = 0.2 and SNR = 5dB, while the test-
ing PPC and SNR are varying, e.g., ρ = 0.05, 0.10 or 0.15,
and SNR is varying from 0dB to 14dB.

To sum up, compared to the SC-baseline, Fig. 3 to
Fig. 10 show that the designed and trained multi-task network
can improve the NMSE performance while keeping compa-
rable (or better) BER performance. From Fig. 9 and Fig. 10,
we can see that with similar BER, our NN can improve the
NMSE for the case where N = 16. As N increase, it is
observed from Fig. 5 and Fig. 6 (or Fig. 7 and Fig. 8) that,
when N = 64 (or N = 32), both BER and NMSE of baseline
can be improved, and a smaller PPC obtains greater improve-
ments. Since we train three models under the conditions that
SNR = 5dB, ρ = 0.2 and M = 512, the designed NNs have
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FIGURE 9. NMSE versus SNR, where N = 16, M = 512.

FIGURE 10. BER versus SNR, where N = 16, M = 512.

a strong generalization ability for different SNRs and PPCs.
In addition, the trained NN dose not need any knowledge of
noise variance, which is also superior to the SC-baseline.

V. CONCLUSION
The accuracy of downlink CSI is the prerequisite of system
capacity and link robustness. In this work, a CSI feedback
method combined with SC and DL approaches is developed
to improve the estimation of CSI in 5G wireless communica-
tion systemwithout occupation of uplink bandwidth resource.
We propose a multi-task neural network with subnet-by-
subnet training method to facilitate the parameter tuning and
expedite the convergence rate. The effectiveness of the pro-
posed technique is confirmed by simulation result showing
comparable or better NMSE and BER than that of baseline.
This performance of the trained NN is also robust to varying
SNR and PPC.
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