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ABSTRACT Periodic signal detection methods are widely used in applications including human detection
and machinery fault diagnosis. Averaging is one of the most powerful filtering techniques for periodic
signals extraction. Time domain synchronous average (TSA) and moving average (MA) are the most
commonly used average techniques in engineering. TSA has the advantage at periodic signal detection by
depressing noises and asynchronous signal components. MA is effective to remove noises while keeping
signal periodicity. However, the TSA signal is not periodic as a measurement signal, and signal spectrum
resolution degrades seriously; meanwhile, the MA filters out high-frequency signal components of interests.
Detection of periodic signal among noises while keeping signal periodicity and high-frequency signal
components become a challenge. To address this problem, time-synchronous moving average (TSMA)
method is proposed as an improvement on TSA inspired by MA in this paper. Influences of signal overlap
and properties of TSMA are investigated. Furthermore, a practical average times optimization method is
given for reference. The correctness of theoretical deviations and effectiveness of the proposed method on
periodic signal detection are validated using numerical simulations. At last, the proposed method is validated
by an application on fault detection of the gearbox.

INDEX TERMS Signal processing, periodic signal detection, fault detection, gearbox.

I. INTRODUCTION
Periodic signal is one of the most general signal type includ-
ing ECG(Electrocardiograph)[1], communication signals[2]
and seismic signal[3]. In mechanical systems, spring-mass-
damper system oscillates periodically after excitation. Rotary
machineries like gears and bearings vibrate periodically dur-
ing operation[4]–[6]. Reciprocating machinery like internal
combustion engine[7] vibrates periodically as well.

Periodic signal detection is useful technique in many
areas. Li et al. [8] studied through-wall human movement
detection taking advantage of human periodic motion such
as breathing and limb movement. Masatoshi [9] investi-
gated non-contact heart rate detection method using peri-
odic variations in doppler radar. Hyun Choi[10] proposed a
high-speed periodic signal acquisition technique using inco-
herent sub-sampling and back-end signal reconstruction algo-
rithms. Leeb et al. [11] developed a single-photon technique

The associate editor coordinating the review of this manuscript and
approving it for publication was Prakasam Periasamy.

for the detection of periodic extraterrestrial laser pulses.
Tsai and Perng [12] presented a technique for the inspec-
tion of defects in a two-dimensional periodic image using
a multi-band-pass filter. Xu et al. [13] proposed a feature
named envelop harmonic-to-noise ratio(EHNR) for periodic
impulses detection, an EHNR-based method to locate the
periodic impulses in frequency domain was applicated to
bearing diagnosis. Yao and Ma [14] investigated the weak
periodic signal detection by sine-Wiener-noise-induced reso-
nance in the FitsHugh-Nagumo neuron. Yilmaz andOzer [15]
studied the effect of the delayed feedback loop on the
weak periodic signal detection performance of a stochastic
Hodgkin-Huxley neuron.

Among periodic signal detection techniques, averag-
ing is one of the most powerful filtering techniques.
McFadden and Smith [16] proposed a signal processing tech-
nique for gear local fault detection from average of the vibra-
tion signal. Then, the technique was applied to condition
monitoring of rolling element bearings[17] and planetary
gearboxes[18] as well. Leclère and Hamzaoui [19] analyzed
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fuzzy cyclostationary signals using the moving synchronous
average. Guo et al. [20] proposed an envelope synchronous
average scheme for multi-axis gear fault detection. Eric[21]
investigated the performance of 6 time synchronous aver-
age algorithms. Ahamed et al. [22] used time synchronous
average to detect spur gear tooth root crack under fluctu-
ating speed. Inaki [23] applied dual-level time synchronous
averaging on motor current signature analysis for condi-
tion monitoring of gearbox. Combet and Gelman [24] pro-
posed an automatedmethod for performing time synchronous
averaging without speed sensor. Jong [25] proposed an
autocorrelation-based time synchronous averaging method
for condition monitoring of planetary gearboxes in wind
turbines. Zhu et al. [26] combined synchronous averaging
scanning on STFT(Short Time Fourier Transform) to detect
the periodically occurring high -frequency transient under
complicated conditions. Qin et al. [27] used time domain
averaging approach to denoise the initial transient dictionary
within his research on the transient feature extraction method
by the improved orthogonal matching pursuit and K-SVD
algorithm.

It is not difficult to find that TSA[28] andMA[29] are most
usually used average techniques in engineering.

FIGURE 1. Illustration of TSA algorithm.

TSA (Time-domain Synchronous Average) is a popular
technique that often used to process gear and bearing signals
to detect potential fault of gearboxes. An intuitive implemen-
tation of TSA is shown in Figure 1. After measuring the signal
N cycles, data segments of each cycle are firstly divided into
each individual cycle, then data points in all data segments are
averaged to generate TSA signal. Any periodical signal com-
ponents that synchronous with this period stay unchanged
after averaging, while other signals including asynchronous
signals and noise will be attenuated towards zero. TSA is
good at depressing noises and asynchronous signal compo-
nents. It has been proved effective to detect periodic signal

FIGURE 2. Illustration of MA algorithm.

among noises in practice. But, as shown in Figure 1, TSA
signal is no longer periodic since it averages signal samples
from the beginning to the end. Only one cycle of the periodic
signal will be covered in TSA signal. In addition, resolution
of order spectrum degrades seriously from 1/ N to 1[30].
MA is a usually used technique to reduce high frequency

noises. Instead of dividing data into each cycle and averaging
afterwards, MA generates the output signal by averaging
several adjacent data points. For example, a MA filter with
window length of 3, y[i] = (x[i − 1] + x[i] + x[i + 1])/3.
Figure 2 is an illustration of MA filter. MA is good at remov-
ing random noises, especially high-frequency noises. Though
MA could retain the signal length, details of the signal is lost
since high frequency signal components of interest is filtered
out with noise as well.

In terms of noise, there are different types of noises in
engineering, including but not limited to Gaussian noises and
Impulsive noises. TSA and MA mainly focus on Gaussian
noises, which is also the focus of this paper. Unless otherwise
specified, the noise in this paper refers to gaussian noise.
Techniques to process noises of other kinds can be referred
to Ref[31]–[34].

FIGURE 3. MA and TSA comparison.

Figure 3 is a comparison of MA with TSA in a cycle.
Comparing TSA with ideal signal, TSA depresses signal
noises effectively, and details of the signal is kept as well.
However, as show in Figure 1, TSA signal contains only one
cycle of the signal. TSA signal is no longer as periodic as
measurement signal, moreover, spectrum resolution of the
signal will degrade after processing using TSA algorithm.
ComparingMAwith ideal signal,MA depresses signal noises
effectively as well, and the signal periodicity is retained, but
details of the signal are lost though the overall trends of the
signal are similar to ideal signal. MA is effective to remove
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noises while keeping signal periodicity, but high frequency
signal components of interests are filtered out.

Then, how to detect periodic signal among noises while
keeping signal periodicity then become a challenge to TSA
andMA. To address this problem, TSMA (Time Synchronous
Moving Average) method is proposed in this paper. The
proposedmethod is an improvement on TSA inspired byMA.
In this way, asynchronous signal components and noise in
measurement signal can be effectively depressed like TSA.
At the same time, high spectrum resolution and signal peri-
odicity can be guaranteed.

The remainder of the paper is organized as follows.
Section 2 presents mathematical definition of TSMA. Influ-
ences of signal overlap and properties of TSMA are discussed
in this section as well. Furthermore, a practical parameter
optimization method is given for reference. Section 3 vali-
dates the theoretical deviations and effectiveness of TSMA
using simulation signals. Section 4 verifies effectiveness of
TSMA on periodic signal detection in engineering by apply-
ing it on fault diagnosis of gearbox. Finally, conclusions are
drawn in Section 5.

II. TIME-DOMAIN SYNCHRONOUS MOVING
AVERAGE AND ITS PROPERTIES
A. TIME-DOMAIN SYNCHRONOUS MOVING AVERAGE
Given periodic signal x(t), and x(t) = x(t+T ). Measurement
signal y(t) contains signal x(t) and noise signal w(t). Noise
intensity in measurement signal isD. Without losing general-
ity, assuming N cycles signal are available for analysis. Thus

y(t) = x(t)+ w(t), t ∈ (0,NT ] (1)

TSA signal can be expressed as following

yTSA(t) =
1
N

∑N−1

n=0
y(t + nT )

= x(t)+
1
N

∑N−1

n=0
w(t + nT ), t ∈ (0,T ] (2)

Instead of averaging the signal from the beginning to the
end, TSMA operates average over M neighboring cycles of
the measurement signal, which is similar to that of MA.
As the average window moves from the beginning to the
end, N − M + 1 cycles of averaged signal can be obtained,
rather than only 1 cycle. In this way, the TSMA signal is
still periodic as measurement signal y(t). Though TSMA
signal containsM -1 less cycles than measurement signal y(t),
the TSMA signal is much longer than TSA signal. Thus,
higher spectrum resolution is guaranteed.

Mathematical definition of TSMA can be written as the
following:

yTSMA(t) =
1
M

∑M−1

m=0
y(t + mT ) = x(t)

+
1
M

∑M−1

m=0
w(t + mT ), t ∈ (0, (N −M + 1)T ] (3)

where M is the average times of TSMA. M is an integer
between 1 and N .

From function (3) we can see, when M = N ,
TSMA is identical with TSA; and when M = 1, output of
TSMA is identical to measurement signal, the measurement
signal is directly outputted as it is. Another noticeable result
is that noise reduction of TSMA is less effective than that of
TSA since M ≤ N .
There are two approaches to apply TSMA algorithm,

namely iterative approach and convolutional approach. Iter-
ative approach is implemented according to the definition of
TSMA, the output signal is evaluated data point after data
point from the beginning to the end. Convolutional approach
regards TSMA as a filter, a TSMA filter is firstly constructed,
it is then used to filter out noises by convoluting measurement
signal and the filter.

Assuming sampled measurement signal is y[k], N cycles
of signal are available for analysis, and L data points are
included in each cycle.

Iterative approach is carried out by the following steps:
(1) create a zero vector z that has (N −M + 1)L elements.
(2) set loop variable i = 1.
(3) evaluate z[i] by averaging y[i], y[i + L], . . . ,

y[i+ (M − 1)L].
(4) i++.
(5) repeat (3) and (4) until i = (N −M + 1)L.
(6) outputs z.
Convolutional approach is carried out by the following

steps:
(1) create a zero vector that has ML elements.
(2) set element value to 1/M every L elements to create a

filter f.
(3) convolute measurement signal with the created filter to

generate output signal z.
(4) outputs z.
Figure 4 is an illustration of TSMAwhenM = 3. An inter-

esting phenomenon of TSMA is signal overlap as the average
window moves. In other words, a cycle of y(t) is contained in
M continuous adjacent cycles of TSMA signal. For example,
3rd cycle ofmeasurement signal y(t) is included in the average
window when calculating first 3 cycles of TSMA signal.
Thus, noise inM continuous adjacent cycles of TSMA signal
is relevant.

Moving average strategy in TSMA promises signal period-
icity and better spectrum resolution, which overcomes short-
age of TSA. However, in TSMA signal, noise in adjacent
cycles are relevant, and noise reduction ratio and spectrum
resolution is related to average time M . Before applying
TSMA in practice, several questions must be addressed
first:

(1) What is the influence of signal overlap?
(2) How does spectrum resolution and gain of noise

changes as M changes from 1 to N?
(3) How to determine the best M in application?
In Section 2.2, influence of signal overlap will be dis-

cussed. In Section 2.3 properties including spectrum resolu-
tion and gain of noise will be investigated. Optimization of
averaging times M will be given in Section 2.4.
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FIGURE 4. Illustration of TSMA algorithm.

B. INFLUENCE OF SIGNAL OVERLAP
1) INFLUENCE ON AUTOCORRELATION FUNCTION
For a function x(t) defined on real number set, its autocorre-
lation function Rx(τ ) is defined as

Rx(τ ) = lim
T→∞

1
T

∫ T

0
x(t + τ )x(t)dt

= lim
T→∞

1
T

∫ T

0
x(t)x(t − τ )dt (4)

In practice, signal length cannot be infinite. Autocorrela-
tion function could be estimated using finite length signal as
the following

R̂x(τ ) =
1

T − τ

∫ T−τ

0
x(t + τ )x(t)dt

= lim
T→∞

1
T − τ

∫ T

τ

x(t)x(t − τ )dt (5)

where R̂x(τ ) is the estimator of Rx(τ ).
Autocorrelation function of TSA signal is

R̂TSA(τ ) =
1

T − τ

∫ T−τ

0
yTSA(t+τ )yTSA(t)dt= R̂x(τ )+

D
N
δ(τ )

(6)

Autocorrelation function of TSMA is

R̂TSMA(τ ) =
1

(N −M + 1)T − τ

∫ (N−M+1)T−τ

0
yTSMA(t + τ )yTSMA(t)dt

= R̂x(τ )+
D
M2

K∑
k=−K(

M−
(N+1) |k|
N−M+1

+
k2

N−M+1

)
δ (τ + kT ),

K = min(N −M ,M − 1) (7)

Detailed deviation of function (7) is presented in
Appendix A. In function (7), when M = N , then K = 0,
thus

R̂TSMA(τ )

= R̂x(τ )+
D
M2

0∑
k=−0

(
M −

(N + 1) |k|
N −M + 1

+
k2

N −M + 1

)
δ (τ + kT )

= R̂x(τ )+
D
M2Mδ (τ )

= R̂x(τ )+
D
N
δ (τ ) (8)

Function (8) proves that, whenM = N , TSMA is identical
with TSA. This result is consistent with that in Section 2.1.

Function (7) indicates that, comparing with that of TSA
signal, autocorrelation function of TSMA signal has more
impulses caused by noise relevance. Amplitude of the central
impulse is

Ak =
D
M2

(
M −

(N + 1) |k|
N −M + 1

+
k2

N −M + 1

)
,

K = min(N −M ,M − 1) (9)

where Ak is impulse amplitude. When k = 0, the impulse is
the center impulse, and its amplitude is D/M . On each side of
center impulse, there are K newly appeared impulses, where
K = min(N − M ,M − 1). These impulses spreads around
central impulse with a space equals to signal period.

Summing up, influence of signal overlap on autocorrela-
tion function includes:

(1) amplitude of central impulse caused by noise increase
from D/N in TSA to D/M in TSMA.
(2) side band impulses appear around central impulse,

impulses number on one side equals to min(N -M , M -1).
(3) amplitudes of newly appeared noise impulses obey a

quadratic polynomial.

2) INFLUENCE ON POWER SPECTRUM
Autocorrelation function and power spectrum are Fourier
Transform pairs, which can be written as:

G(f ) =
∫
+∞

−∞

R(τ )e−j2π f τdτ (10)
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Power spectrum of TSA signal is

ĜTSA(f ) =
∫
+∞

−∞

R̂TSA(τ )e−j2π f τdτ

=

∫
+∞

−∞

(
R̂x(τ )+

D
N
δ(τ )

)
e−j2π f τdτ

= Ĝx(f )+
D
N

(11)

Power spectrum of TSMA signal is

ĜTSMA(f )

=

∫
+∞

−∞

R̂TSMA(τ )e−j2π f τdτ

=

∫
+∞

−∞

(
R̂x(τ )+

D
M2

K∑
k=−K

(
M −

(N + 1) |k|
N −M + 1

+
k2

N −M + 1

)
δ (τ + kT )

)
e−j2π f τdτ

= Ĝx(f )+
D
M2

K∑
k=−K(

M −
(N + 1) |k|
N −M + 1

+
k2

N −M + 1

)
ej2π fkT

= Ĝx(f )+
D
M
+

2D
M2

K∑
k=1(

M −
(N+1)k
N −M+1

+
k2

N −M+1

)
cos(2π fkT ) (12)

Comparing power spectrum of TSA signal with TSMA
signal, the influence of overlap on signal power spectrum
includes:

(1) overall noise level increase from D/N in TSA to D/M
in TSMA, since average times are decreased.

(2) harmonics and its multiples appears in power spectrum
of TSMA signal. basic period equals to signal period. maxi-
mum order of harmonics is K = min(N −M ,M − 1).

(3) amplitudes of harmonics obey a quadratic polynomial.

C. PROPERTIES OF TSMA
TSMA improves spectrum resolution of signal while keeps
signal periodicity. It is noticeable that M is a parameter
selected between 1 and N . How does M influence spectrum
resolution and how does M influence the noise gain should
be addressed for the optimal application of TSMA.

1) SPECTRUM RESOLUTION
For signal sampled with a sampling frequency of fs, if the data
points during signal collection isNs, then spectrum resolution
of the signal is

1f =
fs
Ns

(13)

For a periodic signal, assuming N cycles are collected
with a sampling frequency of fs, and data points collected

during each period is L. Then spectrum resolution of the
measurement signal, TSA signal and TSMA signal are fs/NL,
fs/L and fs/(N − M + 1)L respectively. Generally, Figure 5
illustrates how spectrum resolution of TSMA signal changes
as M changes from 1 to N .

FIGURE 5. TSMA signal spectrum resolution as M changes.

From Figure 5 we can see, for a given measurement sig-
nal y(t), spectrum resolution degrades as the average time
increases. Moreover, when M /N is less than 0.8, spectrum
resolution degrades slowly as the average time increases.
Once M draws near to N , spectrum resolution degrades
rapidly and converges to 1 eventually when M = N . Addi-
tionally, for a given average ratio M /N , spectrum resolution
becomes better as N increases.
Summing up, spectrum resolution of TSMA is related to

both signal cycles N and average time M . N influences the
spectrum resolution on overall level, overall level of spectrum
resolution will be better if signal cycles N gets larger. For a
given signal, spectrum resolution degrades as M increases.

2) GAIN OF NOISE
As discussed in Section 2.2.2, power spectrum of TSMA
signal is described by function (12). Background noise exist
in TSMA signal power spectrum as cosine function and its
harmonics, while exist as a constant number in TSA power
spectrum according to function (11).

As a result, gain of noise in after applying TSMA is
not intuitive as that of TSA. It is apparently unreasonable
to ignore the cosine functions since they really exist. Gain
of noise is defined as noise strength ratio after and before
processing. According to the definition, noise within the
signal will be better depressed if the gain of noise is smaller.
To evaluate gain of noise after applying TSMA, the spec-
trum supremum of noise in TSMA signal power spectrum is
regarded as the overall noise level. Thus, gain of noise could
be guaranteed lower than the theoretical values.
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In this way, the following inequation can be derived as the
following:

ĜTSMA(f )

= Ĝx(f )+
D
M
+

2D
M2

K∑
k=1(

M −
(N + 1)k
N −M + 1

+
k2

N −M + 1

)
cos(2π fkT )

≤ Ĝx(f )+
D
M
+

2D
M2

K∑
k=1(

M −
(N + 1)k
N −M + 1

+
k2

N −M + 1

)
= Ĝx(f )+

D
M
+

2D
M2

(
MK −

(N + 1)
N −M + 1

K (K + 1)
2

+
K (K + 1)(2K + 1)
6(N −M + 1)

)
(14)

since for any 1 ≤ k ≤ K , cos(2π fkT ) = 1 when f = n/T ,
n = (1, 2, 3, . . .).

It should be noticed that K = min(N − M , M -1). when
K = M − 1,

ĜTSMA(f )

≤ Ĝx(f )+
D
M
+

2D
M2

×

(
MK −

(N+1)
N −M+1

K (K+1)
2

+
K (K+1)(2K+1)
6(N −M+1)

)
= Ĝx(f )+D

−4M2
+3MN+3M+1

3M (N −M+1)
(15)

and when K = N −M ,

ĜTSMA(f )

≤ Ĝx(f )+
D
M
+

2D
M2

×

(
MK −

(N+1)
N −M+1

K (K+1)
2

+
K (K+1)(2K+1)
6(N −M+1)

)
= Ĝx(f )+D

−4M2
− N 2

+5MN − 2N+5M
3M2 (16)

Thus, gain of noise G can be formulated as

G =


−4M2

+3MN+3M+1
3M (N−M+1)

M ≤
N+1
2

−4M2
−N 2
+5MN−2N+5M
3M2 M >

N+1
2

(17)

It can be proved from function (15) that gain of noise
decreases as average time M increases, which means noise
will be depressed stronger as M increases. when M = N ,
G = 1/N , gain of noise after applying TSMA equals to that
of TSA.

Figure 6 shows how gain of noise changes asM /N changes.
It must be emphasized that noise gain discussed in this

subsection is NOT the mean noise gain over the frequency
axis in power spectrum, but the supremum of back ground

FIGURE 6. TSMA noise gain as M changes.

noise power spectrum distribution. When applying TSMA,
the noise gain will be less than theoretical values evaluated
using function (15).

D. AVERAGE TIME M OPTIMIZATION
From Section 2.3 we can see, it needs to balance between
spectrum resolution and gain of noise when applying TSMA.
If a small average time M is selected, better spectrum res-
olution is guaranteed but noise is not effectively depressed.
On the contrast, noise is depressed remarkably but spectrum
resolution degrades when large average time M is selected.

Without an optimization criterion, the chosen ofM is sub-
jective to the one who is using TSMA. One may expect better
gain of noise while others are interested in better spectrum
resolution. From the perspective of the authors, M choosing
between 0.5N and 0.9N is more reasonable than others.
Others may not agree with this idea. Thus, a method for M
optimization is needed to guide the application of TSMA.

Practically, an optimization object function for M opti-
mization is proposed as the following

O[M ] = 1f + G (18)

Shown in figure 7 is how O[M ] changes as M /N changes.
Taking N = 10 for example, figure 7 suggests that the best
M /N is 0.8, thenM = 8 can be used to balance between noise
gain and spectrum resolution when using TSMA.

It should be noticed that the average time optimiza-
tion is just one of the optimization methods to balance
between spectrum resolution and noise gain. Users are
encouraged to develop other methods suitable for specific
applications.

III. SIMULATION VALIDATION
To validate the theoretical deviations above, simulation sig-
nals are generated and analyzed, the proposed TSMAmethod
is compared with TSA.
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FIGURE 7. O[M] as M changes.

A. THEORETICAL DEVIATIONS VALIDATION
USING GAUSSIAN NOISE
To investigate theoretical deviations of TSMA in Section 2,
no deterministic signal is included in first simulation. Sam-
pling rate of simulation signal is 1024, detection period T is
0.5 seconds. Signal length is 5s, which covers 10 detection
periods. Power of noise is set as 100W. Average times of
TSMA is set as 8 according to the optimization criterion.

FIGURE 8. Waveform of signal (a) simulation signal (b) TSA signal
(c) TSMA signal.

Waveform of simulation signal, TSA signal and TSMA sig-
nal are shown in figure 8. Comparing with simulation signal,
both TSA and TSMA can depress noise significantly. Noise
strength is depressed to the same level in TSA and TSMA
signal. However, TSMA signal is obviously longer than TSA
signal, which promises a better spectrum resolution.

Shown in Figure 9 is autocorrelation of simulation signal,
TSA signal and TSMA signal. Comparing with simulation
signal, central impulse amplitude in autocorrelation of TSA

FIGURE 9. Autocorrelation of signal (a) simulation signal (b) TSA signal
(c) TSMA signal.

and TSMA are depressed effectively from 100 to around 10.
This phenomenon indicates that both TSA and TSMA are
good at depressing overall noise level using average tech-
niques. In addition, central impulse amplitude in autocorre-
lation function of TSMA signal is a little larger than that
of TSA because average times in TSMA is less than that in
TSA. It is also nonnegligible that fading impulses emerge
around central impulse in autocorrelation of TSMA, which
is caused by signal overlap during moving average. Number
of impulses on one side, either left or right, is 2, which equals
to K = min(N −M ,M − 1).
Figure 10 is expected and observed amplitudes of impulses

in TSMA signal autocorrelation function. Expected ampli-
tudes are evaluated according to function (7) while observed
amplitudes are measured from Figure 9(c). Figure 10 indi-
cates that the observed amplitudes are consistent with
expected values.

FIGURE 10. Impulses amplitudes in TSMA autocorrelation.

Autocorrelation function analysis indicates that related
theoretical deviations in Section 2.2.1 is correct.

Figure 11 is power spectrums of simulation signal, TSA
signal and TSMA signal respectively. Theoretical noise gain
of TSMA is illustrated in the figure as well.
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FIGURE 11. Power spectrums of simulation signal.

In Section 2.3.2, supremum of power spectrum is regarded
as the overall noise gain since PSD of noise appears in PSD of
TSMA signal as cosine wave and its harmonics. As shown in
the figure, theoretical noise gain of TSMA is the supremum
of TSMA PSD, which indicates that theoretical deviation in
Section 2.3.2 is correct. Comparing noise gain of TSA with
that of TSMA, both TSA and TSMA can depress noise level
effectively. However, noise gain of TSA is smaller than that
of TSMA since averaging times is larger.

Summing up, simulation analysis using pure gaussian
noise signal proves that theoretical deviations in Section 2 is
correct and reliable.

B. EFFECTIVENESS VALIDATION AND COMPARISON
In this section, simulation signal is generated and used to
validate effectiveness of TSMA on periodic signal detection.
Sampling rate of simulation signal is 1024, detection period
T is 1 seconds, signal length is 10s, which covers 10 detection
periods. SNR of simulation signal is -6.15 dB.

Figure 12 is waveform of simulation signal, which is peri-
odic transient impulses overwhelmed by heavy noise. Shown
in Figure 12(a) is the ideal signal waveform. It is periodic
transient signal. Shown in Figure 12(b) is the measurement
signal that is polluted by the heavy noise. No evident period-
icity can be observed from themeasurement signal waveform,
neither pattern or shape of transient impulses.

Then, the simulation signal is processed using TSA,
MA and TSMA respectively. Shown in Figure 13 is TSA
signal, TSMA signal and MA signal.

Figure 13 highly suggests that TSA, TSMA andMA are all
effective to detect periodic signal among noise. Comparing
TSA with TSMA, Noise in TSMA is a little stronger than
that in TSA signal. This is reasonable since TSA depresses
the noise more efficiently. However, TSA signal covers only
1 cycle of the signal while TSMA contains 4 cycles. TSA
is capable of detecting signal waveform, but the period of
the signal is lost. Comparing TSMA with MA, both TSMA

FIGURE 12. Waveform of simulation signal (a) ideal signal x(t)
(b) measurement signal y(t).

FIGURE 13. Processing result (a) TSA (b) TSMA (c) MA.

and MA maintains signal periodicity, which is better than
TSA. Signal waveform indicates that MA depresses the noise
more effective than TSMA. However, waveform details in
Figure 13(c) differs from the ideal. Though signal periodicity
is maintained, but signal details are lost in MA.

For a better comparison on signal waveform details. Ideal
signal, TSMA signal, TSA signal and MA signal in a cycle
are presented in Figure 14. Figure 14(a) is the waveform of
ideal signal. Waveform of TSMA, TSA and MA are shown
in Figure 14 (b), (c) and (d) respectively. Comparing 14(b)
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FIGURE 14. Signal waveform in a cycle (a) ideal (b) TSMA (c) TSA (d) MA.

with 14(c), TSMA signal waveform is similar to TSA signal,
the difference is strength of the noise since TSA depress
noise more effective than TSMA. Comparing 14(b) with
14(d), MA signal waveforms contains less noise. However,
MA waveforms differs a lot from the ideal signal, especially
high frequency details.

Spectrum of ideal signal, TSMA, TSA and MA are shown
in Figure 15.

Comparing Figure 15(a) with 15(b), spectrum of TSMA is
close to that of ideal signal, frequency peaks are almost kept.
Spectrum of TSMA differs from that of ideal signal from two
aspects: (1) spectrum resolution of TSMA is not as good as
the ideal signal, but it’s still able to distinguish frequency
components of the signal. (2) background noise exists in
the spectrum, but the noise does not interfere distinguishing
frequency components.

Comparing Figure 15(a) with 15(c), spectrum structure of
TSA is same with ideal signal, but only several frequen-
cies could be observed since spectrum resolution degrades
seriously. Comparing Figure 15(b) and 15(c), the dominant
difference is also spectrum resolution. As a result, TSMA
can distinguish all frequency components within ideal signal
while TSA cannot.

Comparing Figure 15(a) with 15(d), spectrum resolution
of MA is almost same as that of ideal signal since frequency
components below 10 Hz can be easily observed. However,
frequency components between 45 and 55 Hz are filtered out
since MA works as a low-pass filter. Therefore, details of
signal waveform are lost after processing usingMA. Compar-
ing Figure 15(b) with 15(d), the dominant difference is also
frequency components between 45 and 55 Hz. TSMA keeps
high frequency component, which helps to guarantee signal
waveform details.

Additionally, SNR of TSA signal is 3.89 dB, SNR of TSMA
signal is 2.31 dB, SNR of MA signal is 3.64dB. From SNR
value we can see that TSA, TSMA andMA all improves SNR

FIGURE 15. Spectrum comparison (a) ideal (b) TSMA (c) TSA (d) MA.

effectively. Though SNR of TSMA is a little worse than that of
TSA, spectrum resolution of TSMA is much better. Spectrum
resolution of TSA is 1 while that of TSMA is 0.25. Though
SNR of TSMA is a little worse than that of MA, TSMA can
maintain signal waveform details while MA cannot.

Simulation of periodic transient signal detection indicates
that TSMA can effectively detect periodic signal that over-
whelmed by noise. Moreover, spectrum resolution of TSMA
improves dramatically comparing with TSA, additionally,
high frequency components are kept guaranteeing signal
waveform details comparing with MA.

IV. APPLICATION OF TSMA ON FAULT
DETECTION OF GEARBOX
In order to demonstrate ability of TSMA algorithm on peri-
odic signal detection in practice, an experimental case study
was conducted to collect gearbox vibration signals for fault
detection purposes.

When gearbox is under health condition, vibrations of
gearbox mainly includes regular signal components such as
shaft rotating frequency, gear meshing frequency and their
harmonics. Once a gear tooth is damaged during operation,
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FIGURE 16. Assembly drawing of the gearbox.

damaged gear will change the meshing stiffness when it’s
engaged in meshing. The vibration responses of gearbox will
change accordingly when the damaged gear toothmeshes out.
Gear fault induced vibrations appears in the overall vibration
responses of gearbox as sequent impulses. Since the damaged
gear tooth engages in meshing once per revolution, detection
of periodic impulses signal is a practical method for gearbox
fault detection.

In this section, TSMA is used as a signal processing
technique to diagnose gear fault in a gearbox. The gearbox
is a 2-stage fixed-shaft gearbox. Assembly drawing of the
gearbox is shown in Figure 16.

Parameters of the gearbox is listed in Table 1.

TABLE 1. Gearbox parameters.

During each test, motor speed is set as 1500 rpm, torque
of load motor is 80% of maximum load. Sampling rate is
12707Hz.

Figure 17 is picture of faulted gear. The fault is a pitting
emerged during operation. After replaced by a normal gear,
this faulted gear is then used for pitting fault detection and
diagnosis studies.

Figure 18 shows vibration signals of gearbox under health
and fault condition respectively. Due to regular vibrations
caused by time varying meshing stiffness and noise, fault
related impulses could hardly be observed in time domain
waveforms directly.

The vibration signals of gearbox are then processed using
TSA, TSMA and MA. Signal processing results are illus-
trated in Figure 19 and Figure 20. For better comparison,
signal envelops are outlined as well. TSA, TSMA and MA
envelop spectrum are shown in Figure 21.

FIGURE 17. Gear with pitting fault.

FIGURE 18. Vibration signal (a) health condition (b) fault condition.

Firstly, Comparison of TSMA signal between under health
condition and fault condition is made to validate effective-
ness of TSMA on gearbox fault detection. Figure 19(c) is
TSMA signal under health condition, while Figure 20(c)
is TSMA signal under fault condition. Under health condi-
tion, TSMA algorithm depress signal noise apparently, signal
amplitude is decreased from 1 to around 0.2. No apparent
impulsive signal components can be observed. When the gear
tooth is damaged by pitting, impulsive signal emerges in
TSMA signal as shown in Figure 20(c). Impulses appear once
in a gear revolution, which is consistent with gearbox fault
symptom. Comparison of TSMA signal between under health
condition and fault condition indicates that TSMA is effective
to detect gearbox fault.

Envelop spectrum of TSMA signal under health condition
and fault condition reveals effectiveness of TSMA as well.
Comparing solid lines in Figure 21(a) with 21(b), amplitude
of envelop spectrum at 1st, 2nd and 3rd order increase signifi-
cantly from around 0.01 to 0.02 and above.

Secondly, Comparison is made to demonstrate advantage
and disadvantage of TSMA relative to TSA and MA.

In terms of noise depression, comparison is made under
health and fault condition respectively. Comparing Fig-
ure 19(a) with 19(b), TSA and TSMA depress the noise
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FIGURE 19. Processing results under health condition (a) TSA (b) 1st cycle
of TSMA (c) TSMA (d) MA.

FIGURE 20. Processing results under fault condition (a)TSA (b) 1st cycle
of TSMA (c)TSMA (d) MA.

to almost the same level, but signal amplitude of TSMA is
a little higher than TSA. The same situation can be found
when comparing Figure 20(a) with 20(b). This result is

consistent with theoretical deviations and simulation valida-
tion on signal detection sincemoving average times of TSMA
is less than that of TSA. Comparing Figure 19(c) and 19(d),
MA depresses the noise more effectively, especially high
frequency noise. This can also be seen by comparing
Figure 20(c) with 20(d). However, fault induced impulses
could be easily observed in TSA and TSMA signal while not
in MA signal. Fault induced impulses are depressed in MA
since high frequency signal components are filtered out.

In terms of effectiveness on fault detection of gearbox,
comparison ismade between health condition and fault condi-
tion. Comparing Figure 19 (a) with Figure 20(a), Figure 19(b)
with Figure 20(b), both TSA and TSMA is effective to
detect the fault induced impulsive signal. However, TSMA
signal is much longer than TSA signal (in Figure19(c) and
Figure 20(c)). The fault induced impulses appear periodically
in TSMA but only once in TSA. Period of the impulses helps
to ensure the impulsive signal detected is fault related. Com-
paring Figure 19(d) with Figure 20(d), fault induced impulses
could be hardly observed since high frequency components
are filtered out by MA.

Signal envelop spectrum under health and fault condition
are shown in Figure 21.

FIGURE 21. Envelop spectrum of TSA, TSMA and MA (a) health
condition (b) fault condition.

First, comparison is made focusing on spectrum resolution.
A comparison between Figure 21(a) with 21(b) indicates that
TSMA keeps more frequency details than TSA since better
spectrum resolution is guaranteed. In Figure 21(b), 2nd order
of TSA envelop spectrum is not noticeable but it can be
easily seen in TSMA envelop spectrum. Spectrum resolution
of MA is the best since MA causes no spectrum resolution
degradation.

Then, comparison is made focusing on effectiveness on
fault detection. Differences between Figure 21(a) and 21(b)
suggests that TSA, TSMA and MA are all effective to
detect gearbox fault since pattern of spectrum changes when
fault occurs. However, MA and TSMA are better than TSA
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since better spectrum resolution provides more spectrum
details, spectrum differences caused by gear damage is more
apparent.

It may be hard to tell MA or TSMA is better from the spec-
trum, but fault induced impulses could be easier recognized
from waveform of TSMA.

Experimental results indicate that:
(1) TSMA is as effective as TSA andMA on fault detection

of gearbox. When gear fault happens, fault induced impulses
could be effectively detected.

(2) Fault induced impulses appear periodically in TSMA.
Period of the impulses helps to ensure the impulsive signal
detected is fault related.

(3) TSA has better gain of noise, but TSMA keeps more
detail in frequency domain since better spectrum resolution
is guaranteed.

(4)MAhas better gain of noise aswell, spectrum resolution
is also as good as TSMA, but TSMA keeps signal high fre-
quency components, which helps recognizing fault induced
impulses from signal waveform.

V. CONCLUSION
TSA and MA are most often used averaging techniques in
periodic signal detection. TSA could depress noise and keep
details of the periodic signal, but it covers only 1 cycle of the
signal. Accordingly, spectrum resolution degrades seriously.
MA keeps the signal length, but losing details of the signal.
TSMA is proposed to combine the advantage of TSA and
MA.After givenmathematical definition of TSMA, influence
of signal overlap and properties of TSMA are discussed the-
oretically, as well as a practical method to determine the best
average times to balance noise gain and spectrum resolution.
The correctness of theoretical deviations is validated using
numerical simulation. Effectiveness of TSMA on periodic
signal detection is demonstrated using both simulation and
experiment. Results of simulation and experiment indicate
that TSMA could detect periodic signal successfully while
guaranteeing spectrum resolution.

APPENDIX DETAILED DEVIATION OF FUNCTION (7)
Autocorrelation function of TSMA signal is

R̂TSMA(τ ) =
1

(N −M + 1)T − τ

×

∫ (N−M+1)T−τ

0
yTSMA(t + τ )yTSMA(t)dt

=
1

(N −M + 1)T − τ

∫ (N−M )T−τ

0[
x(t + τ )+

1
M

M−1∑
n=0

w(t + τ + nT )

]

×

x(t)+ 1
M

M−1∑
j=0

w(t + jT )

 dt

= R̂x(τ )+
1
M2

M−1∑
j=0

M−1∑
n=0

1
(N −M + 1)T − τ

×

∫ (N−M+1)T−τ

0
w(t + jT )w(t + τ + nT )dt

(A.1)

Taking advantage of Heaviside step function, function (A.1)
can be written as

R̂TSMA(τ )

= R̂x(τ )+
D
M2

M−1∑
j=0

M−1∑
n=0

H [(N −M + 1)− |n− j|]

×
(N −M + 1)− |n− j|

(N −M + 1)
δ (τ + (n− j)T ) (A.2)

where H [n] is Heaviside step function. It is defined as

H [n] =

{
0, n < 0
1, n ≥ 0

(A.3)

LetQ = N −M+1, k = n− j. Function (A.2) can be written
as

R̂TSMA(τ ) = R̂x(τ )+
D
M2

M−1∑
k=−(M−1)

H [Q− |k|]

×
(Q− |k|) (M − |k|)

Q
δ (τ + kT ) (A.4)

when Q ≥ M − 1, namely when M ≤ (N + 2)/2, H [Q −
|k|] == 1 since |k| ≤ M − 1 ≤ Q, thus

R̂TSMA(τ )

= R̂x(τ )+
D
M2

M−1∑
k=−(M−1)

H [Q− |k|]

×
(Q− |k|) (M − |k|)

Q
δ (τ + kT )

= R̂x(τ )+
D
M2

M−1∑
k=−(M−1)

(Q− |k|) (M − |k|)
Q

δ (τ + kT )

= R̂x(τ )+
D
M2

M−1∑
k=−(M−1)

QM−(Q+M ) |k|+k2

Q
δ (τ+kT )

= R̂x(τ )+
D
M2

M−1∑
k=−(M−1)

(
M−

(Q+M ) |k|
Q

+
k2

Q

)
δ (τ+kT )

(A.5)

On the contrast, when Q ≤ M − 1, namely when
M ≤ (N + 2)/2, H [Q− |k|] = 0 if |k| ≥ Q, thus

R̂TSMA(τ )

= R̂x(τ )+
D
M2

M−1∑
k=−(M−1)

H [Q− |k|]

×
(Q− |k|) (M − |k|)

Q
δ (τ + kT )
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= R̂x(τ )+
D
M2

Q∑
k=−Q

(Q− |k|) (M − |k|)
Q

δ (τ + kT )

= R̂x(τ )+
D
M2

Q−1∑
k=−(Q−1)

QM − (Q+M ) |k| + k2

Q
δ (τ + kT )

= R̂x(τ )+
D
M2

Q−1∑
k=−(Q−1)

(
M−

(Q+M ) |k|
Q

+
k2

Q

)
δ (τ+kT )

(A.6)

Summing up,

R̂TSMA(τ ) = R̂x(τ )+
D
M2

K∑
k=−K(

M −
(N + 1) |k|
N −M + 1

+
k2

N −M + 1

)
δ (τ + kT ),

K = min(N −M ,M − 1) (A.7)
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