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ABSTRACT This paper presents two novel neural network models for radio-frequency (RF) power
amplifiers (PAs): vector decomposed time-delay neural network (VDTDNN) model and augmented vector
decomposed time-delay neural network (AVDTDNN) model. In contrast to conventional neural network-
based models, VDTDNN and AVDTDNN comply with the physical characteristics of RF PAs by employing
carefully designed network structures. In particular, the nonlinear operations are conducted only on the
magnitude of the input signals, while the phase information is recovered with the linear weighting. Linear
terms with shortcut connection, as well as high-order terms, can be used to further boost the modeling
performance. The complexity analysis shows that the proposed models have significantly lower complexity
than the existing neural network models. A wideband GaN RF PA excited by the 40- and 60-MHz OFDM
signals were employed to evaluate the performance. The extensive experimental results reveal that the
proposed VDTDNN and AVDTDNN models can achieve better linearization performance with lower
computational complexity compared with the existing neural network-based models.

INDEX TERMS Nonlinear RF PA, digital predistortion, artificial neural network, vector decomposition,
behavioral modeling.

I. INTRODUCTION
Driven by the consumer demand and wireless communica-
tion technology evolution, the transmitted signals in modern
communication systems have the tendencies towards higher
peak-to-average power ratios (PAPR) and wider band-
width [1], [2], which deteriorates the bit error rate (BER)
and intensifys the adjacent channel interference effects,
due to the inherent nonlinear characteristics of radio fre-
quency (RF) power amplifier (PA). In order to resolve the
conflict between linearity and efficiency of RF PA, many
linearization approaches including feed-forward, analog pre-
distortion and digital predistortion (DPD)were developed [3],
wherein DPD is widely considered as the most promising
technology due to its high flexibility and relatively low power
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consumption. The core idea of DPD is to extract an inverse
behavioral model in digital domain for the nonlinear RF PA,
then cascade the predistorter in the forward baseband. Conse-
quently, the cascade of the nonlinear inversemodel andRFPA
will be a linear system [4]. By properly selecting the models
for digital predistorter in the forward path, the nonlinearity of
RF PA can be effectively compensated [5]–[7].

Many DPD models have been developed to address the
nonlinearity of RF PA [3], [8]–[10], where Volterra-based
models are the most widely used models. However, the draw-
back of the Volterra-based model is the high correlation
between different polynomial basis functions, which limits
the performance improvement evenwhen the number of poly-
nomial terms increase dramatically [11]. In addition, for the
sake of meeting industry requirements, many advanced RF
PA architectures, such as out-phasing PA, distributed PA and
multistage Doherty PA, have been proposed, and some of
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their behavioral characteristics may be very different with
the traditional characteristics [12], so more flexible models
should be developed to satisfy the rapidly developing indus-
trial demands.

Due to its excellent capability of nonlinear fitting [13],
neural network (NN) has been considered as a promising
method for DPD and many DPD models based on NN
have been developed so far. Two complex-valued multilayer
perceptron (MLP) was employed to model the AM-AM and
AM-PM characteristics separately in [14], two drawbacks of
this method are as follows: (i) the nonlinear mapping of RF
PAwas divided into two independent networks, and it is diffi-
cult for them to converge to the optimal states simultaneously.
(ii) as the complex-valued coefficients should be updatedwith
complex gradient operations, the computational complexity
is too high [15]. In order to avoid the complex gradient oper-
ations, a real-valued time-delay neural network (RVTDNN)
model was reported in [16], where both input and output were
split into in-phase and quadrature (IQ) parts to implement the
nonlinear model. After that, with the same input and output
strategy, many neural network models have been developed
to implement DPD [17]–[20]. A composite neural network
DPD model for multi-input multi-output (MIMO) transmit-
ter was developed in [21], where the crosstalk effects, PA
nonlinearity and IQ imbalance were compensated simultane-
ously. Recently, the performance of deep neural network with
different activation functions was investigated in [11]. Not
only PA’s nonlinearity and IQ imbalance, but also frequency,
temperature and voltage variations were considered in DPD,
the neural network DPD was implemented for mobile radio
communications in [22], where the experimental results
show that the performance can meet the telecommunication
standards.

Although different neural network topologies have been
developed to implement DPD, almost all of the existing neu-
ral network DPD models split the input and output signals
into I andQ parts tomodel the nonlinear behavioral character-
istics of RF PAs, which can violate the ‘‘first-zone constraint’’
[23], [24] and thus leads to limited performance. Instead,
in this work, we propose two new neural network models:
vector decomposed time-delay neural network (VDTDNN)
model and augmented vector decomposed time-delay neural
network (AVDTDNN) model and they conform more with
the nonlinear physical mechanisms of RF PAs, where only
the envelops of the input signal are conducted nonlinear
operations while the phase information is recovered with
linear weighting operations. Both theoretical analysis and
experimental results reveal that the performance and compu-
tational complexity of the proposed models are superior to
the existing neural network DPD models.

The rest of the paper is organized as follows. Section II
describes the proposed VDTDNN model. The Proposed
AVDTDNN is introduced in Section III. A computational
complexity comparison is analyzed in Section IV. The exper-
imental validation and a brief conclusion are presented in
Section V and Section VI, respectively.

II. VECTOR DECOMPOSED TIME-DELAY
NEURAL NETWORK
In view of physical mechanisms of nonlinear operations,
the complex signals (I+jQ) only exist in baseband and
only real valued signals would be sent into RF PA after
up-conversion [25], it means that the nonlinear operations
are operated on envelope signals (including both I and Q
components). Accordingly, the designed RF PAmodel should
conduct nonlinear operations on envelope signals rather than
dividing signals into real and imaginary parts independently
to conduct nonlinear operations. Besides, two other con-
straints should be satisfied: (i) the designed models should
meet the ‘‘first-zone constraint’’, where odd-parity and uni-
tary phase constraints must be satisfied [23], [24]. (ii) the
models can handle complex-valued signals avoiding complex
gradient operations.

A. DESIGN VECTOR DECOMPOSED SUB-NETWORK
Generally, in RF PAs, nonlinearities are mainly induced by
AM-AM and AM-PM distortion. To build a model for the
RF PA, the math expression can be expressed as (1), where
nonlinear operations are conducted by using magnitude and
then the phase information is recovered with linear weighting
of ejθg :

ỹ(n) =
G∑
g=1

Fg [·] =
G∑
g=1

ãg · Ag · ejθg (1)

where ỹ(n) is the complex based output signal at instant n.
Fg [·] = ãg · Ag · ejθg is the gth basis function, where ãg =
agI + jagQ is the complex coefficient, agI and agQ are the
real and imaginary parts of the coefficient. Ag represents the
nonlinear operation output of the gth basis function for input
sequence (x̃(n),x̃(n − 1), · · · ,x̃(n − M )). M is the memory
depth and G is the number of basis function. ejθg includes the
recovered phase information for the gth basis function.

If we only consider one of the basis functions Fg [·] in (1),
it yields:

Fg [·] = ãg · Ag · ejθg

= (agI + jagQ) · Ag · (cosθg + jsinθg)

= agIAgcosθg − agQAgsinθg
+ j(agIAgsinθg + agQAgcosθg) (2)

where Fg [·] = FgI [·]+ jFgQ [·], FgI [·] and FgQ [·] represent
the real and imaginary parts of Fg [·]:

FgI [·] = agIAg cos θg − agQAg sin θg (3)

FgQ [·] = agQAg cos θg + agIAg sin θg (4)

In order to realize the mathematical relationship in (2) with
a neural network architecture, a partial network for the gth
basis function is designed as Fig. 1.

In the first stage, the magnitudes of the input signal, |x̃(n)|,
pass through the gth hidden neuron with activation function
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FIGURE 1. Proposed vector decomposed sub-network.

FIGURE 2. Phase recovery block architecture.

hg and the neuron output Ag is obtained as follows:

Ag = hg

[
M∑
m=0

w′g,m |x̃(n− m)| + bg

]
(5)

where (w′g,0,w
′

g,1, · · · ,w
′
g,M ) are the weighting coefficients

from the input layer to the gth hidden neuron and bg is the
bias before the hidden neuron.

Secondly, the phase information is recovered in the phase
recovery block (PRB), where Ag is multiplied with phase
information cosθg and sinθg, respectively. θg is the input
phase information to the PRB. PRB is a dual-input and dual-
output block as shown in Fig. 2, where θg and Ag are the
inputs to the block. Send θg into the block to calculate its
sine and cosine values, then cosθg and sinθg are multiplied
with the output of the hidden neuron Ag, where Ag cos θg and
Ag sin θg are obtained at the upper output and lower output of
PRB.

Finally, take (Agsinθg,Agcosθg) and (YgI ,YgQ) as the input
and output of the last fully-connected layer to finish the sub-
network construction. (w′′g,1,w

′′

g,2,w
′′

g,3,w
′′

g,4) are the weight-
ing coefficients in the last fully-connected layer. According
to Fig. 1, the output of the sub-network are as follows:

YgI = w′′g,1Ag cos θg + w′′g,2Ag sin θg (6)

YgQ = w′′g,3Ag cos θg + w′′g,4Ag sin θg (7)

And it is not difficult to find that the ideal corresponding
relationship among (3), (4), (6) and (7) is:w′′g,1 = w′′g,4 = agI ,
w′′g,2 = −agQ and w′′g,3 = agQ. It is worth mentioning that
there is no bias in the output neuron layer, otherwise, it will
introduce nonphysical contribution [23], [24].

B. OBTAIN LARGE NETWORK FROM THE
EXTRACTED SUB-NETWORK
When we finished the above sub-network construction for
the gth basis function, the sub-network can be expanded to a

FIGURE 3. The expanded large network with G hidden neurons.

large network withG hidden neurons in the hidden layer, as is
depicted in Fig. 3, which corresponds to G basis functions
in (1). Iout (n) and Qout (n) are the real and imaginary parts
of ỹ(n). For ease of illustration, the G hidden neurons are
renumbered into different groups, where there are (M + 1)
hidden neurons in each group: (hi,0, hi,1, · · · , hi,M ) represent
the ith group with (M + 1) hidden neurons.
In order to satisfy the ‘‘first zone constraint’’, in this

paper, the phase of each hidden neuron’s output is finally
restored to that of the original input signal in a cyclic
principle: the phases of each hidden neuron group outputs
(Ai,0,Ai,1, · · · ,Ai,M ) are restored with original phase infor-
mation with (ejθn , ejθn−1 , · · · , ejθn−M ), respectively. In this
manner, the phase information for other (G−M−1) neurons
can be also recovered with the same manner until to the last
hidden neuron hu,v in the hidden layer, where (M + 1)× u+
v = G.
As is shown in Fig. 3: First, the magnitudes of the input

signals pass the first fully-connected layer and the hidden
neurons to conduct the nonlinear operation for the envelop
signals; Second, the outputs of the hidden neurons are mul-
tiplied with the phase information in the above mentioned
cyclic principle to realize the phase recovery. Finally, take
the output of the phase recovery layer and (Iout (n),Qout (n))
as the input and the output of the last fully-connected layer to
complete the large network construction. For ease of drawing
picture, the weighting coefficients in the two fully-connected
layer are omitted in Fig. 3, so are the model architecture
pictures in the remainder of this article.

C. SIMPLIFY THE PROPOSED LARGE NETWORK
After the corresponding neural network architecture of
(1) was obtained, it was found that the proposed neural
network model can be simplified further as follows:
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FIGURE 4. A sub-network with the same recovery phase information.

In order to illustrate the simplification procedure clearly,
take a sub-network of Fig. 3, where only two hidden neurons
h1,0 and h2,0 with the same recovered phase information are
considered, as an example to explain this simplification. As is
shown in Fig. 4 (the input layer and the first fully-connected
layer are omitted here), (δ1, δ2, · · · , δ8) are the weighting
coefficients in their corresponding paths. I ′out and Q

′
out are

the in-phase and quadrature parts of the sub-network output.
If the output of h1,0 and h2,0 are defined as A1,0 and A2,0,
the corresponding mathematical expressions of Fig. 4 are as
follows:

I ′out = δ1A1,0 cos θn + δ2A1,0 sin θn

+ δ3A2,0 cos θn + δ4A2,0 sin θn (8)

Q′out = δ5A1,0 cos θn + δ6A1,0 sin θn

+ δ7A2,0 cos θn + δ8A2,0 sin θn (9)

After combining the similar terms with the same cos θn and
sin θn factor, (8) and (9) can be rewritten as (10) and (11),
the corresponding network architecture is depicted in Fig. 5.

I ′out = (δ1A1,0 + δ3A2,0) cos θn

+ (δ2A1,0 + δ4A2,0) sin θn (10)

Q′out = (δ5A1,0 + δ7A2,0) cos θn

+(δ6A1,0 + δ8A2,0) sin θn (11)

Define λ1 = δ1A1,0 + δ3A2,0 and λ2 = δ2A1,0 +
δ4A2,0, we take the first modified phase recovery block
(MPRB) in Fig. 5 as an example to illustrate MPRB archi-
tecture: MPRB is a three-input double-output block as shown
in Fig. 6, send θg into the block to calculate its sine and cosine
values, then cosθg and sinθg are multiplied with λ1 and λ2,
respectively. Thus, Ag cos θg and Ag sin θg are obtained at
the upper output and lower output of MPRB. As is shown
in Fig. 5, there are two MPRBs in the sub-network for the
phase information recovery: one for the in-phase output and
the other for the quadrature output.

As the corresponding complex mathematical expression
of Fig.3 is (1), similar to the above operation process, split
the output ỹ(n) in (1) into in-phase and quadrature parts
and combine those terms including the same cos θn−m and

FIGURE 5. The equivalent neural network architecture of (10) and (11).

FIGURE 6. Modified phase recovery block architecture.

sin θn−m factors, it yields:

Iout (n) =
M∑
m=1

αIm(A1,m,A2,m,A3,m, · · · ) cosθn−m

+

M∑
m=1

βIm(A1,m,A2,m,A3,m, · · · ) sinθn−m (12)

Qout (n) =
M∑
m=1

αQm(A1,m,A2,m,A3,m, · · · ) cosθn−m

+

M∑
m=1

βQm(A1,m,A2,m,A3,m, · · · ) sinθn−m (13)

where αIm(A1,m,A2,m,A3,m, · · · ) and βIm(A1,m,A2,m,
A3,m, · · · ) are the linear summation of the hidden
neurons output (A1,m,A2,m,A3,m · · · ) after the same
terms cos θn−m and sin θn−m combination and extraction
for the in-phase output; αQm(A1,m,A2,m,A3,m, · · · ) and
βQm(A1,m,A2,m,A3,m, · · · ) are the linear summation of hid-
den neurons output (A1,A2, · · ·AG) after the same terms
cos θn−m and sin θn−m combination and extraction for the
quadrature output.

Thus, after those terms combination with the same phase
factor cos θn−m and sin θn−m, the hidden neurons in the
hidden layer of Fig. 3 can be rearranged into (M + 1)
group and each group has their corresponding phase fac-
tor. The lth (l = 1, · · · ,M + 1) hidden neuron group
(h1,l−1, h2,l−1, h3,l−1, · · · ) are recoveredwith the same phase
information θn−l+1. In this way, the neural network architec-
ture in Fig.3 can be simplified as that in Fig. 7. By rearranging
the hidden neurons into (M+1) groups to recover the phases,
the number of multiplication for phase information recovery
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FIGURE 7. The simplified neural network architecture of Fig. 3.

FIGURE 8. The first hidden neuron group with linear term neuron
∣∣x̃(n)

∣∣.
can be reduced from 2G to 4(M + 1) (Generally, the number
of hidden neurons G would be much larger than that of
memory depth M ). With the increase of the hidden neurons,
the multiplication number used for phase recovery remains
unchanged.

D. ADD LINEAR TERM NEURONS
Generally, in the conventional RF PA models [3], both linear
and nonlinear terms should be included. Although neural net-
work is a general nonlinear fitting method, in RF PA model-
ing, it was found that adding linear term neurons could further
improve the model performance. In this part, the magnitudes
of the input signals with different memory depths are aug-
mented into their corresponding phase memory depth group
as the input of the groupwise weighting layer to realize linear
terms implementation. For example, as is shown in Fig. 8,
without nonlinear operations |x̃(n)| are augmented as the
input of the groupwise weighting layer of the first hidden
neuron group. In exactly the same way, other M linear term
neurons can be implemented in the proposed MLP network.

TABLE 1. NMSE performance comparison of adding linear term neurons.

FIGURE 9. Proposed VDTDNN model and AVDTDNN model architectures.

Finally, it yields the proposed vector decomposed time-delay
neural network (VDTDNN) model, as is depicted in Fig. 9.
TABLE 1 shows that the modeling capacity of the proposed
VDTDNN model with different activation functions can be
improved by adding linear term neurons at the cost of very
little computational complexity, where the number of hidden
neurons for TABLE 1 is 30 and the other settings are the same
as those in PART A of Section V.

Since the three constraints mentioned at the beginning of
this section can be satisfied simultaneously, the proposed
DPD model, theoretically, can achieve better performance
compared with the existing IQ-mapping-IQNNDPDmodels.
In addition, since the complex baseband input signals are
decomposed into magnitude and phase parts, where only the
magnitudes are conducted nonlinear operations and phase
information is recovered in the phase recovery layer with
linear weightings, that is why the proposedmodel is named as
vector decomposed time-delay neural network (VDTDNN)
behavioral model.

III. AUGMENTED VECTOR DECOMPOSED TIME-DELAY
NEURAL NETWORK
Recently, an augmented real-valued time-delay neural net-
work (ARVTDNN) [26] has been proposed to improve
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the performance of real-valued time-delay neural network
(RVTDNN), which shows that adding several envelop-
dependent terms into the input vector could improve the
modeling capability of MLP neural networks, and the
experimental results shows that the modeling capability of
ARVTDNN are superior to RVTDNN and memory polynom-
inal models. In this paper, the high order envelop-dependent
terms are also added into the input vector, and it yields the
augmented vector decomposed real-valued time-delay neural
network (AVDTDNN) model as shown in Fig. 9, where the
shaded part represents the augmented pth order magnitude
inputs. The experimental results prove that the proposed
AVDTDNN model can achieve better performance and with
lower computational complexity compared with the existing
ARVTDNN model. The detailed computational complexity
analysis and tested performance comparison for AVDTDNN
and ARVTDNNmodels can be seen in PART B of Section IV
and PART B of Section V, respectively.

IV. COMPUTATIONAL COMPLEXITY
COMPARISON ANALYSIS
In this part, the complexity comparison analysis reveals
that whether envelop-dependent terms are augmented into
the input vector or not, the computational complexity of
the proposed VDTDNN and AVDTDNN are superior to the
existing IQ-mapping-IQ based RVTDNN and ARVTDNN,
respectively. It is analyzed in details as follows:

A. THE COMPLEXITY COMPARISON OF RVTDNN
AND VDTDNN
When there are no high order envelop-dependent terms
adding into the input vector, the complexity comparison of
RVTDNN and VDTDNN are as follows:

Given that the number of nonlinear operation hidden layer
and its hidden neurons are 1 and G. Memory depth is M .
As the weighting factors in the phase recovery layer are
known, so only the coefficients in the first fully connected
layer and groupwise weighting layer should be calculated
with back propagation. The total coefficients to be updated
in the RVTDNN is:

N0 = (2× (M + 1)+ 1)× G+ (G+ 1)× 2 (14)

While the number of coefficients to be updated in the
VDTDNN is:

N1 = (M + 1+ 1)× G+ 4× (G+M+1) (15)

And it yields:

N0 − N1 = M × G− G− 2×M − 2 (16)

The detailed values of N0 − N1 and its corresponding mem-
ory depth M and the number of hidden neurons are shown
in Fig. 10, once M ≥ 2, the number of N0 − N1 would be
larger than 0. And generally, in order to offer a relatively
good modeling performance, we have M ≥ 2 and G ≥ 10
(especially for wideband signals), it means that the computa-
tional complexity of the proposed VDTDNN model is lower

FIGURE 10. The relationship of (16).

TABLE 2. Performance comparison of VDTDNN and RVTDNN models.

than that of the existing RVTDNN model. Take M = 4
and G = 30 as an example, the total coefficients to be
updated in RVTDNN and VDTDNNmodels are 392 and 320,
respectively, as was listed in TABLE 2.

B. THE COMPLEXITY COMPARISON OF ARVTDNN
AND AVDTDNN
The experimental results in [26] show that adding
(|x̃(n− m)| , |x̃(n− m)|2, |x̃(n− m)|3) or (|x̃(n− m)| ,
|x̃(n− m)|3, |x̃(n− m)|5) terms into the input vector could
offer the least computational complexity with relatively good
performance. In this paper, take it as an example by adding
(|x̃(n− m)| , |x̃(n− m)|2, |x̃(n− m)|3) into the input to com-
pare the complexity between ARVTDNN and AVDTDNN.
As the input to the proposed VDTVNN are linear magnitudes
instead of in-phase and quadrature parts of complex base-
band signals, thus, only (|x̃(n− m)|2, |x̃(n− m)|3) terms are
needed to add into the input vector to construct AVDTDNN
model, it yields:

N2= (2× (M+1)+3× (M+1)+1)× G+(G+1)× 2

(17)

N3 = (M + 1+ 2× (M+1)+1)× G+4× (G+M + 1)

(18)

And it yields:

N2 − N3 = 2×M × G− 4×M − 2 (19)

where N2 and N3 are the total coefficients in the ARVTDNN
and AVDTDNN to be extracted, respectively. The detailed
relationship of (19) is depicted in Fig. 11, which indicates
that the computational complexity of AVDTDNN is lower

91564 VOLUME 7, 2019



Y. Zhang et al.: Vector Decomposition Based Time-Delay Neural Network Behavioral Model

FIGURE 11. The relationship of (19).

FIGURE 12. The photograph of the test bench.

than that of ARVTDNN. Take M = 4 and G = 30 as an
example, the total coefficients to be updated in ARVTDNN
and AVDTDNN models are 842 and 620, respectively.

V. EXPERIMENTAL VALIDATION
In order to compare the performance of the proposed mod-
els and the existing IQ-mapping-IQ based models, various
experimental tests were conducted. The photograph of the test
bench is shown in Fig. 12, which consists of a personal com-
puter (PC) with MATLAB and pytorch softwares, a Vector
Signal Generator (SMW2000A) from Rohde and Schwarz,
a linear driver amplifier PA, a house-designed wideband
GaN PA, a -30 dB RF attenuator and a Spectrum Analyzer
(FSW50) from Rohde and Schwarz. The flow diagram of the
modeling procedure with indirect learning architecture (ILA)
is depicted in Fig. 13. First the upconverted RF signals were
generated by the Vector Signal Generator under the control
of PC. Second, after a linear driver PA, the RF signals were
amplified with the GaN wideband PA operated at 3.75GHz,
which is possible for 5G application. Third, the attenuated
PA outputs were captured by the Spectrum Analyzer and
sent into the PC. Finally, after time alignment with MAT-
LAB, according to classical indirect learning architecture,
the baseband input and output of the RF PA were sent into

FIGURE 13. The flow diagram of the modeling procedure with ILA.

FIGURE 14. The power spectral density comparison.

PyTorch and used as output and input of the DPD model
to extract model coefficients (Note: it is more convenient
and flexible to construct neural network models with pytorch
compared with MATLAB, thus, the neural network models
were implemented in PyTroch with python language in this
paper).

A. THE PERFORMANCE COMPARISON OF RVTDNN
AND VDTDNN
Take one hidden layer as an example to compare the per-
formance of the proposed VDTDNN model and RVTDNN
model, where memory depth is 4, the number of hidden
neuron is 30, and number of iteration is 150. The bandwidth
of the tested signal is 40 MHz OFDM signal and its PAPR
is 6.9 dB. Adaptive Moment (Adam) optimizer was used
to update the coefficients [27]. The step sizes for the first
130 iterations and the last 20 iterations are 0.01 and 0.001,
respectively. Around 70,000 samples were recorded with the
sampling rate at 368.64MSPS. The first 40,000 samples were
used to extract model coefficients and the remaining samples
were used for performance evaluation. The RF PA output
power was 30.3dBm. Both VDTDNN and RVTDNN models
keep the same settings as mentioned above.

When the activation function in the first hidden layer is
selected as absolute value function (ABS), the detailed nor-
malized mean square error (NMSE) and adjacent channel
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FIGURE 15. AM-AM and AM-PM plots with and without DPD for a
40-MHz OFDM signal.

TABLE 3. Performance comparison with different activation functions.

power ratio (ACPR) are listed in TABLE 2. The correspond-
ing Power Spectral Density (PSD) comparison is illustrated
in Fig. 14. According to TABLE 2 and Fig. 14, compared with
RVTDNN model, NMSE and ACPR with VDTDNN model
can be improved by 3.5dB and 5dB respectively and with less
coefficients. And the AM-AM and AM-PM characteristics
without DPD and with VDTDNN model DPD are shown
in Fig. 15.

For further comparison, four commonly used activation
functions, ABS, rectified linear unit (ReLU), Sigmoid and
hyperbolic tangent (Tanh), were tested to compare the per-
formance of the existing RVTDNN model and the proposed
VDTDNNmodel as shown in Table 3. It is clear that with any
kinds of activation function, the performance of the proposed
model are superior to the existing state-of-the-art RVTDNN
model.

B. THE PERFORMANCE COMPARISON OF
ARVTDNN AND AVDTDNN
To further compare the performance of the proposed vec-
tor decomposed based models and the state-of-the-art MLP
based models, a 60MHz OFDM signal was employed to
compare performance of RVTDNN, ARVTDNN, VDTDNN
and AVDTDNN models, where the PA output power is
32.6dBm and the other settings are the same as those in

TABLE 4. Performance comparison of the mentioned models.

FIGURE 16. The power spectral density comparison.

FIGURE 17. NMSE comparison with varied numbers of hidden neuron.

part A of this section. TABLE 4 gives the NMSE, ACPR
and total coefficients results. Fig. 16 shows PA output
power spectrum density curves without DPD and with var-
ious DPD models. When there are no other envelop-based
terms added, the novel VDTDNN can approximately fur-
ther improve NMSE 3.4dB and ACPR 4.5 dB compared
with RVTDNN model, respectively; when the envelop-based
terms (|x̃(n− m)| , |x̃(n− m)|2, |x̃(n− m)|3) were added into
the input, the proposed AVDTDNN model achieved the best
performance but with significantly reduced coefficients, com-
pared with the state-of-the-art ARVTDNN model.
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In order to consummate the experimental comparison,
the number of hidden neurons are then changed to evalu-
ate the performance. The number of hidden neurons varied
from 10 to 40 at the interval of 5. The activation function
is selected as ABS. As can be seen from Fig. 17, without
envelop-based terms augmented, compared with RVTDNN,
the NMSE can be improved about 4dB with VDTDNN
model; with envelop-based terms in the input, the NMSE
can be improved 2dB with AVDTDNN model compared
with the existing ARVTDNN model. Consequently, whether
other envelop-based terms are augmented into the input vec-
tor or not, the proposed VDTDNN and AVDTDNN models
are superior to the state-of-the-art RVTDNN and ARVTDNN
models.

VI. CONCLUSION
In this study, two novel vector-decomposition based MLP
neural network DPD models are proposed. Different from
the state-of-the-art neural networkmodels splitting both input
and output into IQ parts to construct models, the proposed
models are in more accordance with the physical mechanisms
of RF PA, where only the magnitudes of input signals are
conducted nonlinear operations, and the phase information
is then recovered with linear weighting operations. The the-
oretical analysis and various experimental results show that
the proposed VDTDNN and AVDTDNN can achieve bet-
ter performance and with significantly lower computational
complexity, compared with the existing neural network DPD
models.
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