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ABSTRACT The classification of hyperspectral images is the basis and hotspot in the research of hyperspec-
tral images. In this paper, a classification algorithm of hyperspectral image based on multiple edge-preserving
features and multiple feature learning (MFL) is proposed. First, aiming to eliminate the high correlation
between adjacent bands and to remove the noise in the image, a new band clustering algorithm is employed
to reduce the dimensions, where the dimension-reduced image can be used as spectral information features
to extract linearly separable classes. Then, spatial information features are obtained by applying the multiple
edge-preserving filter on the reduced-dimensional image. This filter is used to acquire more comprehensive
spatial information features of the image for extraction of nonlinearly separable classes. Following that,
the locality preserving projections method is applied to retain the representative spatial information from
the extracted spatial information for classification accuracy. Finally, the spectral information features and
spatial information features are combined for classification using the MFL. The experiments are conducted
to verify the validity of the proposed algorithm on three universally adopted hyperspectral datasets.

INDEX TERMS Band clustering, multiple edge-preserving features, multiple feature learning, locality

preserving projections.

I. INTRODUCTION

Hyperspectral images provide high spectral resolution and
robust classification ability by recording hundreds of spec-
tral bands for each pixel. Therefore, remote sensing images
are widely used to identify substances [1], such as minerals
and rock types, to distinguish the composition of various
pollutants in the environment [2], [3] and the types of crops
and forests [4]. The primary objective of the remote sensing
technology is to identify the object classes and its distribution
according to the radiant attributes of the ground object in the
remote sensing images [5], [6]. Therefore, the classification
of hyperspectral images is considered a research hotspot in
this field [7], [8]. Classical hyperspectral classification meth-
ods, such as the support vector machines (SVMs) [9], random
forest [10], and the artificial neural networks [11] consider
only the original spectral information of the hyperspectral
images [12]. Therefore, the classification accuracy values in
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these methods are not high due to “‘the curse of the dimen-
sion,” especially in the case of limited training sets.

To prevent the Hughes phenomenon, classical dimension-
ality reduction algorithms, such as the principal component
analysis (PCA) [13], [14], independent component correla-
tion algorithm [15], and the generalized discriminant analy-
sis [16], have been proposed. However, they are not ideal for
improving classification accuracy. Ghorbanian and Moham-
madzadeh [17] proposed a k-means clustering method based
on band correlation to achieve the dimensionality reduction
by calculating the average value of each cluster. However,
this method suffers the disadvantage of slow convergence and
different initial cluster center selection, which can lead to
unstable results. Kang et al. [18] employed the mean fusion
of adjacent bands to reduce the dimension, which performed
a uniform partitioning on the group fusion. There was a pos-
sibility of losing some critical information with this method.

Aiming to enhance the accuracy of the image classifica-
tion, experts in the field mostly focus on extracting the spa-
tial information, such as the morphological attribute profiles
(MAPs) [19], [20]. Such a method overcomes the limitation
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of using a pixel or a fixed neighborhood as the processing unit
in traditional methods and expands the processing unit to all
the pixels with similar attributes to obtain various attribute
information of the hyperspectral images. Note that when
applying the MAPs, it is usually necessary to calculate multi-
ple attributes of the image and multiple threshold features so
that the obtained attribute features demonstrate a high dimen-
sionality. The edge-preserving filter (EPF) method [21]—-[23]
can extract the spatial detail information of the image, elim-
inate the noise, and effectively alleviate the phenomenon
of “the same object with different spectrum” to achieve
smoothing and edge preservation. However, the drawback of
this method is that the standard single parameter setting of
the EPF is not capable of adequately representing the spatial
information of the image. Chen er al. [24] employed the
convolutional neural networks to extract the depth features
of the image, so that the classification accuracy is improved.
However, this method is time-consuming and involves con-
siderable costs of computational complexity [25].

In recent years, several studies have combined the original
spectral information with various spatial information features
extracted from the image (for example, texture features, shape
features, and spatial relationship features) that describe the
features of the pixel from different angles to represent the
characteristics of the hyperspectral image in entirety. The
method of constructing the composite kernel (CK) func-
tions [26], [27] combines the spatial information extracted
by MAPs with the spectral information of the image. After
being mapped to the high-dimensional kernel space, the non-
linearly separable features of the original feature space turn
linearly separable. The application of the CK function over-
comes the limitations of the single kernel function in the
SVMs model. The multiple kernel learning method [28], [29]
adopts different kernels for various features (e.g., spectral
information features and spatial information features), com-
poses multiple kernels with different parameters, and then
optimizes the weight of each kernel to consider the best
combination of kernel functions for classification. The two
aforementioned methods generally require the combination
of kernel functions to be convex, which poses difficulties
in optimizing some parameters during the learning process.
The emergence of the generalized composite kernel (GCK)
method [30] has successfully overcome this limitation. GCK
based on multinomial logistic regression (MLR) [31] can
flexibly combine various features of the images linearly with-
out setting the weight parameters for each of the features.
This learning method-based kernel function maps various
features of the image to the nonlinear kernel space, which
leads to redundancy or loss of the physical meaning of the
feature. The multiple feature learning (MFL) method [32]
utilizes not only the original spectral information and spatial
information of the image but also the kernel transformation
of the spectral information and spatial information consid-
ering both linear and nonlinear features, which improves
the classification accuracy to a certain extent. In multiple-
feature-based adaptive sparse representation method [33],
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four different features (spectral value feature, extended mor-
phological profile, Gabor texture and differential morpholog-
ical profiles) are extracted from the original hyperspectral
images. The adaptive sparse representation algorithm is intro-
duced to determine the class label of each pixel. However,
the feature dictionary comprises four huge features, which
increases the computational complexity.

In summary, this article presents a hyperspectral classifica-
tion based on multiple feature learning and edge-preserving
features (MFL-EPFs). Firstly, a new band clustering method
is applied to divide the high correlation bands into groups.
Then the resulting clustering groups are averaged to obtain
the dimensionality reduction image, which retains the useful
spectral information in the original image and plays vital
role in the subsequent classification. Next, the multiple edge-
preserving filter is used to extract useful spatial information.
The outstanding performance of the multiple edge-preserving
filter in the hyperspectral classification has been confirmed
in the literature [34]. Then LPP is performed on the multiple
edge-preserving features to extract the features that are highly
useful for classification [35]. Finally, the MFL method is
utilized to assign a unique label to each pixel by combining
the dimension-reduced spectral features with the dimension-
reduced multiple edge-preserving features (MEPFs).

Following a brief overview of the multiple MEPFs,
LPP and MFL in section 2, the descriptions are mainly
provided for readers with no foundation knowledge in this
field. Section 3 is dedicated to introducing the proposed
method MFL-EPFs in detail. Section 4 includes an evalu-
ation of the performance of MFL-EPFs compared to other
mainstream methods and analyzes the experimental results.
Possible objectives for future research are discussed and con-
clusions are presented in section 5.

Il. BACKGROUND KNOWLEDGE

A. MULTIPLE EDGE-PRESERVING FEATURES

During the process of acquisition and transmission of hyper-
spectral remote sensing images, different kinds of noises are
often introduced, which results in the fluctuation of spec-
tral characteristics of the same objects. It is complicated to
classify the hyperspectral remote sensing images accurately
under small training samples. Edge-preserving filtering is one
of the most critical approaches used to eliminate the influence
of noise. The three typical edge-preserving filtering meth-
ods include the bilateral filtering [36], guided filtering [37],
and the domain transform [18]. The respective advantages
and disadvantages of these methods have been elaborated in
the literature [34]. Domain-transform recursive filtering is
adopted in our study, as it provides the advantages of real-
time processing and high efficiency.

Domain transform recursive filtering applies the approx-
imate distance-preserving transformation to the one-
dimensional signal, i.e., the Euclidean distance between
two adjacent samples in the transform domain is equal to
Ll-norm distance between two adjacent samples in the
original domain. For the one-dimensional signal I,
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FIGURE 1. Influence of the two parameters, i.e., §s and §, on the
performance of the filter. (a) Input hyperspectral band. (b)-(d) Filtered
bands with different parameter settings.

we obtained

i
U,-=10+Z<1+§—S|I,~—I,-—1I>, (1
j=1 i

where U is the domain transform signal. 85 and §, are the
spatial standard deviation and the range standard deviation,
respectively, which are used to control the window size and
ambiguity of the filter, respectively.

Then the domain-transformed signal is transmitted to the
recursive filtering for processing, and the output of the recur-
sive filter is related to both the input and the output, as shown
in the following equation:

Ji = (1 - ab) Ii+aJi_q, )

where J; is the output of the ith pixel, @ = exp(v/2/8;) €
[0, 1] represents the feedback coefficient, and b refers to
the distance between two adjacent samples in the transform
domain. As a® head towards zero, the edge information of the
signal is preserved and vice versa.

When the spatial standard deviation §; and the range stan-
dard deviation §, are provided different values, the obtained
images are different, as shown in Fig. 1.

Different parameter settings produce different filtering
results that represent the features of the hyperspectral images
on multiple scales and have their peculiar advantages in
classifying those objects or features of different scales [34]
Therefore, a combination of the edge features of different
parameters can extract additional spatial information from the
images and improve the classification accuracy.

The steps to obtain the MEPFs for the k-dimensional
hyperspectral images Iy are as follows:

1) First, each dimension image is filtered by the EPF with
different parameters, therefore,
Fjx = MEPF(Iy, &%, 8¢ 3)

s>r/’’

wherek =1,...,K,x =1,....,X, & and &7 are the
xth parameter settings adopted by the EPF,

@ e cf(el). (X)) @

2) The resulting features are stacked together in a series
as equation (5):

F:{Fl,...,FX}. (5)
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B. LOCALITY PRESERVING PROJECTIONS

PCA occupies a dominant position in the unsupervised
dimension reduction methods because of its simple calcula-
tion and high efficiency [38]. However, it has a poor effect
on the non-Gaussian data, and only linear subspace can be
discovered. Therefore, the data distributed on the nonlinear
manifold cannot be processed appropriately, which results in
data distortion and loss of some useful information after the
dimension reduction [39].

LPP can be used to resolve the problem mentioned above.
It introduces linearization into the manifold learning and
establishes a graph for the data set with the neighborhood
information [40]. Using the Laplace concept of the graph,
a projection matrix is calculated to map the data on to a sub-
space. This linear transformation maintains the local neigh-
borhood information optimally to some extent. Therefore,
the nearest neighbor search in the low-dimensional space
yields results similar to that in the high-dimensional space.
LPP can provide highly useful information. LPP is linear
and therefore, enables faster processing. LPP possesses the
capability to learn out-of-sample points so that the new data
points can be mapped to a low-dimensional space through a
linear transformation [41]. In summary, LPP can be used as a
natural alternative to PCA [35].

Let X =(X1, X2,...,X,) be the sample data set in the
original space R”, n be the number of samples, D be the data
set, and x; and x; be the i-th and j-th samples in X. Then the
similarity of the samples [42] is defined as follows:

i = x]®

pa— (6)

sij = exp(—

In (6), the parameter ¢ > 0 is a constant that is set empiri-

cally. If w is the projection vector, then the objective function
of LPP can be defined as follows [35]:

N
2
w* = arg min Zs,-j wlx; — waj H

Y
_ o T T
=argminw XD — S) X' w

w
= arg minw! XLXTw, (7

w

where D is a diagonal matrix, in which the elements on
the diagonal are the sum of the rows corresponding to the
matrix S and L = D-S is the Laplacian matrix. Then, as per the
constraint wI XDXTw = 1, the optimal projection vector is
the eigenvector corresponding to the solution of the minimum
eigenvalue.

XLXTw = AXDXTw, (8)

where w= (wy,w32,...,wq) is the projection matrix,
w1, W2, ..., Wq is the eigenvector corresponding to the small-
est d eigenvalues in (8), which holds most of the useful
information.

106863



IEEE Access

W. Tian et al.: MFL Based on Edge-Preserving Features for Hyperspectral Image Classification

C. MULTIPLE FEATURE LEARNING

Combining various features of an image is beneficial in
improving the separability of the data, and the multiple
feature learning method can combine different kinds of fea-
tures using a linear combination to improve the classification
accuracy. This method does not require any regularization
parameters to control the weight of each feature. Therefore,
it effectively utilizes different features and flexibly combines
them [32].

The linear combination of various features is realized using
the MLR. After linearly combining the independent vari-
ables (which can be multiple features) and the corresponding
parameters, a probabilistic model is employed to calculate
and predict the probabilities of the different possible out-
comes of a categorically distributed dependent variable. The
calculation formula employed is as follows [31]:

exp (w(k)Th (x,-))
p i = klxi, w) = ; ©))
Shrexp (w0 n )
where k = (1,...,K) is a set of K class labels, x =
(*1,.....Xy) € R? is the hyperspectral image composed

of d-dimensional feature vectors, and n is the band num-
ber of the reduced-dimensional hyperspectral image.w is the
T
. . . T T
regression coefficient, and w = [w(l) ,...,w(K_l) ] ,

w&) =0,y = (y,....y,) denotes the class label of the
image. h( xj) is a set of all kinds of input features, which can
be linear or nonlinear. It is defined as follows [32]:

h(xp) = L ha(xp)", ... hyxp)"]", (10)
where [ is the total number of classes with various features,
and hj(x;) can be
xial” (11)

where x;; denotes the jth component of x;, which represents
the original spectral information of the hyperspectral image
and is used to extract linear features. k;(x;)can also be

hi(x;) = [fix0), ..., 2], (12)

where f(e) is the nonlinear feature extraction transformation
on the original image (for example, the MEPFs in [34]), and
I is the number of elements in h;(x;). kj(x;) can also be the
result of the extracted linear features and nonlinear features
mapped to a high-dimensional space by the kernel function.

hj(x;) = [K(xi, x;), ..., K, x)17 (13)

hj (x;) = [xi1, .

where
K (xi.x7) = (¢ (x1) ¢ (x;)). (14)

and ¢(e) is a nonlinear mapping function.

To obtain the probability p in (6), it is necessary to estimate
the logistic regression coefficient w of the input feature by
calculating the maximum a posteriori estimate [42].

w = arg max/(w) + log p(w), (15)

106864

FIGURE 2. Schematic of the proposed MFL-EPFs algorithm.

where I(w) is the likelihood function and the expression is
defined as follows:

L K
Iw) =" (" (cw® —log ) " exph” xppw®)),  (16)
i=1 k=1
and logp (w) is a prior estimate over w that is independent
of x. In addition, w is a random vector with Laplace distribu-
tion. Therefore,

pw) o exp(—A [[wlly), a7

where A is the regularization parameter that controls the
degree of sparsity [43].

Ill. PROPOSED ALGORITHM

The algorithm flow chart of this study is shown in Fig. 2.
Firstly, the spectral features beneficial for the classification
were obtained by performing the dimensionality reduction
on the original hyperspectral image. Then, multiple features
were extracted from the reduced-dimensional hyperspectral
image using the EPF of varied parameters, and these fea-
tures were combined in series. The next step was to reduce
the dimensionality of the multiple features using the LPP
to obtain the spatial features of the image. Finally, the
MFL method was used for classification by combining spec-
tral features and spatial features.

A. HYPERSPECTRAL IMAGE DIMENSIONALITY
REDUCTION

High-dimensional hyperspectral images increase the compu-
tational cost and include various noises. One of the prior
studies [18] has verified that calculating the mean of adjacent
bands can remove the noise in the hyperspectral images and
preserve the complementary information of adjacent bands.
This method preserves the edges and other critical spatial
structures compared to the PCA and ICA dimensionality
reduction methods. However, the method of uniform group-
ing in the literature [18] loses some meaningful information.
Literature [17] employs the k-means clustering method for
grouping, aiming to retain useful information to the max-
imum extent. Unfortunately, this method suffers the draw-
backs that are similar to those of the k-means algorithm.
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W. Tian et al.: MFL Based on Edge-Preserving Features for Hyperspectral Image Classification

IEEE Access

Therefore, this study proposed a new dimension reduction
method for band clustering. The overview of the method is
described as follows:

1) From the first band, N bands at equal intervals
were considered the cluster centers, denoted as Cj,
C,,...Ch.

2) The bands between the cluster centers C; and C; were
respectively calculated with C; and Cj to obtain the
spectral angle mapping (SAM) values [44]. The calcu-
lation formula employed is as follows:

SAM(si, 5;) = cos™\(s; i/ Isill ;) (18)

where s; and s; are the vectors of the i-th band and
the j-th band images, respectively. Smaller the value of
the SAM, more similar the two spectra. Moreover, they
were more likely to belong to the same objects.

3) If the value of the SAM with the cluster center C; was
small, the corresponding band was divided into a group
with Cj. This step was applicable for the center Cj,
as well.

4) By analogy, the hyperspectral image was divided into
N groups.

5) Finally, each group was averaged to obtain a dimen-
sionally reduced image SpeF ., and N was considered
the dimension of the image.

This method is simple and easy to implement. By availing
the high correlation between adjacent bands, the averaging
method was used to remove the redundancy of the hyper-
spectral image, eliminate the noise, and finally achieve the
dimensionality reduction. It improves the deficiency of the
uniform grouping method and overcomes the disadvantage
of the K-means algorithm effectively.

B. LPP DIMENSION REDUCTION

The edge preserving features extracted with multiple param-
eters are concatenated together, resulting in a high dimen-
sionality and a large amount of redundant information,
which will affect the separability of the pixels. Although
the MEPFs preserves information such as the edge of the
image, it also reduces the differences between the pixels of
different classes [34]. To extract features that are favorable for
image classification, this study proposed a method based on
the LPP for the MEPFs. The extracted MEPFs were reduced
by the LPP, and the pixel separability of the image was
improved by reducing the dimension. Compared to the PCA
dimension reduction method, the LPP can preserve the local
structure of the image space after dimension reduction [45],
to improve the classification precision.

SpaF = LPP(F, L) (19)

where F is the MEPFs in the series, and L is the dimen-
sionality of the image after the dimensionality reduction.
SpaF is the spatial information of the image, which can
extract the pixel features of the original hyperspectral image
that are nonlinearly separable.
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TABLE 1. The comparative results of the PCA and LPP dimension
reduction methods for the Indian Pines.

Number of training samples (%) 1 2 3 4 5
The overall accuracy for PCA (%)  81.87 87.19 91.66 93.51 95.17
The overall accuracy for LPP (%) 85.23 91.50 94.61 95.51 96.34

Number of training samples (%) 6 7 8 9 10
The overall accuracy for PCA (%) 95.30 95.80 96.21 96.58 96.83
The overall accuracy for LPP (%) 96.90 97.33 97.57 98.07 98.55

In order to verify the superiority of the LPP, experimental
data is displayed in Table 1:

C. MFL FOR CLASSIFICATION
The MFL method can integrate multiple types of features
and discover the most representative elements according to
the corresponding weights of each feature for the train-
ing samples. Even if the input feature dimension is very
high, the linear combination results of multiple features can
be obtained with a limited training set. More importantly,
the method determines the weights of each feature with-
out any regularization parameters, and therefore, these fea-
tures can be flexibly combined. The combination of linear
and nonlinear features is the best approach to represent the
essential features of the hyperspectral images. In this study,
dimensionally reduced image SpeF is considered the linear
feature, which retains most of the spectral information of
the original hyperspectral image and plays vital role in the
linearly separable classes. Instead of dimensionality reduc-
tion, high-dimensional original spectral information is used
in [32] and [33]. As the original hyperspectral information
is highly correlated and redundant, using all of this infor-
mation increases the computational burden and affects the
classification accuracy to some extent. This study uses the
reduced-spectrum hyperspectral information SpeF to resolve
the aforementioned issues. Combining the reduced-spectrum
hyperspectral information with the reduced-dimensional
MEPFs for classification is another innovation of our study.
This article does not consider the characteristics of map-
ping to high dimensional kernel space, mainly to reduce
the time consumption. Therefore, the input feature matrix is
defined as follows:

h (x;) = 1, hy (x;) , b2 (xi)], (20)

where hi(xj) denotes the spectral information features after
the dimension reduction, which is mainly used for the linearly
separable classes. k2 (x;j) is the MEPFs after the dimensional-
ity reduction, which extracts the spatial information of the
image and is beneficial for the nonlinearly separable classes.

IV. EXPERIMENTAL RESULTS

In this section, we present our experiments on three pub-
lic hyperspectral datasets to verify the effectiveness of
the proposed algorithm. The classification results of the
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(a) (b)

FIGURE 3. Indian Pines data set. (a) Three-band color composite.
(b) Reference data with 16 land cover classes.

hyperspectral images adopted three commonly used accuracy
evaluation indexes: overall accuracy (OA), average accuracy
(AA) and Kappa coefficient. As the sample selection is ran-
dom, we repeated the experiment ten times and then averaged
the obtained values to achieve experimental results that are
highly objective.

A. DATASET

The first experimental dataset considered was the Indian
Pines image, which was gathered by an airborne visible
infra-red imaging spectrometer (AVIRIS) sensor over the
Indian Pines test site in Northwestern Indiana. It comprised
145 x 145 pixels, and its spatial resolution was 20 m. The
original image possessed 224 spectral reflectance bands, and
we reduced it to 200 by removing the bands covering the
region of water absorption. As the scene was captured in
June, some of the crops present, such as the corn and the
soybeans, were in their early stages of growth with less
than 5% coverage. The ground truth available was designated
into sixteen classes. Fig. 3(a) and (b) illustrate a false-color
image of the Indian Pine and the ground truth information,
respectively. Each color in the map of the ground truth repre-
sents a different object.

The second experimental data set was the Salinas image,
captured over the Salinas Valley, California, USA by
a 224-band AVIRIS sensor, which was characterized by its
high spatial resolution of 3.7 m. The area covered comprised
of 512 lines by 217 samples. As with the Indian Pines scene,
we discarded the 20 water absorption bands. Figure 4(a)
shows the false-color image of the Salinas image synthesized
by three bands, and Figure 4(b) shows the corresponding
ground truth with 16 different classes.

The third experimental dataset was the University of Pavia
image, which was captured by a German-made reflective
optical system imaging spectrometer (ROSIS-3) sensor dur-
ing a flight campaign over Pavia, Northern Italy. The spatial
resolution of this image was 1.3 m, which was the highest
among all the three datasets. This image was also the largest,
consisting of 610 x 340 pixels. After removing the 12 noisy
bands, the remaining 103 bands were used as the experimen-
tal dataset. The three-band false color image and the ground
truths that differentiate nine classes are presented in Fig. 5.

B. EXPERIMENTAL PARAMETER ANALYSIS
1) The parameter values of the edge-preserving filter were
observed to be consistent with the values in [34].
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(a) (b)

FIGURE 4. Salinas dataset. (a) Three-band color composite. (b) Reference
data with 16 land cover classes.

(@ (b)

FIGURE 5. University of Pavia data set. (a) Three-band color composite.
(b) Reference data with 16 land cover classes.

Therefore, the value of the first parameter set is defined
as follows:

s51=30, 3§l =03, 1)

T

and the value of the second parameter set is defined as
follows:

82 =115, §2=0.6. (22)

T

The value of the last parameter set is defined as follows:

83 =200, & =009. (23)
These three sets of parameters were used together to
extract useful spatial information features from the
original image.

2) The values of the parameters N (band number of the
dimension-reduced original hyperspectral image) and
L (dimension of the dimension-reduced MEPFs) can
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TABLE 2. The comparative results of the PCA and LPP dimension reduction methods for the Indian Pines Classification accuracies of the SVM, BCC, EPF,
GCK, MFL, PCA-EPFs, and the MFL-EPFs methods for the Indian Pines dataset with 1% training samples.

Class Train/Test SVM BCC EPF GCK MFL PCA-EPFs  MFL-EPFs
Alfalfa 6/40 27.98(1.34)  81.00(11.7)  48.87(30.4)  9523(4.84)  9574(1.22)  99.52(1.51)  98.25(1.20)
Corn N 7/1421 47.19(8.50)  36.93(13.3)  62.06(16.4)  6527(10.4)  63.29(6.81)  74.95(10.5)  71.30(6.73)
Corn M 6/824 40.81(7.47) 42.43(8.55) 61.73(14.9) 79.41(9.75) 66.02(6.35) 72.34(12.6) 83.03(12.1)
Corn 6/231 26.49(6.65)  46.97(9.06)  40.41(13.8)  8527(641)  73.02(12.9)  76.78(12.8)  93.85(9.50)
Grass M 6/477 59.66(17.9)  66.17(8.48)  79.83(22.0)  82.51(6.12)  77.14(9.16)  89.66(12.7)  89.46(9.12)
Grass T 6/724 78.89(4.53) 67.35(8.90) 80.94(7.78) 96.53(2.22) 92.33(5.67) 92.75(5.67) 97.27(3.25)
Grass P 6/22 26.49(15.1)  84.55(11.8)  59.71(32.8)  97.50(7.91)  96.82(2.20)  84.30(26.7)  100.0(0.00)
Hay W 7/471 93.66(4.77) 72.56(11.1) 98.34(5.24) 99.19(0.48) 98.54(2.71) 99.98(0.07) 100.0(0.00)
Oats 6/14 10.20(5.07)  82.14(162)  32.80(27.7)  100.0(0.00)  100.0(0.00)  86.86(29.3)  100.0(0.00)
Soybean N 7/965 43.07(7.97)  50.80(13.6)  56.30(11.6)  77.07(6.68)  75.16(10.5)  68.53(18.3)  83.67(9.63)
Soybean M 8/2447 62.56(6.33)  45.51(7.90)  74.62(6.57)  72.61(6.04)  75.04(15.1)  91.55(3.86)  80.18(5.71)
Soybean C 6/587 26.87(7.24)  25.30(6.70)  39.31(15.5)  79.67(9.00)  72.85(13.2)  87.70(10.5)  83.99(10.1)
Wheat 6/199 78.33(3.02) 89.44(10.2) 95.02(4.56) 99.36(0.41) 99.45(0.16) 100.0(0.00) 99.94(0.15)
oods 6/1259 84.28(5.48)  70.08(14.1)  91.13(7.49)  90.02(4.56)  86.99(6.43)  98.65(1.51)  93.39(8.49)
Buildings 6/380 28.94(830)  28.71(10.7)  55.13(19.5)  78.08(7.83)  72.50(6.03)  94.33(8.32)  89.79(10.9)
Stone 7/86 83.64(19.6)  88.28(6.08)  79.38(8.90)  88.94(6.23)  91.02(6.24)  93.79(9.21)  90.80(7.32)
OA 52.42(2.94) 51.13(3.11) 65.91(5.25) 79.91(2.15) 76.12(3.02) 83.57(3.60) 85.22(2.37)
AA 51.192.77)  61.14(2.60)  65.97(6.51)  86.67(1.50)  83.24(1.55)  88.23(1.47)  90.93(1.82)
Kappa 46.673.37)  4526(3.15)  61.50(6.12)  77.35(242)  73.03(3.29)  81.41(4.00)  83.25(2.69)
affect the classification accuracy. However, as the ran-
domness of the training samples caused the classifica-
tion results to float, it was difficult to determine the
optimal values of N and L. This will be considered one
of the subsequent research directions. Therefore, by the
rule of thumb, the value of N was considered 38 and that (a) (b) (c) (d)
of L was 48 to achieve the desired results.
C. COMPARISON ALGORITHM
We compared our algorithm with some highly cited stud-
ies and outstanding methods in the field to establish its © ® ® M)

advantages. The methods used for comparison included the
classical algorithm SVM [9], which is one of the most
classic hyperspectral classification methods, an unsupervised
feature extraction method based on band correlation(BCC)
[17], single parameter EPF-based method [22], GCK-based
method [30], MFL-based method [32], and the PCA-based
edge-preserving filtering (PCA-EPFs) [34] method
combining the MEPFs and the PCA. The SVM method
was implemented in the LIBSVM library using the radial
function kernel, and five cross-validations were performed.
The parameter values of other methods were consistent with
those provided in the literature. The computer used in this

VOLUME 7, 2019

FIGURE 6. Classification maps of different methods obtained from the
Indian Pines data set. (a) Original ground truth of the Indian Pines.
Classification maps obtained by (b) SVM, OA = 52.40% (c) BBC,

OA = 50.85% (d) EPF, OA = 65.16% (e) GCK, OA = 79.03% (f) MFL,

OA = 77.42% (g) PCA-EPFs, OA = 82.49% (h) MFL-EPFs, OA = 85.82%.

experiment was a 2.2 GHz dual-core processor with a mem-
ory capacity of 8 GB.

First, we conducted experiments on the Indian Pines
dataset. One hundredth of the ground truth data was ran-
domly designated as the training sample for ten independent
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FIGURE 7. Classification accuracies of the compared methods on the Indian Pines data set against different number of training samples (variations

from 1-10%).

(a) (b)

FIGURE 8. Classification accuracies of the compared methods on the
Indian Pines data set against different number of training samples
(variations from 1-10%).

Monte Carlo tests. Then average and the standard deviation
of these ten results were obtained. These values are listed
in Table 2. It is observed from the table that the algorithm
proposed in this study is better than the other algorithms, as
it demonstrates the highest OA, AA, and Kappa coefficient

TABLE 3. Computing time of the PCA-EPFs and MFL-EPFs methods for the
Indian Pines.

Number of training samples (%) 5 6 7 8 9 10

Computing time for
PCA_EPFs (s)

10.584 12.808 16.284 19.712 23.239 36.50

Computing time for

MFL-EPFs (s)

5.451 5.441 5.632 5964 5.681 5.950

when the training samples are small. Especially for Grass_P
(grass/ranch), Hay_W (hay/feed), and Oats, the classification
accuracy is up to 100%. Soybean_N (uncultivated soybean
land) and Corn, which are generally low in classification
accuracy, can achieve a classification accuracy of over 80%
and 90%, respectively. The OA of each of the classification
maps is reported in Fig. 6. It can be observed that the maps
of the proposed algorithm are similar to the ground truth
with less rate of noises, indicating that the extracted spec-
tral information and spatial information are representative.
Fig. 7 shows the variation trend of the classification accuracy
values concerning the training samples. It is observed from
this figure that the classification accuracy increases with an
increase in the number of training samples. When the number
of training samples reaches 10%, the accuracy reaches as high
as 99%. It is evident from this figure that the classification

FIGURE 9. Classification accuracies of the compared methods on the Salinas dataset with the different number of labeled samples per class (Variations

from 5-40).
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TABLE 4. Classification accuracies of the SVM, BCC, EPF, GCK, MFL, PCA-EPFs, and the MFL-EPFs methods for the Salinas dataset with ten labeled samples

per class as the training set.

Class Train/Test SVM BCC EPF GCK MFL PCA-EPFs ~ MFL-EPFs
Weeds_1 10/1999 98.96(1.10)  98.13(0.92)  100.0 (0.00)  95.23(4.84)  99.85(0.06)  100.0 (0.00)  99.98(0.04)
Weeds_2 10/3716 98.92(0.41)  97.10(227)  99.93(0.19)  6527(104)  99.58(0.13)  99.79(0.26)  99.71(0.57)

Fallow 10/1966 87.44(3.64)  82.72(9.88)  92.51(4.15)  79.41(9.75)  99.79(0.39)  98.58.2.74)  100.0 (0.00)
Fallow P 10/1384 96.75(1.04) 98.56(0.72) 97.39(0.33) 85.27(6.41) 96.62(2.65) 95.81(1.94) 98.65(2.07)
Fallow_S 10/2668 98.30(1.18)  93.91(3.70)  99.91(0.07)  82.51(6.12)  98.65(0.07)  99.99(0.02)  96.05 (3.83)

Stubble 10/3949 99.98(0.03)  98.07 (2.87)  99.98(0.02)  96.53(2.22)  99.17(0.72)  99.74(0.28)  99.66(0.30)

Celery 10/3569 96.49(2.85)  98.75(0.87)  97.47(3.02)  97.50(7.91)  99.75(0.07)  99.50(0.91)  99.85(0.07)

Grapes 10/11261 68.51(5.91)  54.63(132)  79.19(11.1)  99.19(0.48)  61.84(12.4)  99.43(0.57)  96.06(2.79)

Soil 10/6193 98.70(0.86)  96.65(1.71)  99.26(0.42)  100.0(0.00)  99.66(0.31)  99.57(0.40)  100.0(0.00)

Corn 10/3268 78.68(7.55)  7532(8.73)  87.62(5.52)  77.07(6.68)  87.93(6.36)  99.73(0.33)  98.72(1.08)
Lettuce 4 10/1058 85.43(6.45)  85.84 (4.85)  9429(4.75)  72.61(6.04)  90.95(1.90)  99.83(0.19)  99.98( 0.06)
Lettuce 5 10/1917 93.64(5.67)  96.89 (2.04)  97.67(5.78)  79.67(9.00)  99.78(0.11)  99.32(1.17)  98.96(2.21)
Lettuce_6 10/906 89.82(5.32) 9827 (041)  97.49(1.92)  99.36(0.41)  99.18(0.30)  97.05(4.78)  98.45(1.43)
Lettuce_7 10/1060 84.07(15.5)  88.20(3.93)  95.14(6.43)  90.02(4.56)  89.06(3.29)  96.32(5.90)  98.80(0.71)
Lettuce U 10/7258 49.67(5.81)  64.21(10.9)  61.36(14.5)  78.08(7.83)  56.24(9.81)  85.95(9.23)  96.73 (3.63)
Lettuce T 10/1797 90.87(7.96)  91.51 (3.32)  97.82(4.54)  88.94(623)  91.98(7.53)  99.98(9.21)  98.94 (0.44)

OA 82.15(2.94)  81.46(2.31)  87.58(5.21)  79.91(2.15)  84.43(1.92)  97.06(2.19)  98.25(0.48)
AA 88.51(1.47)  88.69(1.53)  93.56(1.89)  86.67(1.50)  91.88(0.87)  98.16(1.05)  98.79(0.38)
Kappa 80.23(3.18)  79.46(2.51)  86.25(5.72)  77.35(242)  82.69(2.09)  96.74(2.42)  98.06(0.54)
accuracy of the presented algorithm is comparable to that
of the PCA-EPFs algorithm, when the number of training
samples is large. The reason is that the advantage of this
algorithm on Grass_P (grass/pasture) and Oats disappears
with an increase in the number of samples. When the number
of training samples increases to a boundary, the training
samples of these two objects are 100%. Therefore, the accu-
racy values of these two compared algorithms tend to be
consistent. However, the algorithm proposed in this study
demonstrates an advantage over the PCA-EPFs algorithm in
terms of time consumption. It is observed from Table 3 that
the PCA-EPFs algorithm consumes a considerable amount of
time, especially when there is an increase in the number of
training samples. In contrast, the proposed algorithm does not
demonstrate such a drawback, which provides a significant
advantage.
Next, we verified the effectiveness of the proposed algo- @ ®)

rithm in the Salinas image dataset. Only 10 samples of each
class were used as the training set. The results obtained are
shown in Table 4. Although the number of training sam-
ples is limited, the classification accuracy is observed to
be over 98%. Figure 8 presents the classification maps on
the Salinas dataset. It is evident from this figure that the
data obtained by the proposed algorithm is only marginally
different from the original ground truth data. The variance
of this algorithm is the lowest among all the algorithms

VOLUME 7, 2019

FIGURE 10. Classification maps on the University of Pavia dataset.
(a) Original ground truth of the University of Pavia (b) obtained by
MFL-EFPs, OA = 94.19%.

used for comparison, indicating that the algorithm demon-
strates better stability, when the number of training samples
is limited. In particular, the classification accuracy of the
Vinyard_U (unproductive vineyard) far exceeds those of
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TABLE 5. Classification accuracies of the SVM, BCC, EPF, GCK, MFL, PCA-EPFs, and the MFL-EPFs methods for the University of Pavia dataset with twenty
labeled samples per class as the training set.

Class Train/Test SVM BCC EPF GCK MFL PCA-EPFs MFL-EPFs
Asphalt 20/6611 93.29(2.46) 71.22 (4.73) 96.94 (1.67) 87.38(4.73) 80.19(2.12) 88.46(5.29) 88.72(4.26)
Meadows 20/18629 88.51(1.74) 70.41 (6.33) 92.43 (3.15) 93.96(2.27) 84.49(3.27) 94.43(4.25) 93.94(4.31)
Gravel 20/2079 57.31(7.63) 74.18 (4.32) 81.88(13.2) 85.10 (4.15) 67.03(9.05) 95.85.(4.96) 97.19 (2.37)
Trees 20/3044 71.85(11.8) 87.94 (3.73) 78.61(14.6) 87.42( 3.88) 94.28(2.42) 92.22(2.46) 96.28(1.31)
Sheets 20/1325 92.68(4.79) 99.18 (0.27) 94.37(4.14) 93.70( 5.41) 98.35(1.01) 99.97( 0.05) 99.26 (0.44)
Soil 20/5009 48.79(7.25) 73.92 (8.85) 61.77(10.2) 82.76(5.10) 76.63(4.93) 99.47(0.61) 98.40(2.30)
Bitumen 20/1310 49.39(4.60) 88.90 5.47) 71.67(9.42)  88.04( 5.65) 89.83(4.18) 96.33(3.40) 99.85(0.23)
Bricks 20/3662 77.27(4.61) 74.68 (4.69) 86.85(6.43) 81.51(6.60) 63.28(8.71) 91.41(3.12) 93.64(5.11)
Shadows 20/927 99.88(0.12) 99.83 (0.33) 98.25(1.15) 99.33(0.38) 98.22(2.19) 91.56(5.08) 98.36(1.73)
OA 75.66(3.31) 81.46(2.31) 84.70(4.11) 89.58 (1.55) 87.38(2.17) 93.92(2.36) 94.40(2.08)

AA 75.44(2.39) 88.69(1.53) 84.75(3.81) 88.81 (1.02) 89.25(2.02) 94.42(1.31) 96.19(0.88)

Kappa 68.96(3.88) 79.46(2.51) 80.26(5.07) 86.22 (2.00) 83.59(2.68) 92.05(3.01) 92.68(2.67)

FIGURE 11. Classification accuracies of the compared methods on the University of Pavia dataset with the different number of labeled samples per class

(variations from 20-120).

other comparison algorithms. Fig. 9 shows the OA, AA, and
Kappa coefficient as functions of the training size for samples
per class (variations 5—40).

Finally, the proposed algorithm was applied to the Uni-
versity of Pavia dataset. Each class used only 20 samples
as the training set. The overall classification accuracy was
observed to be as high as 94%. The accuracies of different
methods with 20 labeled samples per class as the training
set are summarized in Table 5. The comparison between the
original ground truth data and the classification map of the
algorithm is shown in Fig. 10. The two figures appear very
similar, except for some minor details. Fig. 11 shows a plot
of the classification accuracy, as the sample increases from
20 to 140. Overall, the accuracy of the proposed algorithm is
observed to be superior to the other algorithms.

V. CONCLUSION

In this study, a hyperspectral classification algorithm
combining multiple edge-preserving filtering features and
multiple feature learning is proposed. The LPP-based

106870

multiple edge-preserving filtering method was employed to
extract the spatial features of different scales, while the band
clustering method was used to extract the spectral features,
which represent the nonlinear and linear features of the
hyperspectral images respectively. These two features deter-
mined the classification results using the MFL. Based on the
aforementioned analyses, it was confirmed that the proposed
algorithm demonstrated advantages in terms of classification
accuracy compared to other algorithms, especially when the
number of training samples was relatively limited. In addi-
tion, there was no increase in the execution time, as the num-
ber of samples was increased. However, the LPP algorithm
adopted for the purpose of dimension reduction in this study
could accurately obtain the local structure of the neighbor-
hood. It was not capable of extracting the inherent structure
in the original image, resulting in the loss of some useful
information. Besides, the dimensionality N of the dimension-
reduced original hyperspectral image and the dimensionality
L of the dimension-reduced MEPFs were considered the
empirical and not the optimal values for each dataset.
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