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ABSTRACT Detection of QRS complexes in electrocardiogram (ECG) signal is crucial for automated
cardiac diagnosis. Automated QRS detection has been a research topic for over three decades and several
of the traditional QRS detection methods show acceptable detection accuracy, however, the applicability
of these methods beyond their study-specific databases was not explored. The non-stationary nature of
ECG and signal variance of intra and inter-patient recordings impose significant challenges on single QRS
detectors to achieve reasonable performance. In real life, a promising QRS detector may be expected to
achieve acceptable accuracy over diverse ECG recordings and, thus, investigation of the model’s general-
ization capability is crucial. This paper investigates the generalization capability of convolutional neural
network (CNN) based-models from intra (subject wise leave-one-out and five-fold cross validation) and
inter-database (training with single andmultiple databases) points-of-view over three publicly available ECG
databases, namely MIT-BIH Arrhythmia, INCART, and QT. Leave-one-out test accuracy reports 99.22%,
97.13%, and 96.25% for these databases accordingly and inter-database tests report more than 90% accuracy
with the single exception of INCART. The performance variation reveals the fact that a CNN model’s
generalization capability does not increase simply by adding more training samples, rather the inclusion
of samples from a diverse range of subjects is necessary for reasonable QRS detection accuracy.

INDEX TERMS Convolutional neural networks, deep learning, ECG, generalization, QRS complex,
supervised learning, visual attention.

I. INTRODUCTION
Electrocardiogram (ECG) records the bio-electric response of
heart’s beating and characterizes a normal heart beat using a
P wave, a QRS-complex and a T wave. The distinguishing
shape of the QRS-complex forms the basis of ECG analysis
[1], [2]. Detection of the QRS-complex may trigger the auto-
mated analysis of ECG characteristics (i.e., locate neighbor-
ing P and T waves, determination of R-R intervals, and heart
rate), detection of cardiac anomalies [3], and classification of
beats. ECG signal may also characterize individual subjects
to form unique bio-metric signatures [4].

Over the last three decades, much research has been
done on automated QRS detection. However, the challenges
including the non-stationary nature of ECG, presence of
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different types of noise (e.g., baseline noise, power line
interference, electrode contact noise, and motion artifacts)
and signal variance at inter-patient, as well as, intra-patient
recordings has kept the QRS detection as an active research
area [1]. The traditional methodology of QRS detection is
divided into a preprocessing stage and a decision stage. The
preprocessing stage includes linear and non-linear filtering
to suppress noise along with P and T waves and do feature
extraction, whereas, the decision stage includes QRS detec-
tion and decision logic [1], [5]–[10]. Partial [9], [11] or all
[5] records of publicly available databases (e.g., MIT/BIH
arrhythmia, MIT-BIH in short) along with study specific
databases were used in traditional approaches to report per-
formance. Usage of a single database for performance evalu-
ation leads to the fact that traditional approaches either lacked
the generalization ability over unknown databases or such
ability was not explored.
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Convolutional neural networks (CNNs), a class of deep
neural network, consist of convolution layers where each such
layer automatically learns it’s kernel coefficients during the
training process through back-propagation. This constrained
back-propagation enables CNN to achieve shift in-variance,
robustness to distortions, reduction in free parameters and
thus, requires proportionately smaller training data for cer-
tain levels of generalization performance with minimal pre-
processing [12], [13]. In general, CNN inputs image data,
however, one-dimensional (1-D) CNN is a variant of CNN
which operates on time-series signals, like ECG signal. 1-D
CNN is applied on ECG data for different tasks including
beat classification [14]–[16], anomaly detection [17]–[20],
QRS detection [21]–[26], sleep-wake classification [27] and
bio-metric identification [4]. Most of the CNN-based QRS
detection studies used single standard ECG databases (e.g.,
MIT-BIH database) for both training and testing [21], [26].
Although Xiang et al. [22] used two databases for analyzing
generalization ability of a CNN model, it explored only one
way generalization i.e., it trained using MIT-BIH database
and tested on INCART database, but not vice versa. In addi-
tion, the effect of multi-database training on generalization
ability of CNN in QRS detection is yet to be explored.
Therefore, further research is warranted for analyzing the
generalization ability of CNN in QRS detection.

The main contribution of this study is to investigate the
impact of ECG dataset diversity on generalization of a CNN
model, both intra and inter-database testing approaches using
three publicly available datasets were applied. Intra-database
validation is used to analyze subject-wise generalization abil-
ity of the model within individual database. Whereas, inter-
database validation reflects the generalization ability of the
model beyond the training database(s) where validation is
performed using unknown database(s). A new CNN model is
proposed to carry out this investigation following an existing
best performing CNNmodel from the literature [22] for QRS
detection.

The rest of this paper is structured as follows. Section II
presents the methodology adopted for QRS detection gen-
eralization problem. Section III describes ECG databases.
Obtained results are presented in section IV and analyzed in
section V. Finally, section VI concludes the paper.

II. METHODOLOGY
A. SEGMENTATION AND DIFFERENTIAL SIGNAL
ESTIMATION
An ECG signal segmentation strategy aims to capture the
QRS morphology. For heart beat detectors, like this study,
a segment is to be defined along with a proper sliding mea-
surement so that it can maximize the likelihood of encom-
passing the QRS morphology of almost all of the beats
leaving fewer beats with, at least, partial QRS structure.
According to ANSI/AAMI EC38 and EC57 standards [28],
while localizing heartbeats, an estimated location is deemed
accurate if it is no further than 150ms from the corresponding

FIGURE 1. The proposed new model architecture of two-level
attention-based CNN. In the figure, (a) is the first level CNN which
consists of two sets of alternate convolution (cyan) and average-pooling
(yellow) layers, (b) is second level CNN consisting of two consecutive
convolution layers with no pooling layer, (c) represents flattened CNN
features (number of channels * features per channel) of each level CNN,
(d) is concatenation of two levels flattened features which is fed to
fully-connected layer (100 neurons) in (e) followed by the output layer
in (f) which consists of two neurons. The bottom part of the figure shows
the formation of a segment from raw and differentiated ECG signals. The
dash-n-dotted line represents a whole segment, known as
signal-envelope, and dotted-line represents inner segment with the
middle point as the R-peak detection point. A signal-envelope moves
forward in time with 54 ∗ 2 = 108 samples overlap.

annotated location. This means, the current sample point can
be represented as an R peak if the annotated peak remains in
the range of 150ms before or after the current detection point.
In [21], a similar philosophy was followed in segmentation.
The ECG databases in this study are sampled at 360 Hz and
150ms is equivalent to 54 samples which when considered on
either side of a detection point, forms a total of 108+1 = 109
samples. The group of 109 samples forms a detection window
and is also called an inner segment, in this study, which can be
represented as 54+ 1+ 54 = 109 samples. A segment enve-
lope is now formed around this inner segment by appending
150 ms equivalent samples at either end of the inner segment
having an orientation of 54+54+1+54+54 = 217 samples.
The terms envelope or segment will be used to refer to the full
segment of 217 samples and the inner segment or detection
segment will refer to the 109 sample segment. The segment
is then shifted keeping no overlapping of inner segments.
Figure 1 shows segmentation, segment shift and the network
architecture. There are two reasons behind keeping no overlap
of inner-segments. The first reason is obviously not to detect
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the same R-peak again in the next shifted segment and the
other reason is that as the R-R interval, on average, is greater
than 0.6 seconds, next QRS is likely not to occur before at
least 0.6 seconds of the previous occurrence, so the detection
segment will not miss that event due to this non-overlapping
decision.

The experiment feeds differentiated ECG signal segment-
by-segment into the CNN model. By differentiating ECG
signals, a QRS-complex becomes more prominent, appearing
as a high slope and the resultant signal spans around the
zero axis. Differentiation of raw ECG signal is considered
as a minimum level of preprocessing [22]. In this study,
the raw ECG signal was segmented progressively and just
before feeding into the network, the current segment was
differentiated. This just-in-time differentiation applied to a
signal segment facilitates immediate feature extraction by
the proposed approach as opposed to many other approaches
where mandatory preprocessing steps were required to apply
to the overall signal before any kind of feature extraction. In
this study, equation 1 was used to differentiate a raw ECG
signal segment

y1(n) = x(n)− x(n− 1) (1)

where a difference signal yielded by subtracting previous
sample amplitude from that of the current sample.

B. ATTENTION BASED HIERARCHICAL AND
MULTI-SCALE CNN
To analyze the generalization capability, a suitable model
is needed. There are two choices, either select an existing
established model or create a new model with comparable
performance.

A shallow CNN architecture [21] (single convolution
layer) with multi modal physiological inputs (i.e., arterial
blood pressure along with ECG Signal) shows good perfor-
mance where more than two stages of preprocessing were
applied to the input signal. In our study, CNN is expected
to perform well with a minimum level of preprocessing and
a single physiological input (i.e. ECG Signal), therefore,
considering these facts, that model was not selected. Another
CNN-based QRS detection study [26] takes a single ECG
signal as input and reported 99.81% sensitivity withMIT-BIH
arrhythmia database by using a shallow network structure of
two convolution and one pooling layers. In that study, each
sample point was considered as a detection point which was
described by a sample of 145 neighboring points (consid-
ering 360Hz sampling frequency of MIT-MIH arrhythmia
database) and due to a single point shifting, several positive
predictions for a single QRS detection was eventually gener-
ated which was handled by applying an optimized cluster-
ing by taking all the classification outcomes at the end of
each subject recordings. Due to the existence of clustering
constraint with all the accumulated classification decisions,
this model was considered not suitable in this study where
the main focus is to analyze the strength of a CNN only

without mixing any other machine learning methods. A Two-
level attention-based CNNmodel [22] reported high accuracy
and positive prediction rate (PPR), and for training the model,
400 representative QRS complexes along with associated
non-QRS segments were selected. Although this model used
minimal preprocessing, it could not be reproduced due to the
lack of information regarding the selection of 400 representa-
tive beats. At this point, although the main focus of this study
is to investigate the generalization capability of a CNNmodel
and not to find the best CNN model for QRS detection from
ECG signals, no existing CNN model from literature, for the
scope of this study, could be selected and the only option left
was to create a newCNN architecture which performs at least,
as good as the above CNN models.

Towards finding a new model, the attention-based two-
level CNN model [22] was the inspiration in this study due
to the fact that this shallow CNN architecture well performed
among other two CNN models discussed above for QRS
detection and in addition, model’s performance (trained on
MIT-BIH arrhythmia database) was validated against a sec-
ond database (i.e. INCART database) which was unknown
to the model. There were two CNN sub-networks (a.k.a.
levels) which took ECG segments of two different scales
as inputs to extract two streams of features. For the first
level CNN (known as object-level CNN), an average oper-
ation of five ECG samples was performed, followed by a
difference operation of each averaged outcome to form a
segment of average-difference signals as input which then
went through two sets of convolution-pooling layers to
extract coarse-grained features. The input segment for sec-
ond layer CNN (known as part-level CNN) was formed by
simply taking difference operation between successive sam-
ples which then went through a single convolution-pooling
layers to extract fine-grained features. Two streams of fea-
tures were then combined and then fed into the classifier
(i.e., fully connected layer) for classification. One of the
confusions regarding that model was why five samples were
taken for average operation instead of any other number of
samples. While designing a model for this study follow-
ing the above two-level attention-based model, alternative
approaches were investigated for the object-level CNN to
address the above mentioned confusion. To keep things sim-
ple, in this experiment, the idea of averaging the samples
was discarded, and same difference signal was used for both
the object and part-level CNNs but with different lengths.
Using trial-and-error method the following model decisions
were reached:
• A segment with double number of samples for the
object-level CNN input than the part-level CNN was
fixed,

• The object-level CNNcontained two sets of convolution-
pooling layers and was optimized to have larger recep-
tive fields than the part-level CNN,

• The part-level CNN contained no pooling layer, instead,
it had two successive convolution layers.
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TABLE 1. Data flow through different layers and model parameters of
proposed multi-level CNN of ECG signals sampled at 360 Hz. Here, Conv:
Convolution layer, Pool: Average pooling, BN: Batch normalization, FC:
Fully-connected layer.

In the two-level CNNs, one CNN level extracts coarse
grained object-level abstract view of the signal and the other
level CNN extracts fine grained detailed features from the
inner segment of the concerned segment envelope. These
hierarchical views are then combined and sent to the fully
connected (FC) layer followed by a two-neuron output layer
for decision making - a positive outcome if a QRS event is
present in the inner-segment or a negative outcome otherwise.
This scheme is illustrated in figure 1 and network details
with changes in the input-output volume are summarized
in table 1.

In the literature, multi-scale was found to achieve, among
other methods, using pooling operations, dilated convolu-
tion [29], manual scaling operations [22], [30], and different
interpolations [31]. In this study, multi-scale effect might be
observed in several places in several ways, including (i) the
case of the part-level CNN which utilizes more convolution
filters than the object-level CNN, thus producing increased
number of feature-maps, (ii) the case of object-level CNN
which utilizes two pooling layers but the part-level CNN
has no pooling layer, (iii) the case of the input size of the
object-level CNN that is double than the part-level CNN, and
finally (iv) the case of the object-level CNN that has larger
receptive fields than the part-level CNN. The CNN uses a
learning rate of 0.001 throughout all epochs, a cross-entropy
loss function, and an Adam optimizer. The advantage of
using cross-entropy is that the natural log function takes into
account the closeness of a prediction and is a more granular
way to compute error. The Adam optimization algorithm [32]
is used instead of the classical stochastic gradient descent
procedure as it is efficient and performs better with minimal
tuning of input parameters. Tomake sure network weights are
in a reasonable range before training starts, they are initialized
with Xavier uniform initialization [33] to get better training
performance. The ECG segment envelope and inner detec-
tion segment consists of 217 and 109 samples respectively

which places a limit on the number of CNN layers to be used
in the architecture.

1) SEGMENT ENVELOPE: OBJECT LEVEL
ABSTRACT VIEW
The two-level CNN consists of two CNN sub-networks. The
first sub-network inputs a signal envelope and focuses on
object level features whereas the other sub-network inputs an
inner-segment of a signal envelope and focuses on detailed
features. The object-level sub-network consists of two iden-
tical layer sets where each layer set consists of a convolution
layer with five filters (a.k.a. channels) followed by a non-
linear activation (ReLU) and sub-sampling (a.k.a. pooling)
layer. In general, three main layers are used to build the
CNN architecture: a convolutional layer, a pooling layer, and
a fully-connected layer. Each neuron in a convolution layer
does not connect to every neuron in the previous layer, rather
each neuron is connected to only a local region of the input
volume. The spatial extent of this connectivity is a hyper-
parameter called the receptive field of the neuron which
equivalently is the filter or kernel size. Each convolution layer
in the object-level CNN uses five filters of fifteen samples
long receptive fields where each filter convolves through the
segment envelope and produces a feature-map, yielding five
convoluted feature maps in total. Changing the receptor field
size or the number of filters does not always yield increased
performance. Filtering with greater or smaller kernels has
corresponding side effects. By increasing the kernel size of
a filter, a neuron basically becomes responsible for summa-
rizing a larger receptive field of the previous layer yielding a
smaller convoluted feature map which in the case of time-
varying signal data may fail to reveal interesting patterns.
On the other-hand, decreasing kernel size of a filter yields
a larger convoluted feature map which may possibly capture
unnecessary information of the signal representing noise. The
number of convolution layers per level for two-level sub-
networks, the number of filters per convolution layer and
each filter’s kernel size are optimized based on the MIT-
BIH database using K-fold validation approach of K = 5. A
filter convolves with the receptive field in the previous layer
input and produces single scalar output and then slides to the
next adjacent input data with a certain overlap. This sliding
operation is known as a stride and in this study a stride is one.
The filter slides one sample to the right to produce a single
scalar output and repeating this process eventually yields a
convoluted feature map. Each hidden unit in a feature map
shares parameters (weights and biases) with all other hidden
units in that feature map to compute their pre-activations
reducing the number of parameters dramatically. Sharing
parameters also means that hidden units of a feature map are
extracting the same feature from the previous layer. It might
be tempting to extract lots of features by using lots of filters,
however, computing resources restrict such an approach and
there is a performance threshold beyond which there is no
further improvement observed. As in [34], the computation
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of hidden layer activation can be summarized as

yj = gj tanh(
∑
i

kij ∗ xi) (2)

where xi is the ith channel of input, kij is the convolution
kernel, gj is a learned scaling factor, and yj is the hidden layer.
Pre-activations are computed using the convolution of each of
the ith input channel to the jth feature map and then summing
across that input channel. Then a non-linear tanh function is
applied among other alternatives such as the sigmoid, and the
rectified linear unit (ReLU). Optionally, a bias could also be
introduced as bj to be shared across all the feature maps.

It is common to periodically insert a pooling layer in-
between successive convolution layers which progressively
reduces the spatial size of the representation to reduce the
number of parameters and the computation in the network.
In addition, the pooling layer helps to control over-fitting.
Each convolution layer of the object-level CNN follows
a sub-sampling layer with a (2, 1) filter which produces
output size of half of the input. There are mainly two
kinds of sub-sampling operations - max and average sub-
sampling. Max sub-sampling outputs the maximum value of
the clustered neurons, and average or mean sub-sampling
outputs the average value of the clustered neurons. In general,
max sub-sampling picks prominent features and mean sub-
sampling moves combined affects forward. In this work,
mean-pooling was used as it performed slightly better than
max-pooling, even thoughmax-pooling is commonly used on
image input data. This network extracts coarse and spatially-
varying sets of features from the signal envelope. Figure 1
represents input-output dimensions at every step of the CNN
architecture.

2) INNER SEGMENT: FINE-GRAINED DETAILED VIEW
The second sub-network of the CNN architecture consists of
two convolution layers only with no pooling layer and inputs
the inner detection segment of a segment envelope. In order
to extract fine grained detailed features, eight convolution
filters were used instead of five that were used in the object-
level sub-network. If an annotated peak exists within this
region, then the model should output a positive decision, that
is why this region is called the detection segment in this
study. It is obvious to notice that a QRS may appear at any
point within this region, not necessarily at the middle detec-
tion point. Sometime it may happen that the R-peak almost
touches the detection boundary and the detection segment
contains a partial QRS structure. So, the features extracted
from this inner segment may contain QRS morphological
features completely or partially. This part-based detection
philosophy already exists in the computer vision literature
[35], [36] and a similar philosophy was explored here as well.
In those studies, an image was segmented into several regions
(a.k.a., bottom-up attention) followed by a top-down filtering
operation (a.k.a., top-down attention) to filter out regions con-
taining no detectable object and then extract part-level dis-
criminating features from these regions to make fine-grained

detection decisions. In this study, a simple one-dimensional
ECG signal is used and the inner-segment is considered as a
single proposed region from which part-based discriminating
features of QRS are extractedwhich takes part in the detection
decision in combination with object level features extracted
from the segment envelope. Output features from both CNN
sub-networks are concatenated and sent as input to the fully
connected (FC) layer and finally to the output layer of two
neurons which declares the presence or absence of QRS.

C. TRAINING AND TESTING APPROACHES
In this study, two different testing strategies are used - intra
database and inter database testing which are described in
the following subsections. The segmentation process of ECG
data produced more negative labeled segments, almost dou-
ble, than positive labeled segments per ECG records where
a positive labeled segment contains a QRS event, however,
negative labeled segments do not. The increase of class imbal-
ance generally has an adverse effect on a classifier’s test per-
formance [37] and this, in general, is compensated by either
under-sampling the majority class or supplement the under-
sampling operation with over-sampling of the minority class
[38]. The former approach among the two, under-sampling
the negative labeled segments, is adopted to maintain class
balance for training purposes by removing randomly cho-
sen negative labeled segments per ECG recording. Note that
during testing, all segments from recordings are sent to the
network as a continuous stream of segments without any
filtering.

1) INTRA-DATABASE TESTING
Intra-database testing was carried out in order to validate
generalization ability within individual databases. This type
of testing was performed using leave-one-out cross testing
and k-fold cross testing with k = 5 on each database. Leave-
one-subject-out testing uses all the segments from n − 1
recordings per database for training and then validates on
the segments from the remaining n-th recording. Five-fold
validation is carried out subject-wise. In subject-wise five-
fold validation, recordings from each database are divided
into five folds and then testing is carried out over each fold
sequentially, using the remaining k−1 = 4 folds for training.
For example, if a data set contains 46 recordings, then 5-fold
cross validation will generate five training and testing sets
composed of [9, 9, 9, 9, 10] and [37, 37, 37, 37, 36] subjects
respectively.

2) INTER-DATABASE TESTING
Inter-database testing was used to analyze the generaliza-
tion ability beyond the training database(s) by using one
or more unknown testing database(s) and was carried out
in two phases. The first phase considers one database for
training and the other two for testing. All the recordings
from a database were segmented, a balance of class seg-
ments was achieved by removing randomly selected negative
labeled segments and the model was trained. For testing, all
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TABLE 2. Used performance metrics.

recordings from each target database were segmented and fed
into the network for testing without any removal of segments.
In the second phase of inter-database testing, a combination
of two databases were used for training and then validated
with the single unknown database. The training dataset was
prepared similarly by segmenting all the records from two
source databases, a class balance is maintained by removing
randomly selected negative samples from each record per
database, subjects from both databases are mixed together
by pulling the records from both databases alternatively and
then sent into the network for training. All the segments of
the target database are then used for testing with no exclusion
of segments.

D. PERFORMANCE METRICS
Metrics used to measure the performance of both intra and
inter-database testing scenarios are sensitivity (Sen), speci-
ficity (Spe), positive predictive rate (PPR), and accuracy
(Acc). These metrics are formulated as Table 2.

E. MODEL IMPLEMENTATION
To access ECG data files, segment and differentiate the
records, implement the CNN model, perform training and
validation of the model, PyTorch [39] was used in this study
which is a Python-based deep-learning library. It provides an
easy and intuitive way to define and process a dataset, design
and tweak the neural network and above all, it is relatively
easy to code and debug.

III. ECG DATA
Three ECG databases from the Physionet data bank
[40] are used in this study-the MIT-BIH Arrhythmia
database (MIT-BIH), the QT database, and the St. Peters-
burg Institute of Cardiological Technics 12-lead Arrhythmia
Database (INCART). Each database has unique character-
istics and is sampled at different frequencies. For instance,
the MIT-BIH, INCART and QT comes with ECG record-
ings of 360, 257, and 250 Hz sampling frequencies respec-
tively and different ADC gains and formats. In this study,
experiments are carried out on these databases at 360 Hz
sampling frequency to ensure all samples share common
recording characteristics. In order to do that, recordings from
the later two databases, INCART and QT, were re-sampled at
360 Hz. All beats annotated with the American Heart Asso-
ciation (AHA) standard set of annotation codes (along with
further sub-division of Physionet) were considered except
the paced (P) and fusion (f) of paced and normal beats. The
databases are summarized in Table 3.

TABLE 3. Characteristics of Physionet databases used in this study.

The MIT-BIH contains 48 half-hour excerpts of two-
channel ambulatory recordings from 47 subjects and each
recording is sampled at 360 Hz with 11-bit resolution over
a 10 mV range. Among the two channels, common is
the modified-lead II (MLII) except two recordings, record
102 and 104, and the other lead is mainly lead V1, sometimes
V2, V4 or V5. This study uses MLII lead signal whenever
available, otherwise the first lead among the available leads
is used. This contrasts several studies where recordings of
only MLII leads were used and above mentioned two records
were excluded [22]. In this study, beats from records 102, 104,
107, 217 were taken partly excluding paced and fusion beats.
The INCART consists of 75 annotated recordings extracted
from 32 Holter records where each record is 30 minutes long
and contains 12 standard leads, each sampled at 257 Hz. In
this study, recording from the first lead (lead I) was used
for all the INCART records. The third database, QT, consists
of 105 fifteen-minute excerpts of two-channel ECG Holter
recordings, each sampled at 250 Hz, and include a broad
variety of QRS and ST-T morphology. Recording from the
first channel of the two was used in this study. Among
105 recordings, 23 records whose names range from sel-30 to
sel-52 in sequence were not provided with annotation files
(.atr file) with them and this is why these recordings were
excluded from this study leaving only 82 recordings to work
with. An annotation file contains sets of labels which point
to specific locations in the recording and describe features
at those points, indicating signal sample location and type.
Physionet tool xform was used to re-sample signals to target
frequency.

IV. RESULTS
A. INTRA-DATABASE TESTING
1) LEAVE-ONE-OUT (LOO) TESTING
The accuracy of leave-one-out testing on three databases are
represented in the bar charts in Figure 2-A and the Table 4.
The MIT-BIH shows the highest accuracy, followed by a
decrease in INCART and the lowest in QT. In addition,
the standard deviation isminimum inMIT-BIH (less than 1%)
and almost equal (2.7%) in INCART and QT.

2) K-FOLD TESTING
The accuracy of five-fold testing performance of three
databases are shown in the Figure 2-B and Table 4. Similar to
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FIGURE 2. Intra-database subject-wise test accuracy of (A) Leave-one-out (LOO), (B) K-fold (five-fold) and (C) comparison
between these two test methods. Databases are MIT-BIH Arrhythmia, INCART, and QT.

TABLE 4. Intra-database test (e.g., leave-one-out (LOO) & K-fold) metrics for QRS detection. Databases are MIT-BIH Arrhythmia,
INCART, and QT.

TABLE 5. Inter-database test (e.g., training with single-db &
combined-db) metrics for QRS detection. Databases are MIT-BIH
Arrhythmia, INCART, and QT.

leave-one-out testing, the MIT-BIH shows the highest accu-
racy, followed by a decrease in INCART and the lowest in QT.
However, compared to leave-one-out, accuracy decreased in
K-fold validation where MIT-BIH variation was negligible
compared to INCART (1%) and QT (2.5%) (Table 4). The
variances in K-fold are smaller than leave-one-out across
all databases. This could be due to the fact that deviation
in K-fold represents the variation across folds rather than
individual subjects.

The comparison of the accuracy between two intra-
database testing methods namely LOO and K-fold is shown
in Figure 2-C. It is obvious that the k-fold testing showsworse

performance than leave-one-out testing for all databases. This
decrease in performance can be attributed to the lower num-
ber of training samples. Interestingly, the fall in performance
(the slope) is not the same across all databases and it is highest
for QT.

B. INTER-DATABASE TESTING
1) TRAIN ON ONE-DATABASE, TEST ON OTHER-TWO
The accuracies of the first phase of inter-database test-
ing are shown in the Figure 3-A and Table 5 where sam-
ples of a single database were used for training and the
model was tested on samples of other two databases. The
CNN model trained using the MIT-BIH database shows
better accuracy for both the QT and INCART database
(Figure 3-A) with the QT database slightly higher than the
INCART database. On the other hand, the CNNmodel trained
using the INCART database shows best accuracy for the
MIT-BIH database and slightly lower for the QT. The QT
databasewas nearly equally generalized by both theMIT-BIH
and the INCART databases. Finally, although, the QT
trained model generalized the INCART database worst,
it generalized the MIT-BIH database nearly equally as the
INCART did.
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FIGURE 3. Cross-database testing accuracy of ECG databases using (A) single database training (CNN model trained with
single database used to test other two databases separately), (B) two database joint-training and (C) comparison between
these two. For example, in (A), first bar-pair represents testing databases (INCART, QT) for which MIT database was used
for training, so the label ‘MIT’ stands for.

2) TRAIN ON TWO-DATABASES, TEST ON
THE REMAINING
The accuracies of the second phase of inter-database testing
are shown in Figure 3-B and Table 5 where a pair of databases
were used to train the model and validated on the remaining
one. The testing performance of the MIT-BIH, when trained
with the other two databases (e.g., INCART and QT), is the
highest, closely followed by the QT and the lowest INCART.
The comparisons of accuracy of two inter-database valida-
tion processes are summarized in Figure 3-C. The accuracy
consists of three different colored-lines which represent three
different test databases where each colored-line consists of
three points. First two points in a line represent the validation
performance of a database when trained with each of the
remaining databases individually, whereas, the third point
indicates validation performance when model is trained with
the other two databases combined. The figure shows that the
model’s performance on a validation database, when trained
with other two databases combined, does not go beyond the
best performance on that validation database when trained
individually.

V. DISCUSSION
In this study, a two-level attention-based newCNNmodel was
proposed and the generalization capability of the model was
explored using intra and inter-database testing over three pub-
licly available ECG databases namely MIT-BIH, INCART
and QT. Intra-database testing includes subject-wise leave-
one-out and K-fold testing, whereas, inter-database testing
considers single and multi-database training. Intra-database

TABLE 6. Distribution of the 105 records according to the original
database.

test reveals that the CNN model better generalizes subjects
in a database which has lesser subject-level variance. On the
other hand, the inter-database test shows that increasing the
volume of training samples even from multiple databases
does not increase accuracy beyond the best accuracy which
is achieved using training databases individually.

Intra-database testing accuracy (both LOO and K-fold
testing) show better generalization capability of MIT-BIH
database (Figure 2). This indicates that the model better
generalizes over the unseen subjects of MIT-BIH database
than either INCART or QT. This may be due to lower inter-
subject variation of MIT-BIH database compared to other
two databases. The result also shows that the accuracy of
the model decreases consistently in K-fold testing across all
databases compared to LOO testing which may be attributed
to the reduced number of training samples from LOO to
K-fold test. However, this decrease in accuracy observed in
MIT-BIH is negligible (0.3%) compared to INCART (0.9%)
and QT (2.4%). This varied decreasing rate of accuracy
reveals the fact that even though the reduced training sam-
ples have an impact on generalization, the characteristics of
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TABLE 7. Comparison of generalization performance (only sensitivity is shown) of several QRS detection methods (i.e. both traditional and CNN based)
on different databases (DBs), including MIT-BIH Arrhythmia (MIT-BIH), INCART, and QT. Intra-database validation methods include Leave-one-
subject-out (LOO) and K-Fold, whereas inter-database validation refers to a model validated with one or more test databases which was
trained using a single or combined databases.

the subjects held for testing might have a greater impact.
Databases affected by the holding of subjects likely to contain
recordings from a diverse range of subjects. Thus, holding
one-fold subjects, containing unique signal characteristic,
from training may restrain the CNN model to generalize well
over this fold. TheMIT-BIH’s negligible decrease in accuracy
further supports the finding that its subject level variance
is smaller than the INCART and the QT. The maximum
decrease in accuracy in the QT may be attributed to the
diverse level of subjects it contains. Further investigation to
claim the presence of diversified subjects in QT reveals that
the QT database is composed of different other databases
(Table 6) of varied subject characteristics [41]. This finding
affirms the claim that the subject-level variance being a major
cause of poor generalization in intra-database testing. Thus,
exposure of the CNN model to diverse training samples is
important than more samples of similar type.

Inter-database testing reveals that the MIT-BIH database
is best generalized by either of the training databases (more
than 96.5%, Figure 3, Table 5). This may follow similar
justification as the intra-database testing that the MIT-BIH
recordings likely to have lesser subject level variance which
INCART or QT database-based trained model finds easier
to generalize. The QT database is the second best database
that has been generalized nearly equally by the MIT-BIH
and INCART (95% and 94.4%). However, this accuracy is
lower than MIT-BIH generalization accuracy. The reason for
comparatively poor generalization of QT database probably
due to the fact that it contains recordings from diverse range
of subjects for which the model, trained with either MIT-BIH
or INCART, had difficulty in QRS detection. The existence
of such diversified subjects in QT database can be under-
stood from its composition as shown in Table 6. Although
the INCART database has greater intra-database accuracy
than QT, interestingly, it had the poorest generalization by
QT (86.3%), as well as MIT-BIH (91.6%). There might be
subject level unique signal characteristic of INCART that
hinders its generalization.Moreover, several recordings of the
INCART database (Figure 4 D-F) show much noise which
is likely to have a major impact on this poor generalization.

The MIT-BIH database is comparatively less noisy than the
other two databases (Figure 4 A-C) and this characteristic,
in addition to having lesser subject level variance, may have
additional influence to its generalization by noisy databases.
It looks like the ECG database with noisy recordings are able
to better generalize databases with comparatively less noisy
recordings, although, the presence of lesser varied subjects,
as well as, similar recordings (e.g., presence of 15 MIT-BIH
records in QT) may show biased performance.

In another scenario where the model was trained using
samples from two databases (INCART and QT), the test
accuracy of MIT-BIH (97.50%, in Table 5) did not increase
compared to single database training INCART (97.49%)
or QT (96.60%). Moreover, the combined database train-
ing yields test accuracy for QT (94.48%) and INCART
(90.54%) slightly below the best accuracy (95.04% and
91.65% respectively) achieved using the single database
(MIT-BIH for both cases) training 5). Therefore, combining
samples of multiple databases does not better generalize
the model than that is achieved using the model trained
using one database (Figure 3-C). This indicates that inclu-
sion of a second database in training is adding complemen-
tary knowledge rather than supplementary (for this set of
databases) and hence not aiding in improving accuracy. In
addition, the presence of different types of noise (e.g., base-
line noise, power line interference, electrode contact noise,
and motion artifacts) in the test database can make it difficult
to achieve higher accuracy using a model trained with less
noisy databases. In particular, a closer look into compara-
tively noisy signal patterns of INCART recording number
12 and 53 (Figure 4-E, F) probably justifies this claim.

The performance of a QRS detector should consider the
problems of noisy or pathological signals [1]. The scenario
of inter-database testing stresses the CNN model to explore
some of these problems. The inter-database testing accu-
racy of both single database and combined database training
shows that the model generalizes to unknown databases with
more than 90% accuracy (except INCART that was poorly
generalized in both categories). The CNN model generaliza-
tion studies over multiple databases are scarce in the QRS
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FIGURE 4. Comparatively noisy ECG recording excerpts per database, (A-C) MIT-BIH, (D-F) INCART, and (G-I) QT. Each signal excerpt consists of
samples ranging from 200 to 1200. Recording number of each signal is mentioned at the top of corresponding excerpt.

detection context. Table 7 presents the sensitivity of a single
traditional and three CNN based QRS detection methods
along with results of this current study. In a QRS detection
study [22], the test sensitivity on the INCART database was
reported as 99.86% (Table 7) on a CNN model that was
trained using a subset of the MIT-BIH database, however,
the subset selection and training process was not explicit
which makes the result difficult to compare. Moreover,
the accuracy of the opposite scenario was not shown (training
on INCART and test on MIT-BIH). The accuracies in this
study were achieved with minimal level of preprocessing by
only differentiating the ECG signal. Increased performance
may have been observed if common preprocessing steps (e.g.,
baseline correction, removal of power-line & high-frequency
noise etc.) were applied to the input signal. The reason for not
using extensive preprocessing is simply because this study
intended to investigate the learning ability of CNN with min-
imal preprocessing which is one of the strengths of CNN [12],
[13]. For the combined database training, test performance
does not increase by adding more samples of similar type,
rather, a balanced ECG signal collection including diverse
subject types for training may help achieve reasonable per-
formance across different test databases.

VI. CONCLUSION AND FUTURE WORK
In this study, a new CNN architecture was proposed for QRS
detection whose intra and inter-database based generaliza-
tion capabilities were tested on three publicly available ECG
databases to explore its dependency on dataset characteris-
tics. The accuracy of both test categories show reasonable
generalization accuracy (more than 90%) with single excep-
tion of one database (i.e., INCART) which falls behind in
the inter-database test category. In addition, the accuracies
were achieved with minimal preprocessing by taking only
a difference of the raw ECG signal. The study reveals the
fact that the CNN model’s generalization performance does
not increase by simply adding more training ECG samples
of similar subjects but a diverse range of subjects should

be included. This also shows that the high accuracy obtained
using the intra-database testing approach does not reflect the
true generalization capability of a CNN model. In the future,
we aim to explore different CNN architectures (including
but not limited to multi-dilated convolution, and cross-layer
feature aggregation) to find the best CNN model for QRS
detection and further investigate the generalization capability
against minimum required training sample size and diverse
subjects with justified level of preprocessing.
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