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ABSTRACT GPS has limitations in indoor applications. Consequently, other indoor localization techniques
and systems are active areas of research. Visible Light Positioning (VLP) is a promising option, especially
given the growing popularity of LED-based lighting and the expected adoption of the forthcoming Visible
Light Communication (VLC). This paper reports a novel VLP technique. The developed technique uses
received signal strength for ranging. It is followed by the iterative estimation of a location using spring
relaxation. The performance of the proposed technique was experimentally evaluated in indoor settings and
benchmarked against the lateration- and fingerprint-based localization approaches in multiple scenarios.
The obtained results demonstrate that the proposed VLP approach offers an opportunity to outperform the
existing techniques in terms of localization accuracy and precision.

INDEX TERMS Indoor localization, visible light positioning (VLP), indoor positioning system (IPS),
received signal strength (RSS).

I. INTRODUCTION
Research and development in the area of Indoor Local-
ization and Indoor Positioning Systems (IPS) have been
highly intensive during the recent decade. Variety of tech-
nologies have been investigated for indoor localization, e.g.,
Light Detection and Ranging (LIDAR) [1], Image-Based [2],
Ultrasound-Based [3]. One of the main shortcomings of such
IPS solutions is the onus on the end-user to deploy the
localization infrastructure. This is in a marked contrast to
the GPS-Based Outdoor Localization [4] where an end-user
can leverage the already existing infrastructure. It would be
highly desirable if the IPS follows this GPS ethos, i.e., where
the end- user would not be required to deploy any significant
additional infrastructure resources.

Indoor localization leveraging the ubiquitous Wi-Fi [5]
has achieved significant progress. However, the localization
accuracy achieved while employing Commercial Off-The-
Shelf (COTS) equipment and cheap target tags is still limited
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to the order of meters [6]. Likemost localization systems,Wi-
Fi based IPS requires anchor nodes (Access Points (APs) for
this case) at known locations. A preexisting Wi-Fi network
that is deployed for data communication purposes is unlikely
to have a large enough number of APs in any given region
to meet the requirement of the IPS. The positioning based on
other wireless technologies (e.g. Bluetooth [7], ZigBee [8],
RFID [9] and Ultra Wideband (UWB) [10]) would normally
require deployment of some bespoke network infrastructure.
Magnetic Fingerprinting-Based Localization [11] is another
option for the infrastructure-less positioning. However, it can
be characterized as having rather poor accuracy. Besides,
it is susceptible to ferromagnetic perturbations and requires
significant efforts for the fingerprinting.
Visible Light Positioning (VLP) [12]–[14] has been put

forward as a promising option, especially given the rapid
uptake of LED-based energy-efficient lighting solutions and
the promise of the upcoming Visible Light Communication
(VLC) [15]. VLP is accepted to be far more accurate com-
pared to the wireless based IPS and it has the potential to
allow for localization while leveraging preexisting lighting
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infrastructure. Since a reasonably large number of luminaires
are required for illumination purposes, it is conceivable that
a lighting infrastructure consisting of LED luminaires could
have the critical number of anchors required to provide local-
ization. In this paper, a practical (i.e., real-world) VLP is
reported that follows the GPS ethos of leveraging existing
(lighting) infrastructure while achieving accurate positioning
of an object. Consumer grade LED luminaires are employed
as transmitters and cheap Photodiode (PD) -based receiver is
utilized as a target tag. The developed system employs a novel
(Spring-Relaxation) positioning technique.

II. RELATED WORK
A wide variety of signal characteristics can be utilized to
localize a target. VLP systems based on Received Signal
Strength (RSS) [16], Angle of Arrival (AOA) [17], Time of
Arrival (TOA), Time Difference of Arrival (TDOA) [18],
Phase Difference of Arrival (PDOA) [19], Differential Phase
Difference of Arrival (DPDOA) [20] have been reported in the
literature. Multiple signal characteristics like RSS and AOA
have also been combined for localization purposes [21], [22].
AOA-based implementations generally require multiple pho-
tosensors or specialized optics. Time- and phase-based sys-
tems require highly synchronized hardware that increases
the implementation cost. In contrast, RSS-based localization
can be accomplished using a single photosensor-based target
without requiring any synchronized hardware. This keeps the
cost and complexity of implementation low andmakes it ideal
for realizing VLP systems while leveraging existing lighting
infrastructure and cheap target tags.

RSS-based localization can be broadly categorized
into Proximity- [23], Model- [24]–[26] and Fingerprint-
Based [27], [28] techniques. While the proximity-based
approach is easy to implement, its localization accuracy is
quite poor since the coverage of the luminaire providing
the strongest RSS is taken as the estimated position of the
target. The model-based techniques use offline site survey
to collect data for modeling the RSS-distance relationship.
The calibrated model is used during the online or live stage
for ranging. It is then followed by the position estimation
through techniques like lateration [29]. The fingerprint-based
techniques utilize the idea that a location can be uniquely
identified by the RSS from the luminaires that are visible at
that location. The fingerprint database is constructed during
the offline stage through site surveying. The target is localized
during the live stage operation through classifying the current
RSS against the fingerprint database. Both model-based [25]
and fingerprint-based [27] VLP systems have been shown
to be quite accurate with median errors being in the sub
decimeter range under controlled environment. However,
fingerprint-based techniques may require extensive site sur-
veying in order to achieve the required high localization
accuracy.

With a few exceptions (e.g., work described in [30]–[32]),
VLP systems reported in the literature employ exclusively
LED based luminaires as transmitters or anchor nodes. Most

works assume or utilize point sources. However, research
work [33] looked into the impact of using linear or troffer
sources on the optical channel model and employed them [34]
for VLP systems.Workwas also done to improve the localiza-
tion accuracy by employing an optical antenna on the lumi-
naires to optimize the luminous intensity distribution [35].
While, buzzword like Li-Fi has caught the imagination of
the general public, VLC-enabled luminaires are not com-
mercially available yet. Consequently, a vast majority of
the VLP systems found in the literature are theoretical in
nature while reporting their simulation-based results. The
localization accuracy and precision reported in these studies
may not be achievable for practical implementations under
real-world conditions. Practical systems reported in the liter-
ature tend to employ specialized hardware [18] or bespoke
luminaires [36]. Also they are often limited to small-scale
testbeds [25], [37], [38] with experiments being conducted
within a controlled environment [39].

Most VLP systems localize the target based on the infor-
mation acquired from multiple luminaires (typically three or
more). Each luminaire thus needs to have a unique identi-
fier and the combined signal received from all the visible
luminaires needs to be separated. Consequently, a VLP sys-
tem needs a functional multiplexing/demultiplexing scheme.
While upcoming VLC technologies are expected to provide
sophisticated multiplexing schemes, researchers have had to
develop their own paraphernalia in the interim. A variety
of techniques like On-Off Keying (OOK) or Square Wave
Modulation [40], Orthogonal Frequency Division Multiple
Access (OFDMA) [41], discrete tone multiplexing based on
Intensity Modulation Direct Detection (IM/DD) [28], Opti-
cal Code Division Multiple Access (OCDMA) [42] have
been utilized. It should be pointed out that simulation based
studies have shown that by employing smartphones [43],
fusion of multiple sensors [22], and tags containing mul-
tiple photo-sensors [44], it might be possible to localize a
target while employing just a single visible luminaire. Mul-
tiple photodiode-based localization systems have also been
reported in [21], [45]–[47]. Visible light based localization
was also fused with other techniques like wireless [48], mag-
netic fingerprinting [49], and inertial navigation sensors [50]
to combat multipath degradation and loss of coverage due to
occlusion. VLP system that does not require modification of
the existing lighting fixtures has also been reported [51]. The
system is based on computational imaging and sensor assisted
photogrammetry technique. Therefore, it ideally requires a
smartphone as the VLP receiver, thus increasing its cost and
somewhat restricting usability.

A wide variety of targets ranging from a PD [27] to a
solar cell [40] have been utilized for VLP systems. Smart-
phones have been quite popular as they provide access to
photosensors [24], camera [52], and inertial measurement
unit [26]. However, smartphone as a VLP receiver has its lim-
itations. It experiences occlusion in common use situations
(e.g. when in the pocket). Besides, the relatively high cost
makes it unsuitable for implementations where large numbers
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of tags are required. There is a clear need for developing
practical VLP systems so that positioning can potentially be
offered as a secondary value-added service by the lighting
infrastructure. Such VLP systems should employ COTS LED
luminaires to leverage the existing lighting infrastructure.
The localization algorithm could use RSS as the metric to
avert employing complex bespoke systems. The tags need
to be based on cheap PDs to facilitate the tracking of a
large number of targets. The work presented in this paper
brings all of these together in a novel way. The work is also
exploring the possibility of employing the Spring-Relaxation
(SR) algorithm for VLP. SR was successfully employed for
localizing wireless sensor nodes [53]–[55]. Similar concepts
termed potential fields and forced-based method were used
for navigation of autonomous robots [56] and hybrid localiza-
tion [48] respectively. A simulation study [57] shows that the
location estimates of a fingerprint based VLP can be further
improved by an SR algorithm based wireless positioning.

At the best of the authors’ knowledge, this is the first
reported work on VLP based on SR. It offers the following
contributions:

a) First reported VLP system based on the Spring-
Relaxation algorithm: The VLP system was developed
and implemented while employing the RSS-distance
model-based ranging followed by the localization using
the SR technique;

b) Cost-effective VLP system leveraging existing light-
ing infrastructure: The luminaires are cost-effective
COTS and the target is equipped with a cheap PD.
The developed VLP system can be implemented with
the existing LED-based lighting infrastructure with
minimal modification. The proposed system can easily
incorporate VLC enabled smart luminaires once they
become commercially available. This would enable a
dual lighting/communication infrastructure to provide
localization as a secondary service;

c) Benchmarked performance evaluation in multiple
physical environments: The VLP system was imple-
mented in two distinct physical environments. Unlike
most reports in the literature, the proposed implementa-
tion includes two test-beds that are of a room scale with
the following dimensions (3.3 m× 2.1 m×2.45 m) and
(7 m×5 m×2.45 m). The proposed SR algorithm was
benchmarked against two existing algorithms while
demonstrating its superior performance. The localiza-
tion with median error of just 1.9 cm was achieved.

The rest of the paper is organized as follows. Section III
covers ranging and justifies the utilization of the Lambertian
RSS-distance relationship for ranging based on experimental
findings. The section also presents the proposed new SR algo-
rithm for VLP. It demonstrates the algorithm within the con-
text of the adopted experimental setup. Section IV describes
the developed VLP system. It also outlines the two experi-
mental setups, and presents the measurement data for both the
setups. It is shown that the RSS-distance relationship for the

two setups are dissimilar with the setup 2 exhibiting non-ideal
signal attenuation characteristics. Section V displays the
localization performance of the developed algorithm. The
proposed SR algorithm is also benchmarked against two
existing approaches. This section also reports the impact of
various parameters on the SR algorithm. Section VI con-
cludes the manuscript with some suggestions for the future
work.

III. LOCALIZATION ALGORITHM
The proposed algorithm requires an offline stage where sim-
ple site surveying is conducted to calibrate the RSS-Distance
model. During the live stage, ranging is performed while
utilizing the calibrated model. The distance of the target from
each visible luminaire is computed during the ranging. This
is followed by the Spring-Relaxation based localization. The
distances computed through the ranging are the ‘‘natural’’
lengths of the springs (explained in Section III B).

A. RANGING
Ranging is the technique of estimating the distance of the
target from a set of fixed anchors (in this case - luminaires).
For RSS based ranging, this involves modeling the signal
received at the target as a function of a distance from the
luminaire. Such modeling is performed for each luminaire
based on the data collected during the offline calibration
stage. During the live stage, the RSS reading is converted to
a distance of the tag from each visible luminaire by inverting
the respective calibrated attenuation model.

The received power Prn at a Line of Sight (LOS) location
within the Field of View (FOV) of the PD that is dn distance
away from the n-th luminaire (see Fig.1) can be expressed by
the generalized Lambertian model [58]

Prn =
Ptn
d2n

(
mn + 1
2π

)
cosmn (ϕn)A cos (θn) . (1)

Here Ptn is the transmitted power, mn is the Lambertian
order, ϕn is the irradiance angle, A is the physical area of
the detector, and θn is the incidence angle. If the PD and
the luminaries are parallel, it is relatively straightforward to
simplify (1) as in [59] to

Prn = Prn,0

(
dn,0
dn

)mn+3
. (2)

Here Prn,0 is the RSS at a reference location that is dn,0
distance away (see Fig. 1) from the n-th luminaire. During the
offline stage, the Lambertian propagation model is calibrated
using the method outlined in [59] by taking RSS measure-
ment at a select small number of locations. Oncemn (the only
unknown in (2)) is estimated through the calibration process,
the ranging can be performed by rearranging (2) as

dn = dn,0

(
Prn,0
Prn

)1/(mn+3)

. (3)

While the Lambertian model is quite popular for devel-
oping RSS-distance relationship and subsequent ranging,
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FIGURE 1. Parameters of the Lambertian model and relation with SR.

FIGURE 2. Ranging error of various methods for experimental setup 1.
The median localization errors for Lambertian, interpolation and neural
network approximation are 1.9, 4.1 and 6 cm respectively. Corresponding
95-percentile errors are 5.1, 12.3 and 12.1 cm.

it is also possible to apply model-agnostic techniques (e.g.,
Neural Network-based function approximation or polynomial
interpolation). Figure 2 compares the performance of the
Lambertian-based technique with the model-agnostic ones
for the experimental setup 1 (described in Section 4) by
showing the Cumulative Distribution Function (CDF) of the
ranging error. Quadratic polynomial was used for the inter-
polation. The Neural Network employed three hidden layers
of the following sizes: 10, 8, 5, and Bayesian Regulariza-
tion [60]. It can be observed that the ranging based on the
Lambertian model outperforms the other two techniques.
A similar trend was also observed for the second experimen-
tal setup. Consequently, the Lambertian model calibration
based ranging was employed for the proposed localization
algorithm.

B. 2D LOCALIZATION BY SPRING-RELAXATION
Once the distances between the target and each visible lumi-
naire are computed by the ranging, the algorithm moves to
iterative position estimation through the use of the Spring
Relaxation technique. A set of fictitious springs are assumed
to be connected between the target and corresponding spring

anchors. The anchors are on the horizontal plane (parallel to
the ceiling) containing the PD target and are located where
the visible luminaires are. Each spring has a natural or relaxed
length which is equal to the distance between the target and
the anchor (see Fig.1). This natural length is found through
the ranging (refer to (3) and (6)) that is based on the RSS at the
target. At every iteration of the algorithm, the spring lengths,
i.e., distances between the current estimated location of the
target and the anchors, are computed. Each spring exerts a
force on the target whenever it is compressed or stretched in
accordance with Hooke’s law. The magnitude of the force
is proportional to the displacement of the spring from its
natural length. The direction of the force is along the spring
either pushing out or pulling the target towards the anchor
depending on whether the spring is compressed or stretched.
The spring-relaxation algorithm iteratively moves the target
towards the direction of the net force, i.e., the vector sum of all
the forces exerted by the springs. The localization algorithm
stops when the net force exerted by the springs is zero or falls
below a preassigned tolerance threshold.

Let us assume that the location of the n-th luminaire or
anchor is given in Cartesian and polar format respectively as

Xn = xn + jyn = ρnejθn = ρn 〈θn (4)

Similarly, the estimated location of the target during the
i-th iteration is given as

X iT = x iT + jy
i
T = ρ

i
T e

jθ iT = ρiT

〈
θ iT (5)

The natural length of the n-th spring is dxyn and can be
estimated as

dxyn =
√
d2n − h2. (6)

Here the distance dn is given by ranging as per (3) and h is
the vertical distance between the PD and the luminaire. Please
refer to Fig. 1 for an illustration of dxyn , dn and h. The current
length of the spring is given by

Ln =
∥∥∥X iT − Xn∥∥∥ . (7)

Thus the displacement of the spring from the natural length
is

1n = dxyn − Ln. (8)

The magnitude of the force exerted by the spring is propor-
tional to 1n. For this work, it is assumed that all the springs
are identical. Hence, it can be assumed that the magnitude of
the force is equal to 1n. The force exerted on the target by
the n-th spring can now be computed as

F in = 1nejφn = 1n 〈φn (9)

Here φn is the angle between the vectors X iT and Xn i.e. φn =

angle
(
X iT − Xn

)
. The net force being exerted on the target is

F i =
∑
n

F in. (10)
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FIGURE 3. (a) Illustration of spring-relaxation algorithm for experimental setup 1; (b) Spring-relaxation converging for the case illustrated in (a);
(c) Spring-relaxation for 4 arbitrary locations for experimental setup 1; (d) CDF of the number of iterations needed for SR algorithm to converge
for 639 locations in experimental setup 1.The bottom most curve in (c) is the case illustrated in (a). All iterations start with an initial estimated
location of 170+j110.

TABLE 1. Details of the artificial springs for the case illustrated in fig. 3(A). Tolerance, ε = 10−4. Step size, δ = 0.1

At each iteration, the target’s estimated location is moved
a small distance in the direction of F i

X i+1T = X iT + δF
i. (11)

where δ is the step size. The algorithm keeps re-computing all
the applied forces while also updating location estimate until
a tolerance threshold is achieved so that∥∥∥F i∥∥∥ < ε (12)

where ε is a predefined small constant.
Figure 3(a) illustrates application of the SR algorithm in

the experimental setup 1. The actual location of the target
is XT = 10 + j20. The algorithm starts with an assumed
arbitrary initial target location at X0

T = 170 + j110 and
terminates after 52 iterations with the final location estimated
as X52

T = 9.4 + j20.6 and the localization error is 0.85 cm.

Some of the relevant parameters for the localization algorithm
are shown in Table 1. At the initial location, the springs 1 and
4 are stretched. They pull the target towards their respective
anchors. Springs 2 and 3 are compressed. Consequently, they
push the target away from the anchors. The force along spring
1 is much smaller compared to others as the displacement
of the spring 1 is comparatively shorter. The net force moves
the target to the interim location 1 (X1

T = 128.7 + j103.5).
The forces are recalculated, and the location estimates are
repeatedly updated until the 52-nd iteration, when the net
force falls below the tolerance threshold,

∥∥∥F52
∥∥∥ = 8.9 ×

10−5 < ε. The lengths of the springs are now very close
to their respective natural lengths. Figure 3(b) shows the
convergence of the SR algorithm after 52 iterations as the net
force falls below the tolerance threshold. Figure 3(c) shows
the iterative location estimation for four live locations with
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FIGURE 4. Details of the luminaires (transmitters) of the developed VLP system. (a) Installed luminaire with customized network connectivity.
(b) Luminiare driver. Both sides of the PCB are shown. (c) Frontend GUI for Luminiare configuration.

FIGURE 5. Details of the receiver tag of the developed VLP system. (a) Receiver tag. (b) Receiver app for data visualization. (c) RSS estimate using
FFT.

the same assumed initial location Figure 3(d) shows the CDF
vs the number of iterations required for the algorithm to
converge for all test locations in the experimental setup 1.
The minimum, maximum, and median numbers of iterations
required for the convergence are 35, 142 and 69 respectively
for tolerance ε = 10−4, and step size δ = 0.1. However,
it should be noted, the SR algorithm was initialized with
the same initial location (170 + j110) within the test space
for the position estimation at every test location. Therefore,
the statistics of the shown iteration numbers are exaggerated.
For a real-world implementation, the initial location can be
judiciously selected (e.g., a previously known location or
location determined by coarse fingerprint based estimation)
to reduce the number of iterations.

IV. IMPLEMENTATION OF THE VLP SYSTEM AND
EXPERIMENTAL SETUP
The developed VLP system includes consumer grade lumi-
naires REX100DLWHWWDIM [61]. The discrete tone mul-
tiplexing based on IM/DD is employed. A custom designed
circuit board (Fig. 4(b)) is inserted between each luminaire
and its driver in order to transmit an unmodulated sinewave
of a unique frequency between 2 kHz and 4 kHz. The ampli-
tudes of the sinewaves are of orders of magnitude lower than
the bias voltage. The flickering caused by the sinewaves is
negligible, and it is also not perceptible to the human eye. The
frequencies were selected so that there is no interference from
the 100 Hz power line flicker caused by the existing lighting
infrastructure. They were also chosen to be sufficiently high
so to address possible concerns regarding potential health
hazards of flickering at lower than 200 Hz frequencies [62].

The custom driver boards make use of an ESP8266 Wi-Fi
equipped microcontroller [63] to control several Wien-bridge
oscillators [64] to generate up to three simultaneous sinewave
outputs. For the experiments conducted, each luminaire uti-
lized only one sinusoid. However, the other two sinusoids
could be used for a larger setup and data transmission using
digital modulation techniques. Digital potentiometers on the
oscillators are tuned by the custom-designed Proportional-
Integral (PI) controllers to keep the generated sinewaves
accurate within the ±5 Hz tolerance. Modified Switch Mode
Power Supply (SMPS) and voltage regulator were used to
power the ESP8266 microcontroller and other ICs. The addi-
tional ATmega328p microcontroller [65] on the board is not
used for the work presented here. It aims at providing an extra
processing power for the future improvements and upgrades.

The Graphical User Interface (GUI) frontend (Fig. 4(c))
was developed to configure the parameters of each individual
luminaire over Wi-Fi. This frontend is a web app running
on a server that is accessible online. On power up, each
luminaire contacts the server via the Wi-Fi module of the
driver-board, and transmits its current local IP address. This
allows for easy device discovery. It also enables adding new
luminaires if required with very little extra effort. The web
app (running in a web browser) can then communicate with
any device on the same local network and send the requisite
configuration data. A luminaire (that has been powered on
and able to connect to the server) automatically appears
on the front end. The receiver tag (Fig. 5(a)) consists of a
photodiode, trans-impedance amplifier, and active high pass
filter. The filter eliminates 100 Hz power-line flicker and the
DCmanifestation of the ambient light. The ambient light thus
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FIGURE 6. The VLP system implemented at the two experiment locations. (a) Experimental setup 1. (b) Experimental setup 2.

has no noticeable impact on the performance of the developed
VLP as long as the light sensor is not saturated. A simple
inverting amplifier stage then strengthens the filter output to
a level suitable for Analog to Digital Conversion (ADC). This
signal is then fed to a microcontroller that carries out the
ADC. The data can then be transmitted either via the onboard
ESP8266 Wi-Fi module or, alternatively, via USB to a PC
running a custom application to display and save the data.
Whilst the ESP8266 has an inbuilt microcontroller, an exter-
nal microcontroller is used to facilitate the high sampling rate
of 50 kHz. This relieves the ESP8266 and helps it to maintain
its primary function as the Wi-Fi communication module.
The receiver also has an Inertial Measurement Unit (IMU)
containing an accelerometer, gyroscope and magnetometer
from which, the data can be sent alongside the photodiode
data. The PC application (Fig. 5(b)) provides a live view of the
receivedADCvalue and theFast Fourier Transform (FFT) for
a defined number of samples. The app allows for recording
snapshots of data to a JavaScript Object Notation (JSON)
file [66] for a later use – either for replaying in the app or for
processing in an external program such as MATLAB [67].

The demultiplexing is performed by using FFT that enables
the measurement of the RSS of the received light at relevant
frequencies corresponding to each visible luminaire. At the
sampling rate of 50 kHz, it is possible to achieve a resolution
of 12.2 Hz for the FFT based demultiplexing. Figure 5(c)
shows the RSS at the receiver tag at a location with four
visible luminaires. The measured RSS is used for model
calibration during the offline stage and for ranging during the
live stage.

The VLP system was installed at two separate locations
with ceiling height of 2.45 m as shown in Fig. 6. The
experimental setup 1 was in the (5.7 m × 4.8 m) laboratory
where the (3.3 m × 2.1 m) rectangular space in the middle
was used as the test field. The system consisted of four
ceiling mounted luminaires whose locations along with the

measurement locations are shown in Fig. 7. The RSS-distance
model was calibrated based on the measurements performed
at the 12 offline locations. The calibrations locations were
chosen by following the guidelines presented in [59] while
ensuring that each chosen offline location captures multiple
regions of the Lambertian RSS-distance model for several
luminaires. There were 639 additional locations within the
test space, designated live locations, where RSS measure-
ments were carried out to estimate the localization accuracy.
There was no occlusion or obstruction within the test area
and all four luminaires were within the FOV of the PD. This
was a controlled experimental setup with doors and windows
closed.

Experimental setup 2– the (7.5 m× 8 m) open office foyer
is shown in Fig. 6(b). It can be observed that there are some
furniture items in the middle of the room and a photocopier
along one wall. Left side of the room has a glass-wall with
drawn light curtains. There is also a pillar in the middle of
the room. The VLP system employs seven ceiling mounted
luminaires. There were some restrictions as to where these
luminaires could be installed due to the presence of the ceiling
florescent lights and air conditioner ducts. The RSS-distance
model was calibrated based on 22 offline measurements. The
localization accuracy was tested at 446 live locations.

Figure 8 shows the RSS-distance characteristics of vari-
ous luminaires for both the experimental setups. It can be
clearly observed that the RSS attenuation for the controlled
experimental setup 1 quite closely follows the ideal Lam-
bertian behavior. As a result, the RSS estimates are very
accurate. Whereas the experimental setup 2 shows departure
from the ideal characteristics. This is mainly due to multi-
path reflections and partial occlusions resulting from vari-
ous objects within the test space and close proximity of the
wall along some boundaries. Consequently, the localization
error for the experimental setup 1 (reported in Section 5)
is better by an order of magnitude. It should be noted that,
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FIGURE 7. Layout of experimental setup 1. Offline locations show where the RSS measurement are taken for RSS-distance model
calibration. Estimated locations are the estimates of the Spring-Relaxation algorithm for the live locations.

FIGURE 8. Actual and estimated RSS of different luminaires for both experimental setups. After calibration, equation 2 was used to estimate the
RSS values.

for the localization experiments, it was possible to calibrate
the RSS-distance model using 12 and 22 points respectively
for all 4 and 7 luminaires respectively. The calibration pro-
cess scales efficiently and is relatively not labor intensive
even for a large-scale implementation. While it is possible
to achieve a slightly better approximation of the propaga-
tion model using a higher number of offline measurements,
the impact on the localization error can be considered as being
negligible.

V. LOCALIZATION RESULTS
The performance of the proposed algorithm was evaluated in
the two environments described in Section 4. The localiza-
tion error was evaluated as the median and the 95-percentile
statistics as per the guidelines of EvAAL [68] and ISO/IEC
18305 [69]. Similarly, the precision is demonstrated as the
empirical CDF of the localization error. The developed VLP
system is capable of near real-time localization since the
RSS data can be streamed over Wi-Fi in real time to the

91354 VOLUME 7, 2019



F. Alam et al.: Indoor VLP Using Spring-Relaxation Technique in Real-World Setting

FIGURE 9. Impact of parameters ε and δ. Experimental setup 1. (a) Impact of tolerance, ε on localization accuracy. (b) Impact of step size δ on the
number of iterations.

TABLE 2. Localization accuracy of the proposed spring-relaxation algorithm for both experimental setups; benchmarked against lateration- and WKNN
regeneration based algorithms. ε = 10−4. Step size, δ = 0.1 for SR.

PC running the SR algorithm. The real-time capability of the
system has been tested on multiple occasions. However, for
the experiments conducted, the receiver was not trulymobile -
it wasmovedmanually from one location to another. This was
done to accurately record the ground truth (the actual location
of the receiver) that is needed in order to compute the error
of the localization estimate.

A. EXPERIMENTAL SETUP 1
Figure 9(a) shows the impact of the tolerance parameter
(ε) on the localization accuracy for various values of the
step size (δ). As long as the value of ε is kept smaller
than 10−2, the step size has no noticeable impact on the
localization accuracy. For larger values of ε(> 10−2), δ
does show a small impact on the accuracy. However, this is
inconsequential as ε values are to be kept lower than 10−2

in practical situations in order to keep the localization error
small.

Figure 9(b) shows the impact of the step size (δ) on the
number of iterations required by the SR algorithm. It can
be observed that a bigger value of δ results in a smaller
number of iterations. However, a large step size can result in
instability, and the algorithm may fail to converge. For the
adopted experimental scenario, δ needs to be kept smaller
than 0.5 to ensure convergence.

Table 2 shows the localization accuracy of the proposed
algorithm in terms of the median and 95-percentile errors.
SR is benchmarked against two existing algorithms. The first
one is based on ranging (similar to the SR algorithm as
outlined in Section 3.1) and lateration. Localization is done
by finding a least square solution of the lateration problem

satisfying [58]

XT =arg min
xT ,yT

∑
n

[√
(xT−xn)2 + (yT−yn)2−dxyn

]2
. (13)

The second algorithm used for benchmarking is based
on fingerprint technique. Weighted K-Nearest Neighbor
(WKNN) classifier [69] is used for target localization during
the live stage. In order to have an objective comparison, a
limited number of offline measurements is used to construct
the fingerprint database by following the algorithm proposed
in [27] and employing RSS regeneration. The Lambertian
propagation model given by (2) is calibrated using the RSS
at the offline calibration points shown in Fig. 7 just like it
is done for the SR and lateration. The RSS-distance model
is then used to regenerate fictitious RSS values to create a
large fingerprint database corresponding to a 20 cm × 20 cm
grid pattern covering the test space. The number of nearest
neighbors (K ) is equal to four for the WKNN classifier.
It can be observed from Table 2 that for the experimental
setup 1, the proposed SR algorithm outperforms the other two
algorithms with significantly lower median and 95-percentile
errors. Figure 10(a) shows the CDF of the localization error.
Again, it can be observed that the proposed algorithm is
more accurate when considered over the entire range. As it
can be observed from Fig. 7, the localization estimate is
more accurate in the middle of the testbed compared to
the edges. This is due to the fact that the middle of the
room is away from any reflectors (e.g., walls) and hence the
RSS-distance characteristics follow the Lambertian model
more truthfully in this region. This leads to a lower ranging
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FIGURE 10. Comparison of localization precision as empirical CDF for experimental setup 1 and 2 respectively in (a) and (b). The
Spring-Relaxation algorithm is benchmarked against the lateration- and WKNN regeneration based algorithms.

error and, consequently, lower localization error. This trend
was observed for all the three algorithms.

B. EXPERIMENTAL SETUP 2
Table 2 shows the benchmarked localization accuracy of the
proposed algorithm. It can be observed that the localization
accuracy of all the three algorithms degrade in this setup
due to a non-ideal behavior of the RSS-distance relationship.
The calibration is not as effective here. It is resulting in
the larger ranging errors leading to the higher localiza-
tion errors. However, the proposed algorithm still outper-
forms the lateration-based algorithm and is on par with
the WKNN-based algorithm (producing the slightly larger
median error against the smaller 95-percentile error).

Figure 11 shows the layout and other details of the experi-
mental setup 2. The RSS-distancemodel for all the three algo-
rithms was calibrated based on the measurements performed
at the 22 locations (7 reference locations and 15 additional
offline locations) marked in yellow. The localization accuracy
was tested at 446 locations. It can be observed that for the
majority of the test locations (381 out of 446), the localization
error is less than 40 cm for the SR algorithm. Some of the
larger errors are around the furniture. This is probably due to
the multipath reflections and partial occlusions in those loca-
tions. The two largest errors (>2m) are next to the lower edge
of the test space. These are mainly due to the reflections from
the curtains and partial occlusions from the nearby recycling
bin. It should be noted that with continuous tracking, these
large errors can be considered as an instant teleportation and
can be mitigated through a geometric filter that rationalizes
sudden large position change from one state to another. It can
also be observed that there are some blind spots where at
least three luminaires are not visible due to occlusion or the
luminaries being outside of the PD’s FOV. In locations where
more than more than five luminaries are visible, the 4 lumi-
naries corresponding to the highest RSS are selected as the
anchors.

Figure 10(b) shows the CDF of the localization error:
the proposed algorithm has better precision than the
lateration-based algorithm, and it performs on par with the
WKNN-based one.

1) ADVANTAGE OF SR OVER WKNN
The performance of the WKNN-based technique is heavily
reliant on the parameter selection. Therefore, it has signifi-
cant limitations in live localization applications. The local-
ization accuracy of the WKNN algorithm varies significantly
with the number of nearest neighbors, K , and the distance
metric [27]. For both the experiments, K = 4 was used
for the WKNN algorithm as that yielded the lowest local-
ization error. Similarly, squared chord distance and squared
chi-squared distance were chosen for experimental setups
1 and 2 respectively as they performed the best for the cor-
responding scenarios. These optimum parameters can only
be selected based on a thorough fingerprinting of the test
space and then computing the localization error for a variety
of distances and K values at all test locations. This requires
significant offline site survey often making it prohibitively
expensive in terms of time and labor. The WKNN-based
algorithm used here circumvents this cost by performing the
fewmeasurements for offline RSS-distancemodel calibration
and subsequently regenerating the fingerprint database [27].
However, without the extensive offline site survey, the opti-
mum value of K and the optimum distance metrics are not
known a priori during the live stage in a real-world scenario.
For the results presented involving the WKNN algorithm,
the selection of K and the distance metric were made a
posteriori i.e. after computing the localization error for a mul-
titude of combinations involving distances andK values at all
live locations. Whereas in a real-world scenario, the WKNN
algorithm would have to use the standard Euclidean distance
during the live stage as it is usually a safe choice having low
performance variationwith changing scenarios. This however
results in higher localization errors for both experimental
setups. For example in experimental setup 2, the median
and 95-percentile localization error for Euclidean distance
are 24.9 cm and 108.7 cm respectively, even with K = 4,
making the performance significantly worse compared to the
proposed SR algorithm. The localization accuracy further
degrades if K is not chosen to be 4. In contrast, the local-
ization accuracy of the proposed SR technique is relatively
invariant to parameter selection as shown in Fig. 9(a). The
handful of measurements performed for the RSS-distance
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FIGURE 11. Layout and relevant details of the experimental setup 2. The localization errors are
for the proposed SR algorithm.

model calibration is the only offline site survey that is
required. Therefore, it can be inferred that the proposed SR
technique is better suited to a practical environment compared
to the WKNN-based algorithm.

VI. CONCLUSION
The novel real-world implementation of a VLP system is
reported in this paper. Through the detailed experimental
results, it is demonstrated that the Spring-Relaxation tech-
nique can be successfully utilized to localize a target carrying
a low-cost PD-based tag by employing the RSS from the com-
mercial off-the-shelf LED luminaires. The developed system
provides median localization errors of 1.9 cm and 16.1 cm
within two practical environments. The 95-percentile errors
are 5.1 cm and 57.3 cm, respectively. The proposed approach
significantly outperforms the lateration-based technique in
both the experimental real-world environments. It also pro-
vides better localization accuracy than the fingerprint based
technique in one implementation and is on par with it in the
other environment.

In the presented work, it was assumed that all imaginary
springs are identical. At the same time, the concept of a
variable spring strength can be considered. It would assign
different weights to each spring based on the confidence level
associated with the RSS reading of the corresponding lumi-
naire. The theoretical analysis of the convergence, stability
and computational complexity of such an approach is planned
for the future research.

The developed algorithm does not take into account pre-
vious location estimates when computing current locations.
It can be expected that the application of continuous tracking
could improve the accuracy of the developed system and
make it more appropriate for mobile robotic applications.
This is another area of interest for the planned future work.

It is also assumed in the reported research that the tag
surface stays parallel to the ceiling. The future research will
look into incorporating some types of tilt sensors to address
other possible practical arrangements. The designed target tag
already has IMU onboard which can facilitate such research.

Finally, the future research can also employ improved
attenuation model that accounts for multipath reflection
and thereby improve localization performance through more
accurate ranging.
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