IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 2, 2019, accepted July 3, 2019, date of publication July 10, 2019, date of current version September 17, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2927258

Automatic Welding Defect Detection of X-Ray
Images by Using Cascade AdaBoost

With Penalty Term

FENG DUAN "', (Member, IEEE), SHIFAN YIN 1, PEIPEI SONG2, WENKAI ZHANG',
CHI ZHU3, (Member, IEEE), AND HIROSHI YOKOI'4, (Member, IEEE)

ICollege of Artificial Intelligence, Nankai University, Tianjin 300350, China

2College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2600, Australia
3Department of System Life Engineering, Maebashi Institute of Technology, Gunma 371-0816, Japan
“Department of Mechanics and Intelligence, The University of Electro-Communications, Tokyo 182-8585, Japan

Corresponding author: Feng Duan (duanf@nankai.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFE0129700, in part
by the National Natural Science Foundation of China under Grant 61673224, and in part by the Tianjin Natural Science Foundation for

Distinguished Young Scholars under Grant 18JCJQJC46100.

ABSTRACT Welding defect constitute a great danger to the safe usage of petroleum pipelines. In addition,
manual welding defect detection has numerous deficiencies, such as subjectivity and inaccurate estimation
of geometric parameters. Thus, we proposed an automatic welding defect detection system for X-ray
images. In the system, five typical defects (cracks, lack of penetration, lack of fusion, round defects, and
stripy defects) and non-defects were chosen for recognition. There are three stages in the system: defect
extraction, defect detection, and defect recognition. In the first stage, background subtraction with an
adaptive thresholding method was adopted to identify the potential defects. In the second stage, to extract
real defects from the massive number of potential defects, the adaptive cascade boosting (AdaBoost)
algorithm was employed for binary classification. Grayscale features and geometric properties of the defects
were extracted for the classification. In the third stage, the AdaBoost algorithm was extended for multi-
classification. In the process of distinguishing defects from non-defects, a high detection rate is necessary.
To ensure the high true positive rate (TPR) and the low false positive rate (FPR), we proposed the cascade
AdaBoost algorithm with penalty term. The accuracy of the defect detection was 85.5%, and the TPR was
91.66%. Moreover, three comparison tests of support vector machine (SVM), k-nearest neighbor (KNN),
and random forest (RF) were employed to validate the superiority of AdaBoost. The experimental results
indicate that the proposed detection system can be effective for defect detection.

INDEX TERMS AdaBoost, image processing, X-ray image, nondestructive testing, welding defects.

I. INTRODUCTION

Nondestructive testing is a widely used and important tech-
nique for defect detection in industry. According to statistics
from the Central Intelligence Agency, there are a total of
slightly less than 3.5 million km of pipelines in 120 countries
globally in 2014 [1]. Currently, welding defect inspection
is mainly performed through manual work. However, man-
ual inspection can lack objectivity, consistency, accuracy,
and efficiency. The evaluation results also tend to differ
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among operators of different levels. In addition, the evalua-
tion work is typically subjective and time-consuming. More-
over, a novice operator usually lacks the experience necessary
to make an accurate assessment of welding defects. The
evaluation process is also mainly conducted by human eye
observation. Thus, the operator cannot obtain precise geomet-
ric parameters, such as length, area, and density. These factors
constitute major obstacles to making accurate assessments
of welding quality. However, with the development of X-ray
imaging techniques, inspection based on X-ray images is
extensively adopted for the inspection of welding defects
of petroleum pipelines. Automatic detection based on X-ray
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images offers major advantages over manual work in terms of
labor consumption, time consumption, digitalized archiving,
and objectivity. Therefore, this paper proposed an automatic
welding defect detection system to replace manual inspection
and improve detection performance.

In recent years, many researchers have focused on auto-
matic inspection techniques based on X-ray images. It has
been shown that X-ray images usually have high noise and
low contrast, which introduces difficulty in image process-
ing [2].

Regarding detecting welding defects, there are a variety
of image processing methods. The background subtraction
method [3]-[6], the wavelet technique [6], [7], and the texture
feature based method [9]-[11] have been commonly used
among a large number of detection methods. Background
subtraction is used to dissociate defects and backgrounds
in [6]. Li et al. [7] proposed the wavelet technique to detect
three kinds of defects, including air-hole, foreign-object, and
shrinkage-cavity defects. Li compared the three methods:
second-order derivative and morphology operations, row-
by-row adaptive thresholding, and wavelet transform tech-
nique in detecting defects and found that the third method
can be effective for the three defects by testing 21 defects.
Ngan et al. [9] presented a novel approach to detect welding
defects based on texture features. They extracted the texture
features from the welding defect regions. Since the extracted
texture features have high dimensions and are partially redun-
dant with each other, principal component analysis (PCA)
was used to reduce the dimensions of these features.

Machine learning algorithms are widely utilized in distin-
guishing defects from non-defects. There are SVM [12], [13],
gentle AdaBoost [15], Gaussian mixture model [16] neural
network [17] and deep learning [18] for the defect detection.
Shao used an SVM classifier to extract defects with three
features. Haddad [12] firstly used the sparse coding for the
defect detection.

As for multi-classification of defect types, multivariate sta-
tistical methods and machine learning algorithms are mainly
employed. Jiang et al. [10] adopted three classifiers: SVM,
neural network, and k-NN (k-nearest neighbor) to classify
six defects (worm holes, porosity, linear slag inclusion, gas
pores, lack of fusion, and crack) and non-defects. The neural
network and SVM were proven to be better than k-NN.
Hou et al. [19] proposed an automatic system to detect and
recognize welding defects in radiographic images. An arti-
ficial neural network (ANN) and an adaptive-network-based
fuzzy inference system (ANFIS) were used to classify four
defects and non-defects. Zapata et al. [20] built a data-driven
model that deals with four defects by applying multivari-
ate statistics and machine learning methods. Moreover, they
adopted wavelet packet decomposition principal component
analysis (WPD-PCA) to extract features. Feedforward neural
network (FNN) and SVM were also employed to estimate
the welding status and classify defects. Zapata et al. [18]
presented a model based on deep neural network used for the
automatic detection of welding defects. Although the model
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FIGURE 1. Architecture of the automatic welding defects detection
system.

can obtain a great classification accuracy rate of 91.84%,
specific types of welding defects are not distinguished.
Taking advantage of the findings of previous studies,
we proposed an automatic welding defect detection system.
Defects are mixed with a large number of non-defects when
using only image processing methods. This may result in a
high rate of missing report, which is prohibited in industrial
inspection. Therefore, it is critical to extract defects from
non-defects by combining image processing methods with
machine learning methods. During the welding defects detec-
tion process, detecting the welding defects is much more
significant than the classification of welding defects. There-
fore, we proposed the cascade AdaBoost [21] algorithm with
penalty term to improve the detection true positive rate (TPR)
of welding defects. The extended multi-class AdaBoost clas-
sifier was utilized to identify five kinds of welding defects.
The remainder of this paper is organized as follows.
Section 2 presents an overview of the detection system.
Section 3 briefly introduces the process of defect extrac-
tion. Section 4 explains the features selected in this paper.
Section 5 introduces the proposed cascade AdaBoost algo-
rithm and the extended multi-class AdaBoost classifier.
Section 6 describes the experimental results and gives the
analyses. Finally, conclusions are given in Section 7.

Il. OVERVIEW OF THE PROPOSED SYSTEM

The automatic welding defect detection system deals with
the detection and classification of five defects. The system
architecture is shown in Fig. 1.

The system is divided into four stages, the image
acquirement, defect extraction, defect detection, and defect
recognition. In the defect extraction stage, we generated
the background image. In addition, an adaptive thresholding
method was applied to obtain the potential defects. Due to
low contrast and high noise, many non-defects were detected.
To reduce false alarms, defect detection was intended to
remove non-defects. Some comparative features were com-
puted by using the horizontal region comparison method.
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FIGURE 2. Examples of the five defects and non-defects.

Then, we proposed the cascade Adaboost classifier with
penalty term distinguished defects from non-defects. Finally,
the real defects were recognized by using the extended multi-
class AdaBoost classifier.

There are a variety of types of welding defects. In this
paper, we focus on five typical defects, which are cracks, lack
of fusion (LOF), lack of penetration (LOP), stripy defects,
and round defects. As shown in Fig. 2, cracks are usually
low-contrast, and they have no definite shape. In addition,
most of them have thin branches at the end. Generally, LOP
is located in the center of the weld, and LOF is located in the
edge of the weld. LOF and LOP are usually straight lines, and
they differ in intensity distribution and positions in the weld.
Round defects (including air holes and slag inclusions) are
circles or ellipses. Stripy defects have an aspect ratio greater
than 3. And stripy defects are uniform in intensity. LOF, LOP,
and stripy defects possess numerous similarities in terms of
grayscale and shape. Therefore, it is difficult to classify the
three defects. Moreover, round defects are easier to detect
because of their shape and strong contrast.

Ill. AUTOMATIC DEFECTS EXTRACTION

This section focuses on defects segmentation in X-ray
images. This paper adopted the background subtraction
method to extract potential defects. An important factor in
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defect segmentation is noise. Thus, this section includes
three sub-sections: pre-processing, background subtraction
method, and potential defect extraction.

A. PRE-PROCESSING

Pre-processing of X-ray images intends to eliminate noise
and enhance contrast. We used histogram equalization to
improve intensity distribution, as shown in Fig. 4(b). Quan-
tum noise and electronic noise exist in X-ray images. Hence,
filtering is an important component of image de-noising.
The median filter can preserve the edges and also reduce
impulse noise. The average filter can remove the pulse and
random disturbances. Since we need to remove the noise
before extracting potential defects, we used the median filter
and the average filter [6] for image smoothing.

In this paper, a 3 x 3 median filter template and a 3 x 3
average filter template were utilized for image filtering. It can
be seen from Fig. 3(b) that the smoothing operation reduced
the spot noise. In addition, Fig. 3(b) retains defect information
for further processing.

B. BACKGROUND SUBTRACTION METHOD

Background subtraction [3], [6] is one of the commonly
used methods for the automatic defect segmentation of X-
ray images. The critical part of this method is background
modelling. Compared with the welding image, the defect
is much smaller. Therefore, when building the background
image, the surrounding pixels are considered. In this paper,
we utilized a large template median filter for background
estimation. The median filter focuses on the median grayscale
of the filter window. As shown in Fig. 4(a), the defect region
is darker and smaller than its surrounding pixels. We used the
median filter to build the background model. The background
image is shown in Fig. 4(c).
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FIGURE 4. lllustrations of the defect detection process. Top row: an example of the round defect detection process. Bottom row: an example of the crack
defect detection process. (a) Original image. (b) Histogram equalization. (c) Modelling background. (d) Binary image after the background subtraction
method. (e) Potential defects obtained after area filter and morphological operation. (f) Edges of the potential defects and the major direction of each
defect region. (g) The defects labeled by the white rectangle are extracted by using AdaBoost classifier. (Text information has been automatically

removed).

In (1), the median filter template’s size h,, was determined
by the image resolution. f (i, j) is the smoothed image, and
b(i, j) is the modeled background. In our experiment, A,
was set as 30 with an image resolution of 4000 x 1024.
The difference image f;(i, j) can be computed in (2), which
focuses on the darker part in the £ (i, j). The difference image
is presented in Fig. 3(d).

b(i,)) = median(f(i+x,j+y), x,y € [—hy, hy]) (1)

Fij) = If G, J) — b, P lff(l»]? b(i,j) <0 @)
0, otherwise

To enhance the contrast of the image fs, we used linear
gray stretch to extend the gray range. An adaptive threshold
value was computed with the average grayscale g4, and the
standard deviation gs4. A binary image was obtained with
the adaptive threshold T, as shown in Fig. 4(d). In addition,
the adjusting parameter p can adjust the sensitivity of the
defect’s detection. p was set as three in the experiment.

T = 8avg + P X &sid 3)

C. POTENTIAL DEFECT EXTRACTION

The binary image contains some noise and edges that are
not defects, which requires removal of false alarms. Noise
is usually small in comparison to defects. Therefore, an area
filter based on the connected region was used to remove the
noise. The erosion operator was also applied to reduce the
noise. Moreover, the dilate operator was utilized to enhance
the defect’s connectivity. Finally, we obtained the potential
defect regions, as illustrated in Fig. 4(e). In the segmentation
process, one defect may be divided into two or more defects.
Therefore, if the distance in the weld direction between two
defects (other than round defects) is shorter than a threshold,
they will be merged into one.

IV. FEATURE EXTRACTION

The classifier is one of the most important components of
the proposed automatic welding defect detection system.
In this regard, feature selection is critical to classification
performance. The features focus on two main aspects: the
grayscale features and the geometric properties. By observing
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FIGURE 5. lllustration of the geometric parameters of the defect.

the X-ray images, one can see that the defect is relatively
distinct from its neighborhood area. Because the weld seam
is along the horizontal direction, the intensity is uniformly
distributed in the horizontal direction. Thus, we adopted the
horizontal region comparison method to calculate the gray
difference.

In X-ray images of pipelines, we can extract defects
from potential defects by using some characteristics that
describe the difference between the defect and its comparison
region. In the experiment, we used two horizontal comparison
regions: one is on its left and the other is on its right. The
interval was set as 20 pixels. We put forward some features
based on the gray difference between the potential defect
region and the comparison region.

Taking advantage of the results of previous studies
[22], [23], we extracted 61 features in the feature extraction
step (refer to Fig. 8 for details). Fig. 5 depicts the definitions
of some features. This section explains a part of the features’
definitions.

Feature 44: reg

The parameter reg indicates the relative grayscale of the
defect region. grayAvg is defined as the average gray value
of the defect’s region. grayAvgrec is the average gray value
of the rest of the extended rectangle. The extended rectangle
is the enclosing rectangle extended outward five pixels.

reg = grayAvg/grayAvgyec “4)
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Feature 46: tightness

Tightness presents the property of the shape. According
to (5), the tightness of circles is the smallest among all 2D
shapes. The area is the sum of pixels in the defect region. The
perimeter is the number of pixels that belong to the boundary
of the defect region.

tightness = perimeter2 /area o)

Feature 47 and feature 60: vDisToCenter and hDisToCenter

These two parameters indicate the relative position of the
defect in the weld. As shown in Fig. 5, Oy is the gravity center
of the defect region. Suppose that O, is the center of the weld
in the image. wy, is one half of the weld’s length, and w;, is
one half of the weld’s width. d}, is the distance from O, to O,
in the horizontal direction, and d, is the distance from O, to
O, in the vertical direction. vDisToCenter and hDisToCenter
are computed as (6) and (7), respectively.

vDisToCenter = d,/wy, (6)
hDisToCenter = dp/wy @)

Feature 48: majorAxisAngle

The major axis angle is defined as the angle between the
major axis and the x axis. The major axis indicates the main
direction of the defect region in Fig. 5. The principle com-
ponent analyzation method (PCA) was applied to compute
the major direction of the defect. The minor direction is
perpendicular to the major direction.
Feature 49 and Feature 50: majorAxisLength and
minorAxis Length

The defect is projected to the major axis, and the projected
length is the major axis length. The same is true for the
minor axis length. The projection computation used radon
transform.
Feature 51: elongation

elongation is the aspectratio of the defect. It is an important
variable to distinguish round defects between stripy defects.

elongation = majorAxisLength/ min or AxisLength (8)

Feature 52: degOfFill
degOfFill refers to the degree of filling. It is also a charac-
teristic of the shape. It is defined as (9).

deg OfFill = area/(w X h) ©)

Feature 53: flatness

flatness is a value that indicates the smoothness of the
defect’s boundary and the defect’s surface. /(x, y) means the
boundary of the defectregion. (x4y4, yavg) is the gravity center
of the defect region.

IP = f I(x,y) x \/()C - xavg)z +0O - yavg)dedy
(x,y)€Defect
P?
flatness = 3
area

(10)
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Feature 54: sharpness

One-fourth of the area is denoted as S1, and the other one-
fourth of the area is denoted as S2 along the major axis in
Fig. 5. The feature sharpness is defined in (11).

sharpness = (S1 + S»2)/area a1

Feature 55: sym
sym describes the symmetry of the defect.

sym = |1 — 81/83| (12)

Feature 56: bias
bias is defined as the normalized distance from the gravity
center (gcy, gcy) to the geometric center of the defect region

(cx» ¢y)-

25 J(er — gee + (e — gy)?
Vw? + h?

bias =

13)

Feature 57: mFlatness

Through radon transform, we obtain the projection at the
major axis. mFlatness is defined as the standard deviation of
the projection. It can indicate the smoothness in the vertical
direction.
Feature 59: vIntensityRatio

It describes the gray distribution in the vertical direc-
tion. gavg(up) is the average gray value of the upper half.
8avg(down) is the average gray value of the bottom half.

gavg(up)

vintensityRatio = ‘1 —
8avg(down)

(14)

Feature 61: moment
The central moment is a common parameter to describe the
contour’s property.

n
2 2
moment = (X; — Xavg) (Vi — Yavg) (15)
i=1
The feature vector is utilized to train classifiers for classi-
fication of defects, non-defects, and defect types.

V. CLASSIFICATION

According to the actual industrial application requirements,
detecting the welding defects is much more significant than
classifying the types of welding defects. Therefore, we pro-
posed the cascade AdaBoost algorithm with penalty term to
improve the detection TPR of welding defects. The extended
multi-class AdaBoost classifier was utilized to identify five
types of welding defects.

A. CASCADE ADABOOST ALGORITHM WITH A PENALTY
TERM
In 1995, Freund and Schapire proposed the AdaBoost algo-
rithm [21]. Freund and Schapire [22] explained that boosting
is a general method for improving the accuracy of any given
learning algorithm, and it does not suffer from overfitting.
The weak learner is the basic unit of the AdaBoost clas-
sifier. Kearns and Valiant [24] was the first to propose the
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FIGURE 6. The boosting algorithm AdaBoost with penalty term.

question of whether a “weak” learner can be ‘“‘boosted”
into an arbitrarily accurate “‘strong” learning algorithm.
A “weak” learner is a classifier that performs just slightly
better than random guessing. The AdaBoost algorithm pro-
vides the rules according to which weak learners are boosted
into a strong classifier. In our experiment, we focus on two
key points. One is sample distribution, and the other is each
weak learner’s weight. The original algorithm was introduced
by You et al. [21]. The AdaBoost constructs a classifier by
increasing the weight of the sample classified incorrectly.
Mekhalfa and Nacereddine [15] used the Gentle Adaboost
algorithm to classify four types of welding defects. In this
paper, we have improved the Adaboost algorithm to improve
the detection TPR of welding defects, as shown in Fig. 6.
Moreover, five types of welding defects were recognized by
the extended multi-class AdaBoost classifier.

We proposed the AdaBoost algorithm with penalty term
to improve the TPR. The penalty term p is added to the
classifier construction when a real defect is estimated as a
non-defect. Consequently, the boosted classifier prefers the
samples of the defect. This penalty term will improve the TPR
by changing the sample distribution.

The weak learner that we chose is the binary tree, which
deals with two-group classification problems. The weak
leaner is presented in (16). x is the feature, f (x) is the value of
the feature, pr indicates the polar, and 6 is the threshold. For
each feature, the corresponding learner is trained to achieve
the minimum classification error rate.

—1, prxfx) <pb

16
1, otherwise (16)

h(x,f,p,0) = {
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The AdaBoost algorithm formed a powerful classifier by
combining multiple weak learners. In addition, we can adjust
the TPR by setting the penalty term p. Fig. 4(g) presents the
defects estimated by the AdaBoost classifier.

The method of combining multiple strong classifiers is
called a ““cascade”. The architecture of cascade Adaboost
classifier is shown in Fig. 7. The structure of a cascaded
classifier is essentially that of a degenerate decision tree.
The setting of cascades can improve the performance of the
classifier by increasing the TPR and decreasing the false
positive rate (FPR). Suppose that more than half of the non-
defects are rejected in each stage, and almost all of the real
defects pass to the next stage. We can then obtain a good
result after a number of stages. The number of stages in the
experiment is set as five.

For each cascaded classifier, the increasing of TPR will
always cause the increasing of FPR. Balancing these two
parameters is important for the cascaded classifier. The tuning
process of p is shown in (17). The parameter X is set to adjust
the TPR and the FPR, and the variable d is the step length.

p=p+d x A x (1.0 = TP)+d x (1.0—1) x (0.5—FP)
(17

B. CLASSIFICATION FOR FIVE DEFECTS USING
MULTI-CLASS ADABOOST

AdaBoost algorithm can effectively classify two classes,
hence, the cascade AdaBoost algorithm with a penalty term
deals with the detection of welding defects from potential
defects.

However, after the detection process of welding defects or
non-defects, we need to classify five types of welding defects.
Therefore, we must generalize AdaBoost algorithm to adapt
to multiple classes. In this paper, the nested dichotomy system
is used to construct a multi-class AdaBoost classifier. The
nested dichotomy system is a statistical model, which is used
to decompose a multi-class problem into multiple two-class
problems. The multi-class AdaBoost is constructed to classify
five types of welding defects.

The structure of the multi-class AdaBoost classifier is illus-
trated in Fig. 9. There are four nodes that contain two 2-level
cascade AdaBoost classifier, a 5-level cascade AdaBoost
classifier and a 4-level cascade AdaBoost classifier, respec-
tively. Node I is trained to classify the five types of welding
defects into Crack type and the other four types of welding
defects (LOF, LOP, Strip and Round). Node II is trained to
classify the rest four types of welding defects into LOF type
and the rest three types of welding defects (LOP, Strip and
Round). Node III is trained to classify the rest three types
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FIGURE 8. Analysis of features. (a) The data are normalized to 0-1. The vertical axis presents the average value for each feature. The horizontal axis
shows features. The error bar is the standard deviation. The legend * presents the feature’s significance level. One-way analysis of variance is used for
the significance test. p is the significance value. *: 0.05 <p=< 0.1, **: 0.01 <p <0.05, ***: p < 0.01. (b) The vertical axis presents the weight of features. The

weight of one feature is the weight of the corresponding weak learner in the AdaBoost classifier. The feature with * is described in detail in the feature
section of IV.

TABLE 1. Sample distribution of potential defects.

Defects Non-defects Potential defects
Defect recognition (Multi-class AdaBoost) Training 853 2307 3160
S-level \“d‘lZK—level Wd‘Z‘—‘level \(’dk.S[jllevel \ud:t‘—‘level =< Testing 214 577 791
cascade ¥ cagcade cascade cascade cascade [ @_I Sum 1067 2884 3951
; Adﬂi""s‘ Adaino t | | AdaBoost Adal;nn t Adazno t] Round
Defect | =X r=X— - < =X
Non-defect Crack LOF LOP Strip

FIGURE 9. Structure of multi-class AdaBoost.

of welding defects into LOP type and the rest two types of
welding defects (Strip and Round). Last Node IV is trained
to classify the rest two types of welding defects into Strip type
and Round type. Therefore, five types of welding defects can
be classified by multi-class AdaBoost effectively.

VI. RESULTS AND ANALYSES

This section presents analyses of the classification results.
The results of binary classification for defect detection and
multi-class classification for the defect recognition are pre-
sented and analyzed.

As shown in Fig. 8(b), we obtained the features’ weight.
The weight of the weak learner is taken as the weight of
the corresponding feature. The features with high weights
can better describe the characteristics of defects, such as
vDisToCenter, grayAvg, and grayStd. vDisToCenter is the rel-
ative position to the weld central line, grayAvg is the average
gray value, and grayStd is the standard deviation. grayAvgL,
grayAvgR, and reg are also good features. grayAvgL is the dif-
ference between the average gray value of the defect and the
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average gray value of the left comparison region. grayAvgR
is the difference between the average gray value of the defect
and the average gray value of the right comparison region. reg
is the relative gray of the defect.

For feature selection, a good result can be achieved by
selecting the optimal feature number. Sort the features by
weight and select the top n features for the classifier. We con-
sider three evaluation parameters: classification accuracy,
TPR, and FNR. The variable TPR is critical for industrial
applications of automatic welding defect detection. There-
fore, we emphasize the variable TPR when deciding the num-
ber of features. In the experiment, we extracted 3951 potential
defects from 263 X-ray images. As shown in Table 1, there
are 1067 defects and 2884 non-defects. Fig. 10 presents
the classification results with different feature numbers. The
optimal number of features is set as 55.

The parameters A is adjusted to balance the TPR and
FNR. The optimal X can be decided according to the receiver
operating characteristic curve (ROC curve). Fig. 11 illustrates
the results of different 1. Five-fold cross validation is used to
test the classifier. The average testing accuracy is shown in
Fig. 11. It can be seen from Fig. 11 that the detection accuracy
and the FNR decline when A increases. Nevertheless, the TPR
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FIGURE 10. Illustration of feature selection. The figure shows the

classification accuracy, the rate of TP, and the rate of FN with different
numbers of features.

Parameter Regulation
A=0.280
® A1=0095
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FIGURE 11. Classification performance of five-fold cross validation for
tuning the penalty term. TPR, rate of true positive; FNR, rate of false
negative.

increases at the same setting. In this paper, we improve the
TPR by increasing X.

For defect detection, the average testing accuracy of the
five-fold cross validation is shown in Table 2. We imple-
mented three comparison tests: SVM, KNN, and RF
The library OpenCV provides the realization of SVM and
RF. The kernel of the SVM is a radial basis function. The
parameters of the three classifiers have been optimized. The
k of KNN is optimized by the training data. The number
of trees in the forest is set to 20, and the prior probability
is computed for classification. The average classification
accuracy of the AdaBoost classifier is 85.5%. The average
classification of RF is higher than that of the others. However,
a large difference was found regarding TPR. The average
TPR of the cascade AdaBoost classifier is 91.66%. The
average TPR of the SVM is 71.04%, that of the KNN is
69.26%, and that of the RF is 81.53%. To obtain a high
TPR, the cascade AdaBoost classifier was applied for defect
detection.

For defect recognition, the extended multi-class AdaBoost
was utilized for defect classification. The sample distribution
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TABLE 2. Cross validation results of four classifiers.

Five Random Tests (%)

Classifier

1 2 3 4 5 AVG

ADA 8534 8532 8633 8456 8595 85.50
ace SVM 89.00 8633 8835 8797 8823 87.98
KNN 8736 8557 8570 8532 8532 8585

RF 91.66  90.00 89.62 91.52 9266 91.09
ADA 90.65 9061 9155 9061 9486 91.66
SVM 76.17 6479 7324 6995 71.03 71.04

TPR NN 7383 6667 6995 6854 6729 6926
RF 8458 7793 7793 8357 83.64 8153
ADA 8336 8336 8440 8232 8264 8322
SVM 9376 9428 9393 9463 9462 9424

FNR N 9237 9255 9151 9151 9201 91.99
RF 9428 9445 9393 9445 9601 94.63

ACC, classification accuracy; TPR, rate of true positive; FNR, rate of
false negative; AVG, average value of the five random tests; ADA,
AdaBoost classifier; SVM, support vector machine classifier; KNN, k-
nearest neighbor classifier; RF, random forest classifier.

TABLE 3. Sample distribution of defects.

Crack LOF LOP Strip Round All
Training 22 19 134 102 576 853
Testing 6 5 33 26 144 214
Sum 28 24 167 128 720 1067

Crack, crack defect; LOF, lack of fusion; LOP, lack of penetration; Strip,
stripy defect; Round, round defect.

TABLE 4. Classification accuracy of defect recognition.

. Average accuracy of five random tests (%)
Classifier ADA SVM KNN RF

testing 74.98 75.63 76.19 81.54

ADA, AdaBoost classifier; SVM, support vector machine classifier;
KNN, k-nearest neighbor classifier; RF, random forest classifier.

is shown in Table 3. The samples distribute unevenly among
different types. The number of round defects is 30 times that
of LOF defects.

Table 4 presents the results for the classification of
defect types. The average testing classification accuracy of
AdaBoost is 74.98%. The confusion matrix for defect type
identification is illustrated in Table 5. For unevenly dis-
tributed samples, the classification performance of SVM and
KNN are worse than that of AdaBoost and RF. One can see
from Table 5 that SVM and KNN neglect the samples with
small quantity, such as cracks and LOF defects. Moreover,
the SVM cannot recognize LOF defects absolutely. In addi-
tion, AdaBoost performed better than RF in the identifica-
tion of cracks, LOF defects, and LOP defects. AdaBoost
can classify the unevenly distributed samples and put stress
on particular types. The three defects with small quantities
can cause more severe harm to the weld than stripy defects
and round defects. Therefore, AdaBoost was selected for the
recognition of defect type.

By comparing the AdaBoost with SVM, KNN and RF,
the experimental results show that AdaBoost is the best classi-
fier in defect detection and defect recognition. The proposed
method can be utilized for feature selection. Specifically,
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TABLE 5. Confusion matrix of five-classification for defects.

Estimated label

Classifier  Label = 9™ 70F LOP  Swip _ Round

Crack 22 04 14 06 1
LOF 0.2 12 16 14 04

ADA  LOP 06 24 212 42 5
Strip 1 08 118 94 26
Round 1 1 122 38 126
Crack 04 0 0 02 5
LOF 0 0 06 08 34

SVM  LOP 0 0 12 2 202
Strip 0 0 2 7.6 16
Round 02 0 06 1 1422
Crack 1 0.2 0.6 1 2.8
LOF 0 04 1 1 2.4

KNN LOP 02 0 182 38 112
Strip 04 08 34 9 12
Round 06 02 42 5 134
Crack 12 02 06 12 24
LOF 0 04 18 16 1

RF LOP 0 0 188 72 74

Strip 0 0 86 154 16

Round 0.4 0.2 2.6 2.6 138.2
ADA, AdaBoost classifier; SVM, support vector machine classifier; KNN,
k-nearest neighbor classifier; RF, random forest classifier; Crack, crack
defect; LOF, lack of fusion; LOP, lack of penetration; Strip, stripy defect;
Round, round defect.

it can improve the TPR and deal with the classification of
unevenly distributed samples.

VII. CONCLUSION

The consequences of welding defects, such as oil leakage,
constitute a major threat to the safe operation of pipelines.
Hence, we proposed an automatic welding defect detection
system. In X-ray images from industry, images with defects
comprise a relatively small number. In addition, massive non-
defects exist in the potential defects obtained by image pro-
cessing. Moreover, the distribution of defect types is uneven.
Defect inspection in industry requires high TPR. Therefore,
the proposed system aimed at improving TPR and reducing
FPR with uneven distributed samples. A total of 3951 poten-
tial defects were acquired by the background subtraction
method. This paper made two main contributions:

1) Improving the TPR in defect detection. We proposed
the AdaBoost method with penalty term. The average test-
ing accuracy of defect detection was 85.5%, the TPR was
91.66%, and the FNR was 83.22%. Three contrast tests were
implemented with the same data. Compared with SVM, KNN
and RF, the TPR increased by more than 10%.

2) Classification for uneven distributed data. For defect
recognition, the method placed different emphases on the
defect according to the defect’s severity. The classification
performance of the proposed method was better than that of
SVM, KNN, and RF in classifying the crack, lack of fusion,
and lack of penetration.

In this paper, it is shown that the proposed method can be
effectively utilized in defect detection, and it is practical in
industrial applications.
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