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ABSTRACT This paper concerns the finite-time trajectory tracking control problem for an underactuated
marine surface vessel (MSV) suffering from the external disturbance and parameter uncertainties. First,
the virtual velocity command is proposed based on a novel piecewise function. It will be illustrated that the
position tracking error can be stabilized to small regions in finite time once the desired velocity commands are
tracked. Then, an adaptive tracking controller is developed such that sway and yaw velocities can converge
to the desired ones in finite time. Utilizing the proposed control strategy, global finite-time stability can
be ensured for the position and velocity tracking errors even in the presence of external disturbances and
parameter uncertainties. Finally, the effectiveness of the proposed controller is illustrated by numerical
simulation.

INDEX TERMS Underactuated surface vessel, finite-time control, sliding mode control, trajectory tracking
control.

I. INTRODUCTION
In recent years, trajectory tracking control for marine surface
vessels (MSVs) has emerged as one of the most attractive
fields due to its potential applications in various marine
missions, involving environment monitoring, polar science
research, rescue missions, etc. As one of the indispensable
parts during these marine activities, trajectory tracking con-
trol always plays an important role to accomplish compli-
cated tasks. However, designing controllers for MSVs still
poses many challenges stemming from its highly nonlinear
dynamics and underactuated characteristic. The underactu-
ated characteristic means that the dimension of the control
input of MSVs is always less than that of the configura-
tion vector, leading to the non-integrable acceleration con-
straints on the sway dynamics. Furthermore, the complex
ocean environment always produces unknown disturbance,
such as wind and ocean current, making it a difficult task
to track a desired trajectory. In spite of these difficulties,
diverse advancedmethods have been presented to design con-
trollers for MSVs, such as adaptive control [1]–[3], backstep-
ping control [4]–[6], sliding mode control [10], [11], fuzzy
control [12], [13] and Neural Networks control [11]–[12].

The associate editor coordinating the review of this manuscript and
approving it for publication was Liang Hu.

Considering the complex external disturbances and param-
eter uncertainties, adaptive control strategies have been
widely adopted to developed controllers for MSVs by esti-
mating unknown parameters online [1]–[3]. Compared with
other nonlinear methods, sliding mode control strategy pos-
sesses better control performance in dealing with the external
disturbances and system uncertainties [7]–[9], which leads to
fruitful results for the trajectory tracking control of MSVs
[10], [11]. Though, the external disturbance and uncertain-
ties can be dealt with properly by the methods mentioned
above, the unmodeled system dynamics should be taken into
account. In view of this, Fuzzy control strategies [12] and
Networks control approaches [13] have been exploited to
approximate the uncertainties in system dynamics. A com-
mon problem in [1]–[13] is that the presented controllers can
only be applied to fully actuated MSVs, leading to much
limitation in practice.

To improve the applicability of the trajectory tracking
controllers, ever-increasing focus is lying on the nonlinear
control for underactuated MSVs. In [14], a liner sliding
mode control scheme was constructed to deal with the lateral
motion control of underactuated MSVs. In contrast to the
proposed technology in [14], nonlinear sliding mode surfaces
were designed to solve the tracking control problem for
MSVs, which can effectively improve the convergence speed
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[31]. However, the external disturbance has been ignored
in [14] and [31], causing substantial performance degrada-
tion in practice. In order to reduce the adverse effect of
the external disturbances and unmodeled system dynamics,
a novel trajectory tracking control algorithm was proposed
for underactuated autonomous underwater vehicles based on
integral sliding mode control and neural network approach
[16]. It must be noted that the transient and steady-state
response ofMSVs system cannot be prespecified in [14]-[16],
though the external disturbance can be handled. Taking this
fact into account, the prescribed performance control strategy
and Barrier Lyapunov function have been investigated for
tracking control of MSVs [17]–[20]. It is obvious that the
proposed results can only be used to solve the tracking control
problem of a single MSV. For the formation tracking control
problem of multiple underactuated MSVs, researchers have
acquired extremely abundant achievements [21]–[25].

Though effective for trajectory tracking control of
underactuated MSVs, controllers proposed in [14]–[25] are
asymptotically stable, meaning that the tracking error will
be stabilized as time goes infinite. Compared with these
asymptotically stable control schemes, finite-time control
strategies forMSVs [26]–[29] possess faster convergence rate
and better robustness to the external disturbance. By utiliz-
ing finite-time extended state observers, a distributed for-
mation control strategy was established for multiple MSVs
in [26]. In [27], a robust finite-time output feedback con-
troller was proposed for MSVs based on a novel disturbance
observer. For the purpose of improving the reliability of the
MSVs system, a finite-time fault-tolerant control strategy
was designed with LOS range and angle constraints con-
sidered [28]. A novel fixed-time output feedback trajectory
tracking controller was proposed for MSVs subject to exter-
nal disturbances and uncertainties [29]. It must be pointed out
that these finite-time controllers proposed in [26]–[29] can
only be applied to fully actuatedMSVs. Therefore, it is highly
desirable to design robust finite-time tracking controllers for
underactuated MSV systems.

Motivated by the above observations, the finite-time tra-
jectory tracking control problem for uncertain underactuated
MSVs will be investigated by utilizing sliding mode tech-
nology and adaptive laws. The originality and novelty of the
proposed control scheme are stated as follows:

i) Global finite-time stability can be ensured for the track-
ing errors of underactuated MSV systems even in the pres-
ence of external disturbances and parameter uncertainties.
Different from the existing finite-time controllers presented
in [26]–[29], the proposed controller in this paper can be
used for underactuated MSVs, which is of great practical
significance in engineering applications.

ii) Compared with the sliding mode methods given in
[14] and [15], the external disturbance and system parameter
uncertainties can be properly handled simultaneously, thus
improving the practicality of the controller greatly.

iii) A novel finite-time sliding mode surface is estab-
lished based on the hyperbolic tangent function. In contrast

to the existing terminal sliding mode technology, the pro-
posed method can avoid the singularity problem. Mean-
while, a novel adaptive law is constructed to ensure global
finite-time stability for the sliding mode surface.

The remainder of this paper is given as follows. In
section II, preliminaries and problem formulation are pre-
sented. Section III is devoted to controller design and stability
analysis. In section IV, numerical simulations are conducted
to show the effectiveness of the proposed controller. Finally,
it comes to the conclusion of this paper in section V.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. PRELIMINARIES
Notation. In this paper, the notation |σ | represent the abso-
lute value of a scalar σ , sigα (σ ) is defined as sigα (σ ) =
|σ |α sign (σ ).
Lemma 1 [30]: For the system ẋ = f (x), f (0) = 0, x ∈ Rn,

V (x) converges to the equilibrium point in finite time if there
exists a continuous functionV (x) : U → R satisfying Eq. (1),
where γ1 > 0, γ2 > 0, 0 < γ3 < 1.

V̇ (x)+ γ1V (x)+ γ2V γ3 (x) ≤ 0 (1)

Lemma 2 [30]: For any scalar zi, i = 1, 2, . . . , n, equation (2)
always holds when 0 < p < 1 exists.

n∑
i=1

|zi|1+p ≥

(
n∑
i=1

|zi|2
) 1+p

2

(2)

Lemma 3 [5]: For any z ∈ R, µ > 0 and κ = 0.2785,
the relation Eq. (2) exists.

0 < |z| − z tanh(µz) ≤
κ

µ
(3)

B. DYNAMIC MODEL OF AN UNDERACTUATED
SURFACE VESSEL
The kinematic and dynamic model of an uncertain under-
actuated MSV with three degree of freedom is established
in this section. Assuming that the MSV moves in the hor-
izontal plane, its kinematic mathematical model can be
written as [15]:

ẋ = ucos (ψ)− vsin (ψ)
ẏ = usin (ψ)+ vcos (ψ)
ψ̇ = r

(4)

where x and y denote the surge and sway displacement of the
center of mass, respectively, ψ denote the yaw angle of the
MSV defined in the earth-fixed frame, u, v and r stand for
the surge, sway and yaw angular velocity with respect to the
body-fixed frame, respectively.

The dynamic model of theMSVwith external disturbances
can be given as [15]:

m11u̇− m22vr + d11u = τu + τud
m22v̇+ m11ur + d22v = τvd
m33ṙ + (m22 − m11) uv+ d33r = τr + τrd

(5)
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with d11, d22, d33,m11,m22,m33 being the hydrodynamic
damping and ship inertia including addedmass in surge, sway
and yaw, τu and τr being the surge force and the yawmoment,
τud , τvd and τrd being the unknown external disturbances.

To derive the finite-time trajectory tracking controller for
the MSV, the following assumptions are introduced.
Assumption 1: The external disturbance always satisfies
|τud | ≤ D1, |τvd | + |τ̇vd | ≤ D2, |τrd | ≤ D3 with D1, D2
and D3 being positive constants.
Assumption 2: The reference trajectories xd , yd and their

derivatives are always bounded.

C. TRACKING ERROR DYNAMICS
Defining the tracking errors xe, ye, eu and ev as xe = x −
xd ,ye = y − yd , eu = u − ud and ev = v − vd , respectively,
where ud and vd are desired surge and sway velocity, respec-
tively, the error dynamics can be established as Eqs. (6)-(7)
by combining the kinematic model Eq. (4) and the dynamic
model Eq. (5).[
ẋe
ẏe

]
=

[
cosψ −sinψ
sinψ cosψ

] [
u
v

]
−

[
ẋd
ẏd

]
(6)

ėu =
1
m11

(δuτu + τud + m22vr − d11u)− u̇d

ėv = −
1
m22

(m11ur + d22v− τvd )− v̇d
(7)

D. PROBLEM FORMULATION
Finite-time trajectory tracking control problem for USVs
refers to design controllers such that the vehicle’s position
can converge to the desired ones in the presence of external
disturbance and parameter uncertainties, that is, lim

t→T
|xe| ≤

1x , lim
t→T
|ye| ≤ 1y, where 1x and 1y are small positive

constants, xe = x − xd ,ye = y− yd .

III. CONTROLLER DESIGN
In this section, a finite-time controller is developed to realize
the control objective. Initially, novel desired velocity com-
mands ud and vd will be proposed to ensure finite-time
stability for the tracking errors xe and ye. In the further design,
xe and ye will be stabilized to small regions 1x and 1y only
if the sway and yaw velocity can converge to the desired
trajectory. To this end, an adaptive finite-time controller is
proposed such that the sway and yaw velocity can converge
to the desired velocity commands. Thus, the controller design
procedure is twofold. In the first step, the desired velocity is
proposed by utilizing a novel piecewise function. In the sec-
ond step, a finite-time controller is developed based on the
sliding mode control method.

A. DESIRED VELOCITY DESIGN
Theorem 1. Considering the position tracking error dynamic
Eq. (6), if the velocity tracking errors eu and ev converge to
two small residual sets1u and1v in finite time, respectively,
the position tracking errors xe and ye will converge to small
regions 1x and 1y in finite time when the desired surge and

sway velocity are proposed as Eqs. (8)-(10).[
ud
vd

]
=

[
cosψ sinψ
−sinψ cosψ

] [
ẋd − k1H (xe)
ẏd − k2H (ye)

]
(8)

H (z) =

 z+ |z|α sign (z) , |z| > 1, z = xe, ye

z+
21
π

sin
( π
21

z
)
+ α1α−1z, |z| ≤ 1

(9)

1 = (
π

2
(1− α))

1
1−α (10)

1x = min

1, o√
k1 − 1

4

,
α+1

√
o2

k1


1y = min

1, o√
k2 − 1

4

,
α+1

√
o2

k2

 (11)

Here, α, k1, k2 and o are positive constants satisfying 0 <

α < 1, k1 > 1
4 , k2 −

1
4 , o =

√
12
u +1

2
v .

Proof: The Lyapunov function is selected as:

V1 =
1
2
x2e (12)

According to Eq. (6), the following equation can be obtained:[
u
v

]
=

[
cosψ sinψ
−sinψ cosψ

] [
ẋ
ẏ

]
(13)

According to the definition of the velocity tracking error eu
and ev, the following equation can be derived by combing Eq.
(8) and Eq. (13).[

eu
ev

]
=

[
cosψ sinψ
−sinψ cosψ

] [
ẋe + k1H (xe)
ẏe + k2H (ye)

]
(14)

For clarity, we define A = [eu;ev], B =
[
cosψ sinψ
−sinψ cosψ

]
,

C = [ẋe + k1H (xe) ;ẏe + k2H (ye)], Due to the fact that
‖A‖ ≤ o, ‖B‖ = 1, it can be concluded from Eq. (14) that
‖C‖ ≤ o. Thus, the following relation can be deduced:{

ẋe + k1H (xe) ≤ o
ẏe + k2H (ye) ≤ o

(15)

Differentiating V1 with respect to time and substituting
Eq. (15) yield

V̇1 = xeẋe
≤ −xe (k1H (xe)− o) (16)

Recalling the definition of H (xe) by Eq. (9), it leads to the
following result if |xe| > 1 exists.

V̇1 ≤ −xe
(
k1 |xe|α sign (xe)+ k1xe − o

)
= −k1 |xe|α+1 − k1x2e + xeo

≤ −k1
(
x2e
) α+1

2
− k1x2e +

1
4
x2e + o

2

= −k1
(
x2e
) α+1

2
−

(
k1 −

1
4

)
x2e + o

2 (17)
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To deal with the term o2, Eq. (17) can be further written as
Eqs. (18)-(19).

V̇1 ≤ −
(
k1 −

1
4
−
o2

x2e

)
x2e − k1

(
x2e
) α+1

2

= −2
(
k1 −

1
4
−
o2

x2e

)
V1 − 2

α+1
2 k1V

α+1
2

1

= −ρ1V1 − ρ2V
α+1
2

1 (18)

V̇1 ≤ −
(
k1 −

1
4

)
x2e −

(
k1 −

o2

|xe|α+1

)(
x2e
) α+1

2

= −2
(
k1 −

1
4
−
o2

x2e

)
V1 − 2

α+1
2 k1V

α+1
2

1

= −ρ1V1 − ρ2V
α+1
2

1 (19)

where ρ1 = 2
(
k1 − 1

4 −
o2

x2e

)
, ρ2 = 2

α+1
2 k1, ρ3 =

2
(
k1 − 1

4

)
,ρ4 = 2

α+1
2

(
k1 − o2

|xe|α+1

)
. Then, in view of

Lemma 1, it can come to the conclusion that xe will converge

to the region |xe| ≤ min

(
1, o√

k1− 1
4

, α+1
√

o2
k1

)
in finite time

if ρ1 > 0, ρ2 > 0, ρ3 > 0, ρ4 > 0.
Through a similar analysis, one can deduce that ye will

converge to the region |ye| ≤ min

(
1, o√

k2− 1
4

, α+1
√

o2
k2

)
in

finite time.
Thus, Theorem 1 has been proven.
Remark 1: Compared with the existing works [14] and

[15], where the desired velocities ud and vd can only guaran-
tee asymptotic convergence for the position tracking error xe
and ye, finite-time stability can be obtained for xe and ye if the
desired velocities are designed as Eqs (8)-(10). Consequently,
the proposed algorithm possesses faster convergence ability
than that in [14] and [15].
Remark 2: The nonlinear function H (z) defined in Eq. (9)

is applied to ensure finite-time stability for the position track-
ing errors. Though the singularity problem can be avoided, xe
and ye can only converge into two small regions rather than
the origin. The parameter 1 must be selected such that H (z)
be continuous and differentiable at the point z = 1. Thus,
by assuming H

(
1+

)
= H

(
1−

)
and Ḣ

(
1+

)
= Ḣ

(
1−

)
, 1

can be calculated as 1 = (π2 (1− α))
1

1−α .
Remark 3. In order to facilitate the controllers design,

the derivative of H (z) is given as follows:

Ḣ (z) =

 ż+ α |z|α−1 ż, |z| > 1, z = xe, ye

ż+
21
π

cos
( π
21

z
)
ż+ α1α−1ż, |z|≤1

(20)

B. FINITE-TIME CONTROLLER DESIGN
In this subsection, an adaptive tracking controller will be
developed to ensure finite-time stability for the velocity track-
ing errors. From theorem 1, it is concluded that xe and ye
are finite-time stable only if eu and ev converge to two small
regions under the desired velocity Eq. (8). Therefore, global

finite-time stability will be derived for the position and veloc-
ity tracking errors under the proposed control scheme.

To pursue the control problem, two novel sliding mode
surfaces are proposed as:

S1 = eu + k3

∫ t

0
tanh (κeu) dt (21)

S2 = ėv + k4tanh (κev) (22)

where k3 > 1
4 , k4 >

1
4 . Recalling the definition of udand vd

in Eq. (8), u̇d , v̇d and v̈d can be calculated as:[
u̇d
v̇d

]
= r

[
−sinψ cosψ
−cosψ −sinψ

] [
ẋd − k1H (xe)
ẏd − k2H (ye)

]
+

[
cosψ sinψ
−sinψ cosψ

] [
ẍd − k1Ḣ (xe)
ÿd − k2Ḣ (ye)

]
(23)

= r
[
vd
−ud

]
+

[
cosψsinψ
−sinψcosψ

] [
ẍd − k1Ḣ (xe)
ÿd − k2Ḣ (ye)

]
v̈d = −ṙud +3 (24)

where

3 = −ru̇d −
(
ẍd − k1Ḣ (xe)

)
rcosψ

−
(
ÿd − k2Ḣ (ye)

)
rsinψ −

(
xd − k1Ḧ (xe)

)
sinψ

+
(
yd − k2Ḧ (ye)

)
cosψ (25)

Thus, the derivative of S1 and S2 can be calculated as:

Ṡ1 = ėu + k3tanh (κeu)

=
1
m11

(δuτu + τud + m22vr − d11u)− u̇d

+ k3tanh (κeu) (26)

Ṡ2 = ëv + k4
(
1− (tanh (κev))2

)
ėv

= −
1
m22

(m11u̇r + m11uṙ + d22v̇− τ̇vd )

−v̈d + k4
(
1− (tanh (κev))2

)
ėv

= −
1
m22

(m11u̇r + d22v̇− τ̇vd )−
(
m11

m22
u− ud

)
ṙ

−3+ k4κ
(
1− tanh2 (κev)

)
ėv (27)

It is worth pointing out that the sliding mode surface
Eqs. (21) and (22) can ensure finite-time stability for tracking
errors eu and ev. Specifically, these two tracking errors will
converge to two small regions around the origin only if the
sliding mode manifolds Eqs. (21) and (22) can be reached
within finite time. Upon utilizing the proposed sliding mode
surfaces, the following adaptive controllers can be designed:

τu = −m22vr + d11u+ m11u̇d − k5sign (S1)

−k3m11tanh (κeu)− λ1 tanh
(
D̂1

)
sign (S1)− k7S1

(28)

τr = (m22 − m11) uv− λ2 tanh
(
D̂2

)
sign (S2)

− λ3 tanh
(
D̂3

)
sign

(
(m22ud − m11u) S2

m33

)
102324 VOLUME 7, 2019



L. Zhang et al.: Finite-Time Trajectory Tracking Control for Uncertain Underactuated MSVs

−
m33

(m22ud − m11u)
(m11u̇r + d22v̇+ m22 (3−

k4κ
(
1− tanh2 (κev)

)
ėv
))
+ d33r −

k6sign
(
(m22ud − m11u) S2

m33

)
− k8S2 (29)

˙̂D1 =
λ4

λ1
cosh2

(
D̂1

)
|S1| (30)

˙̂D2 =
λ5

λ2
cosh2

(
D̂2

)
|S2| (31)

˙̂D3 =
λ6

λ3
cosh2

(
D̂3

) ∣∣∣∣ (m22ud − m11u) S2
m33

∣∣∣∣ (32)

where k5,k6,λi, i = 1, 2, . . . , 6 are positive constants, D̂i, i =
1, 2, 3 is the estimation of Di, i = 1, 2, 3.
Remark 4: In control laws Eqs. (28) and (29), the hyper-

bolic tangent function is used to develop finite-time con-
trol laws. In this way, terms λ1 tanh

(
D̂1

)
sign (S1) and

λ3 tanh
(
D̂3

)
possess upper bounds, which depend on the

design parameters λ1 and λ2. As a result, the output of the
control laws will not approach to infinity despite the use of
adaptive laws.
Theorem 2: Considering the MSV tracking error dynamic

system represented by Eq. (7) satisfying Assumption 1 and
Assumption 2, the following conclusions can be derived
under the proposed control laws Eqs. (28)-(31).

i) The sliding mode surface Si, i = 1, 2 will converge
to the origin within finite time. Furthermore, the estimation
errors D̃i = Di − λi tanh

(
D̂i
)
, i = 1, 2, 3 will be uniformly

ultimately bounded.
ii) Tracking errors eu and ev will converge to regions 1u

and 1v in finite time.

1u ≤
√
2 (k3 + k4) (33)

1v ≤
√
2 (k3 + k4) (34)

Proof: The overall Lyapunov function can be selected as

V2 =
1
2
S21 +

1
2
S22 +

1
2λ4

D̃2
1 +

1
2λ5

D̃2
2 +

1
2λ6

D̃2
3 (35)

Differentiating V2 with respect to time and substituting Eqs.
(7), (21), (22) and (27) yield

V̇2 = m11S1Ṡ1 + m22S2Ṡ2 −
λ1

λ4
D̃1

1

cosh2
(
D̂1

) ˙̂D1

−
λ2

λ5
D̃2

1

cosh2
(
D̂2

) ˙̂D2 −
λ3

λ6
D̃3

1

cosh2
(
D̂3

) ˙̂D3

= S1 (τu + τud + m22vr − d11u− m11u̇d
+ k3m11 tanh (κeu))− S2 (m11u̇r + d22v̇− τ̇vd
− (m22ud − m11u) ṙ + m22 (3− k4κ (1−

tanh2 (κev)
)
ėv
))
−
λ1

λ4
D̃1

1

cosh2
(
D̂1

) ˙̂D1

−
λ2

λ5
D̃2

1

cosh2
(
D̂2

) ˙̂D2 −
λ3

λ6
D̃3

1

cosh2
(
D̂3

) ˙̂D3

≤ S1 (τu + m22vr − d11u− m11u̇d
+ k3m11 tanh (κeu))− S2 (m11u̇r + d22v̇

+m22

(
3− k4κ

(
1− tanh2 (κev)

)
ėv
)

−
(m22ud − m11u)

m33
(τr − (m22 − m11) uv− d33r)

)
+ |S1|D1 + |S2|D2 +

|(m22ud − m11u) S2|
m33

D3

−
λ1

λ4
D̃1

1

cosh2
(
D̂1

) ˙̂D1 −
λ2

λ5
D̃2

1

cosh2
(
D̂2

) ˙̂D2

−
λ3

λ6
D̃3

1

cosh2
(
D̂3

) ˙̂D3 (36)

Based on the proposed control law Eqs. (28) and (29), Eq.
(36) is further rearranged as

V̇2 ≤ −k5S1sign (S1)+ |S1|D1 −
λ1

λ4
D̃1

1

cosh2
(
D̂1

) ˙̂D1

−
k6 (m22ud − m11u) S2

m33
sign

(
(m22ud − m11u) S2

m33

)
−
λ2

λ5
D̃2

1

cosh2
(
D̂2

) ˙̂D2 −
λ3

λ6
D̃3

1

cosh2
(
D̂3

) ˙̂D3

−λ1 tanh
(
D̂1

)
|S1| − λ2 tanh

(
D̂2

)
|S2|

−λ3 tanh
(
D̂3

) ∣∣∣∣ (m22ud − m11u) S2
m33

∣∣∣∣+ |S2|D2

+
|(m22ud − m11u) S2|

m33
D3

= −k5 |S1| − k6

∣∣∣∣ (m22ud − m11u) S2
m33

∣∣∣∣
−
λ1

λ4
D̃1

1

cosh2
(
D̂1

) ˙̂D1 −
λ2

λ5
D̃2

1

cosh2
(
D̂2

) ˙̂D2

−
λ3

λ6
D̃3

1

cosh2
(
D̂3

) ˙̂D3 + |S1| D̃1 + |S2| D̃2

+

∣∣∣∣ (m22ud − m11u) S2
m33

∣∣∣∣ D̃3 (37)

Upon applying Eqs. (30)-(32), Eq. (37) is rewritten as

V̇2 ≤ −k5 |S1| − k6

∣∣∣∣ (m22ud − m11u) S2
m33

∣∣∣∣
−D̃1 |S1| − D̃2 |S2| − D̃3

∣∣∣∣ (m22ud − m11u) S2
m33

∣∣∣∣
+ |S1| D̃1 + |S2| D̃2 +

∣∣∣∣ (m22ud − m11u) S2
m33

∣∣∣∣ D̃3

= −k5 |S1| − k6

∣∣∣∣ (m22ud − m11u) S2
m33

∣∣∣∣
≤ 0 (38)

Thus, the sliding mode surface Si, i = 1, 2 and the estimation
error D̃i are uniformly ultimately bounded.
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In what follows, the finite time convergence of the track-
ing error and the sliding mode surface will be illustrated.
By selecting positive constants D̄i, i = 1, 2, 3 satisfying
D̄i > Di and D̄i > λi tanh

(
D̂i
)
, the Lyapunov function is

chosen as:

V3 =
1
2
S21 +

1
λ4

(
D̄1 − λ1 tanh

(
D̂1

))2
+

1
2
S22 +

1
λ5

(
D̄2 − λ2 tanh

(
D̂2

))2
+

1
λ6

(
D̄3 − λ3 tanh

(
D̂3

))2
(39)

Differentiating V3 by using Eqs. (7), (21), (22) and (27) yields

V̇3 = m11S1Ṡ1 + m22S2Ṡ2

−
2λ1
λ4

(
D̄1 − λ1 tanh

(
D̂1

)) 1

cosh2
(
D̂1

) ˙̂D1

−
2λ2
λ5

(
D̄2 − λ2 tanh

(
D̂2

)) 1

cosh2
(
D̂2

) ˙̂D2

−
2λ3
λ6

(
D̄3 − λ3 tanh

(
D̂3

)) 1

cosh2
(
D̂3

) ˙̂D3

= S1 (τu + τud + m22vr − d11u− m11u̇d
+ k3m11 tanh (κeu))− S2 (m11u̇r + d22v̇− τ̇vd
− (m22ud − m11u) ṙ + m22 (3− k4κ (1−

tanh2 (κev)
)
ėv
))

−
2λ1
λ4

(
D̄1 − λ1 tanh

(
D̂1

)) 1

cosh2
(
D̂1

) ˙̂D1

−
2λ2
λ5

(
D̄2 − λ2 tanh

(
D̂2

)) 1

cosh2
(
D̂2

) ˙̂D2

−
2λ3
λ6

(
D̄3 − λ3 tanh

(
D̂3

)) 1

cosh2
(
D̂3

) ˙̂D3

≤ S1 (τu + m22vr − d11u− m11u̇d
+ k3m11 tanh (κeu))− S2 (m11u̇r + d22v̇

+m22

(
3− k4κ

(
1− tanh2 (κev)

)
ėv
)

−
(m22ud − m11u)

m33
(τr − (m22 − m11) uv− d33r)

)
+ |S1|D1 + |S2|D2 +

|(m22ud − m11u) S2|
m33

D3

−
2λ1
λ4

(
D̄1 − λ1 tanh

(
D̂1

)) 1

cosh2
(
D̂1

) ˙̂D1

−
2λ2
λ5

(
D̄2 − λ2 tanh

(
D̂2

)) 1

cosh2
(
D̂2

) ˙̂D2

−
2λ3
λ6

(
D̄3 − λ3 tanh

(
D̂3

)) 1

cosh2
(
D̂3

) ˙̂D3 (40)

Inserting Eqs. (28) and (29) into (40) leading to the following
result:

V̇3 ≤ −k5S1sign (S1)+ |S1|D1 + |S2|D2

−
k6 (m22ud − m11u) S2

m33
sign

(
(m22ud − m11u) S2

m33

)
−
2λ1
λ4

(
D̄1 − λ1 tanh

(
D̂1

)) 1

cosh2
(
D̂1

) ˙̂D1

−
2λ2
λ5

(
D̄2 − λ2 tanh

(
D̂2

)) 1

cosh2
(
D̂2

) ˙̂D2

−
2λ3
λ6

(
D̄3 − λ3 tanh

(
D̂3

)) 1

cosh2
(
D̂3

) ˙̂D3

−λ1 tanh
(
D̂1

)
|S1| − λ2 tanh

(
D̂2

)
|S2|

−λ3 tanh
(
D̂3

) ∣∣∣∣ (m22ud − m11u) S2
m33

∣∣∣∣
+
|(m22ud − m11u) S2|

m33
D3

≤ −k5 |S1| − k6

∣∣∣∣ (m22ud − m11u) S2
m33

∣∣∣∣
−
2λ1
λ4

(
D̄1 − λ1 tanh

(
D̂1

)) 1

cosh2
(
D̂1

) ˙̂D1

−
2λ2
λ5

(
D̄2 − λ2 tanh

(
D̂2

)) 1

cosh2
(
D̂2

) ˙̂D2

−
2λ3
λ6

(
D̄3 − λ3 tanh

(
D̂3

)) 1

cosh2
(
D̂3

) ˙̂D3

+ |S1| D̃1 + |S2| D̃2 +

∣∣∣∣ (m22ud − m11u) S2
m33

∣∣∣∣ D̃3 (41)

According to the proposed adaptive laws Eqs (30)-(32),
Eq. (41) can be further written as:

V̇3 ≤ −k5 |S1| − k6

∣∣∣∣ (m22ud − m11u) S2
m33

∣∣∣∣
− 2

(
D̄1 − λ1 tanh

(
D̂1

))
|S1|

−2
(
D̄2 − λ2 tanh

(
D̂2

))
|S2|

− 2
(
D̄3 − λ3 tanh

(
D̂3

)) ∣∣∣∣ (m22ud − m11u) S2
m33

∣∣∣∣
+ |S1|

(
D1 − λ1 tanh

(
D̂1

))
+ |S2|

(
D2 − λ2 tanh

(
D̂2

))
+

∣∣∣∣ (m22ud − m11u) S2
m33

∣∣∣∣ (D3 − λ3 tanh
(
D̂3

))
(42)

102326 VOLUME 7, 2019



L. Zhang et al.: Finite-Time Trajectory Tracking Control for Uncertain Underactuated MSVs

FIGURE 1. The actual and desired paths of the MSV.

Due to the fact that D̄i > Di and D̄i > λi tanh
(
D̂i
)
, Eq. (42)

finally becomes:

V̇3 ≤ −k5 |S1| − k6

∣∣∣∣ (m22ud − m11u) S2
m33

∣∣∣∣
−

(
D̄1 − λ1 tanh

(
D̂1

))
|S1|

−

(
D̄2 − λ2 tanh

(
D̂2

))
|S2|

−

(
D̄3 − λ3 tanh

(
D̂3

)) ∣∣∣∣ (m22ud − m11u) S2
m33

∣∣∣∣
= −2k5

(
1
2
S21

) 1
2

− 2k6

∣∣∣∣ (m22ud − m11u)
m33

∣∣∣∣ (12S21
) 1

2

−

√
λ4 |S1|

(
1
λ4

(
D̄1 − λ1 tanh

(
D̂1

))2) 1
2

−

√
λ5 |S2|

(
1
λ5

(
D̄2 − λ2 tanh

(
D̂2

))2) 1
2

−

√
λ6

∣∣∣∣ (m22ud − m11u) S2
m33

∣∣∣∣(
1
λ6

(
D̄3 − λ3 tanh

(
D̂3

))2) 1
2

≤ −ρ5V
1
2
3 (43)

where

ρ5 = min
(
2k5, 2k6

∣∣∣∣ (m22ud − m11u)
m33

∣∣∣∣ ,√λ4 |S1| ,√
λ5 |S2| ,

√
λ6

∣∣∣∣ (m22ud − m11u) S2
m33

∣∣∣∣) .
In view of Lemma 1, it comes to the conclusion that the

sliding mode surface Si, i = 1, 2 converges to the origin in
finite time.

Now, point (i) has been proven.
When the motion of the tracking error system Eq. (7)

reaches the sliding mode surface Si = 0, i = 1, 2 and
remains on it, Eqs. (44) and (45) can be obtained for eu and

FIGURE 2. Curves of position tracking errors.

FIGURE 3. The practical and desired velocity of the MSV.

FIGURE 4. Curves of the velocity tracking errors.

ev, respectively.

ėu = −k3tanh (κeu) (44)

ėv = −k4tanh (κev) (45)

For the surge tracking error eu, it can be concluded from S1 =
0 that the relation Ṡ1 = 0 always exists. Accordingly, Eq. (44)
is tenable. For the sway tracking error ev, Eq. (45) is obviously
valid from the equation S2 = 0.
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FIGURE 5. Curves of the control torques.

FIGURE 6. Curves of the estimation information.

To illustrate the finite-time stability of the tracking errors,
the Lyapunov function is chosen as:

V4 =
1
2
e2u +

1
2
e2v (46)

By exploiting Eqs. (44), (45) and Lemma 3, the derivative of
Eq. (46) is derived as;

V̇4 = euėu + evėv

= −k3eutanh (κeu)− k4evtanh (κev)

≤ −k3 |eu| − k4 |ev| + k3 + k4

= −
√
2k3

(
1
2
e2u

) 1
2

−
√
2k4

(
1
2
e2v

) 1
2

+ k3 + k4

= −ρ6V
1
2
4 + k3 + k4 (47)

where ρ6 = min
(√

2 k3,
√
2 k4

)
. Then, it can be followed

from Lemma 1 and Lemma 2 that eu and ev will converge to
the region 1u and 1v in finite time.

Now, point (ii) has been proven.
Now, Theorem 2 has been proven.

FIGURE 7. Curves of the estimation errors.

FIGURE 8. The curve of the yaw angular velocity.

IV. SIMULATION RESULTS
In this section, the effectiveness of the proposed control
scheme will be illustrated by numerical simulations. The
model parameters of an underactuated surface vessel is given
as [15]: m11 = 1.9 ± 0.019kg,m22 = 2.4 ± 0.117kg,
m33 = 0.043kg ± 0.0068, d11 = 2.436 ± 0.0023, d22 =
12.9 ± 0.297, d33 = 0.0564 ± 0.00085. The initial con-
ditions of the MSV are set as: x (0) = 0.1, y (0) = 0.4,
ϕ (0) = π

2 , u (0) = 0, v (0) = 0, r (0) = 0. The refer-
ence trajectory is chosen as: xd (t) = 0.5t + 1m, yd (t) =
0.25t + 0.5m. To testify the robustness of the proposed con-
troller, the following disturbance is considered in the simu-
lation: τud = 0.1 ×

(
1+ 0.2sin

(
0.01t+ π

2

))
, τvd = 0.1 ×

(1+ 0.3cos (0.01t)) , τrd = 0.1× (1+ 0.2cos (0.015t)) .
The design parameters are selected as: k1 = 2, k2 = 2,

k3 = 0.2, k4 = 2, k5 = 0.05, k6 = 0.05, k7 = 3, k8 = 3,
λ1 = 0.01, λ2 = 0.01, λ3 = 0.01, λ4 = 0.0005, λ5 =
1, λ6 = 0.01.Simulation results are depicted in Figs. 1-8. In
Fig.1, the actual path of the MSV is presented along with the
desired one. Obviously, the desired path can be tracked by
the MSV with high control precision. The position tracking
error curves are given in Fig. 2, implying that the desired
position trajectory can be tracked within 6s even in the pres-
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FIGURE 9. Curves of position tracking errors under the controller Eq. (19)
in [14].

FIGURE 10. Curves of the velocity tracking errors under the controller
Eq. (19) in [14].

ence of external disturbance and parameter uncertainties. The
practical and desired velocity of the MSV are described in
Fig. 3. It can be founded that the proposed velocity command
described as Eq. (8) can be tracked within 6s, which indi-
cates the validity of Theorem 2. Curves of velocity tracking
errors are given in Fig. 4. Steady-state errors of position and
velocity can be observed from enlarged pictures in Fig. 2 and
Fig. 4, respectively. Curves of the control torque are given
in Fig. 5. According to the designed control law Eqs. (28)
and (29), it is obviously that the sign function will introduce
chattering problem in theMSV system. To solve this problem,
the boundary layer function is introduced in the numerical
simulations. The estimation information is depicted in Fig. 6,
which shows that estimation values are all bounded. To illus-
trate that D̃i is bounded, Fig. 7 shows the estimation error
curves. Fig. 8 depicts the curve of the yaw angular velocity
r . It can be observed that the yaw angular velocity is always
bounded under the proposed control law.

To better show the effectiveness of the proposed control
scheme, the comparative study with sliding mode controllers
proposed in [14] and [15] is made. Taking the same external
disturbance into account, simulation results of [14] and [15]

FIGURE 11. Curves of position tracking errors under the controller
Eqs. (22)-(23) in [15].

FIGURE 12. Curves of velocity tracking errors under the controller
Eqs. (22)-(23) in [15].

are given in Figs. 9-12. Comparing the simulation results
under different controllers, it can be concluded that the pro-
posed controller in this paper possesses faster convergence
rate and higher control precision.

V. CONCLUSIONS
The robust finite-time trajectory tracking control problem
has been solved for underactuated MSVs in this paper by
employing finite-time sliding mode control technology. The
controller design can be divided into two stages: the desired
velocity design and the finite-time controller design. A novel
sliding mode surface has been proposed such that the position
tracking errors can be stabilized within finite time. Numerical
simulations have shown the effectiveness of the proposed
method.
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