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ABSTRACT Recognition of discriminative neural signatures and regions corresponding to emotions
are important in understanding the neuron functional network underlying the human emotion process.
Electroencephalogram (EEG) is a spatial discrete signal. In this paper, in order to extract the spatio-temporal
characteristics and the inherent information implied by functional connections, a multichannel EEG emotion
recognition method based on phase-locking value (PLV) graph convolutional neural networks (P-GCNN)
is proposed. The basic idea of the proposed EEG emotion recognition method is using PLV-based brain
network to model multi-channel EEG features as graph signals and then perform EEG emotion classification
based on this model. Different from the traditional graph convolutional neural networks (GCNN) methods,
the proposed P-GCNN method uses the PLV connectivity of EEG signals to determine the mode of
emotional-related functional connectivity, which is used to represent the intrinsic relationship between EEG
channels in different emotional states. On this basis, the neural network is trained to extract effective EEG
emotional features. We conduct extensive experiments on the SJTU emotion EEG dataset (SEED) and DEAP
dataset. The experimental results demonstrate that novel framework can improve the classification accuracy
on both datasets, but not so effective on DEAP as on SEED, in which with 84.35% classification accuracy for
SEED, and the average accuracies of 73.31%, 77.03% and 79.20% are, respectively, obtained for valence,
arousal, and dominance classifications on the DEAP database.

INDEX TERMS EEG emotion recognition, phase-locking value, graph convolutional neural networks, brain

network, functional connectivity.

I. INTRODUCTION

Emotion computing is the key technology to realize advanced
human-computer interaction. Emotion recognition is an
important part of emotion computing. Its research pur-
pose is to let the machine perceive the emotional state
of human beings and improve the humanization level of
the machines [1]. Common emotion recognition methods
can be divided into two categories: one is based on non-
physiological signals, such as voice [2], facial expression [3]
and posture [4], the other is based on physiological sig-
nals, mainly including peripheral nervous system and brain
signals. Peripheral nervous system recognition method is
to identify the corresponding emotional state by measuring
physiological signals such as heart rate, skin impedance [5],

The associate editor coordinating the review of this manuscript and
approving it for publication was Hasan S. Mir.

VOLUME 7, 2019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

respiration, etc. Brain signal recognition methods mainly
include functional magnetic resonance imaging (FMRI) [6],
magnetoencephalography (MEG) [7] and electroencephalo-
gram (EEG) [8]. Among various emotion recognition meth-
ods, the brain signal is highly reliable and scientific because
it is not affected by human subjective factors [8]. In addi-
tion, with the rapid development of wearable devices and
dry electrode extraction technology [9], EEG-based emotion
recognition technology and EEG-based signal processing
methods have become a hot topic in the field of emotion
recognition [10], [27].

Different techniques for emotion recognition have been
proposed in literature using EEG by either individually
engaging the sense of vision, auditory, tactile or by combining
both vision and auditory senses. Emotion assessment is a
subjective phenomenon and different stimuli evokes different
emotions. In [11], [12], frequency and time domain features
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were extracted to classify emotions using EEG by using audio
music as a stimuli that engaged only the auditory sense of
the listener. In [13], images and audio music were used as a
stimuli, thereby engaging only one sense at a time. The emo-
tions have been classified using EEG by extracting frequency
domain features. In [14], two human senses were engaged
by displaying video clips and emotions were classified using
EEG by extracting time domain features. In [15], A user-
independent method of emotion recognition using electroen-
cephalography (EEG) in response to traditional and tactile
enhanced multimedia (TEM) is presented with an aim of
enriching the human experience of viewing digital content.
The selected traditional multimedia clips are converted into
TEM clips by synchronizing them with an electric fan and a
heater to add cold and hot air effect. This would give realistic
feel to a viewer by engaging three human senses including
vision, auditory, and tactile.

At present, more and more researchers are engaged in
the research of emotion recognition. A typical EEG emotion
recognition method usually consists of two parts, i.e., EEG
emotional feature extraction and emotion recognition [27].
Feature extraction is a crucial part of emotion recognition
research. Only by extracting the features that are truly related
to emotion can we provide guarantee for subsequent research.
Chai et al. [16] extracted six time-domain statistical features
of EEG signals and used neural networks to identify emo-
tions such as anger, sadness, surprise and pleasure. Hosseini
and Naghibi-Sistani [17] extracted the approximate entropy
features of EEG signals and used support vector machine
for emotion recognition, the accuracy rate reached 73.25%.
Although these methods have obtained some research results,
the univariate EEG features extracted using these methods
lack spatial and functional descriptions. In this paper, a mul-
tivariable feature method based on brain network is proposed
to solve the problem of how to extract the multivariate fea-
tures of EEG by utilizing the relationship between multiple
scalp EEG channels to fully mine the intrinsic information
of EEG signals, and how to select the key channel related to
emotion. Since the phase-locking value (PLV) [18] method
can separate the phase component from the amplitude com-
ponent in EEG signal. It is more suitable for EEG data that
is affected by synchronous amplitude changes caused by
eye movements and other activities. This paper uses PLV
to build an emotional correlation model. Multivariate EEG
features based on PLV brain network modeling have stable
structural and abundant brain activity information compared
with univariate features [19], which provides guarantee for
EEQG classification and recognition.

In the literature [20] proposed a variety of EEG emo-
tion classification and recognition methods. Jirayucharoen-
sak et al. [21] used the stacked self-encoder (SAE) method
to establish the emotion recognition model, and compared
it with traditional classification algorithms such as support
vector machine (SVM) [22] and naive Bayes (NB), which ver-
ified the superiority of deep network. Deep neural networks
(DNN) [23] has been proven to be superior to traditional
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machine learning methods in applications such as facial
recognition and speech recognition. Among them, Convolu-
tional neural network (CNN) has been widely used in spatial
continuous data processing such as computer vision [24] and
natural language processing. It is worth noting that CNN can-
not be used to process spatial discrete data, such as biological
molecules, social networks and brain networks, etc. In order
to efficiently extract spatial features for machine learning
on such data structures (topologies), Graph neural network
(GNN) [25] has become the focus of research. In 2009,
Scarselli first proposed the concept of graph convolution neu-
ral network (GCNN) [26], which is a deep learning method
that combines CNN with spectral theory [25], [29]. In the
discrete space domain, GCNN provides an effective way to
describe the intrinsic relationship between different nodes of
the graph, which provides an important clue for exploring the
relationship between multiple EEG channels in EEG emotion
recognition. In the literatures [27], a method based on GCNN
for EEG emotion recognition is proposed. However, only the
spatial location of the EEG channel was considered and no
functional connection was explored. Because of the working
mechanism of division of labor and cooperation among brain
regions, the spatial positional relationship and functional
connection of EEG channels do not maintain their consis-
tency [28]. In order to solve this problem, this paper proposes
a new PLV-based graph convolutional neural network (P-
GCNN) emotion recognition method, which determines the
emotional-related functional connection mode through the
PLV connectivity of EEG signals. Then, the multi-channel
EEG emotion recognition problem is studied through graph
theory knowledge, where each EEG channel corresponds to
one vertex node in the graph, and the connection between two
different vertex nodes corresponds to one edge of the graph.

Based on the two parts of the feature extraction and classi-
fication recognition, this paper proposes a PLV-based graph
convolutional neural network emotion recognition method.
The univariate EEG feature is modeled as a multivariate
feature of the graph signal based on the PLV brain network
structure, which restores the spatial and functional intrin-
sic connection of the data, and provides a new idea for
the research of EEG emotion recognition method. At the
same time, the PLV-based graph convolutional neural net-
work extracts EEG features that are more able to represent
emotions, and the emotion classification recognition rate is
improved.

The remainder of this paper is organized as follows: In the
second section, a brief introduction of spectral theory and
graph convolution. In the third section, the P-GCNN model
and the EEG emotion recognition method based on the model
are proposed. The fourth part is the EEG emotion recognition
experiment. Finally, the fifth section summarizes this paper.

Il. GRAPH PRELIMINARY

In this section, the spectral graph theory [29] and the graph
convolution [26] are introduced. This is the basis of the
P-GCNN method.
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A. SPECTRAL GRAPH THEORY

In the traditional convolutional network, convolution essen-
tially uses a filter with shared parameters to extract spatial
features by calculating the weighted sum of the central pixel
and adjacent pixels. Convolution is the operation between a
local filter and a signal on the regular grid and the filtering
parameters are obtained by backpropagation. With the gener-
ation of discrete data in the spatial domain, a graph represen-
tation method is proposed. The eigenvalues and eigenvectors
of the Laplacian matrix of the graph are used to study the
properties of the graph, and the deep learning technique is
extended to the graph domain.

The graph can be defined as G = (V, E, W), where V, E
are the vertex and edge sets of the graph. W is the adjacency
matrix describing the connection between any two nodes
in V, and W,, indicates the importance of the connection
of the p-th node to the g-th node. Its Laplacian matrix is
defined as L = D — W, Where L is the Laplacian matrix,
D is the degree matrix of the graph, and W is the adjacency
matrix of the graph. Since L is a symmetric matrix, it can
be singular value decomposition (SVD) [29]L = U A U7,
Where U = [ug,---,un—1] € Ryxn is the eigenvector
matrix, /\ = diag([1o, - - - , Ay]) is the diagonal matrix.

The migration of the traditional Fourier Transform and
convolution to the graph domain is to change the eigen-
function =™’ of the Laplacian into the eigenvector of the
Laplacian matrix corresponding to the graph.

The graph Fourier transform (GFT) [30] is defined as:

Fon=F0n=3Y"" f®)u@ (M

F is the N-dimensional vector on the graph, f(p) corre-
sponds one-to-one with the vertices in the graph, u;(p) repre-
sents the p-th component of the I-th feature vector, and u; (p)
is the conjugate of the feature vector ;.

Extend the graph Fourier transform to the matrix form is
as follows:

F6 w() w2 ur(N)
f(x2) B u(1) u2(2) us(N)
Fou () uy() un(N)
f(1)
1)

x| @)
FON)

That is, the matrix form of the graph Fourier Transform of
fis:

f=U"f 3)

B. CONVNETS ON GRAPH

The graph convolutional network can be divided into two
types from convolution: spectral convolution and spatial
domain convolution. Spectral convolution is to convert the
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filter of the convolution network and the graph signal to
the Fourier domain at the same time, and then process. The
spatial domain convolution is that the nodes in the graph are
connected in the spatial domain to achieve the hierarchical
structure, and then convolute.

The spectral convolution of the graph [29] is defined as the
signal x € RV multiplied by the filter gy = diag(P), and the
filter is parameterized by & € R of the Fourier domain:

goxx = UgpU'x )

where U is composed of the eigenvectors of the normalized
Laplacian matrix, defined as:

L=1Iy—D3AD 3 = v /\UT 5)

/\ is the diagonal matrix composed of the eigenvalues of L,
and U7 x is the graph Fourier transform of x. gy is a function
of the eigenvalue of L, i.e., gg(A).

In order to localize the filters in space and reduce their
computational complexity, the truncated expansion of the
K-order Chebyshev polynomial [26] is used to approxi-
mate the filter. The Chebyshev polynomial is defined as
Te (x) = 2xTx_1(x) — Tg_o(x), where To (x) = 1,
Ty (x) = x. Then, the signal x is filtered by the k-domain
filter, and the expression is as follows:

k ~
y=go Wyxx =) " OTu(x ©)

where L = 2L [ Amax
eigenvalue of L.

The g-th output feature graph of the sample s in the graph
convolution network can be expressed as:

— INApmgy represents the maximum

Fin
Via =D " 8, (L)xsp € RY 9

The Fj, x F,y vector trains the Chebyshev coefficient
Op.q € RK, where x;, p represents the input feature map.

Ill. P-GCNN FOR EMOTION RECOGNITION

In this part, the univariate EEG features were modeled as
graph signals using PLV matrices, and then the P-GCNN
model is proposed and applied to the EEG emotion recog-
nition problem.

A. EEG PHASE SYNCHRONY ANALYSIS

Phase synchronization phenomena are widely present in EEG
data and have been widely used in motion imaging and
brain-computer interface research [18]. Compared with other
methods to quantify the phase synchronization between sig-
nals, PLV [31], [32] represents the absolute value of the
average phase difference between any two signals, which can
separate the phase component from the amplitude component
in EEG signals. The formula definition of PLV [33] is:

1
PLV (0 = 1 ‘ZLI exp ( (Agn (1) ®)
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Ag, () = (¢x (t) — @y(1)) represents the phase difference
between the electrode signal x and the electrode signal y at
time t, N is the length of the time series.

Then the element W, of adjacency matrix W* is deter-
mined based on PLV. The formula can be expressed as:

1

N . .
we =N > exp((Ag )|, FAg ) =T,

0, otherwise

©))

where 7 is a fixed threshold and ¢,, () represents the strength
of the functional connection between the p-th node and the
g-th node.

Algorithm 1 Procedures of Training Optimal P-GCNN
Model for EEG Emotion Recognition

Require: Univariate EEG features associated with multi-
ple frequency bands, multivariable attributes feature based
on brain network, the class labels corresponding to the
EEG features, the preprocessed EEG timeseries, the num-
bers of Chebyshev polynomial order k, the learning rate p;
Ensure: The desired model parameters of P-GCNN;

1: Initialize model parameters;

2: repeat

3: Calculating the PLV adjacency matrix W* and regu-
larizing the elements of the matrix W* using Relu opera-
tion such that the elements are non-negative;

4: Calculating the Laplacian matrix L*;

5: Calculating the normalized Laplacian matrix L*;

6: Calculating the Chebyshev polynomial items
T (LY, =0,1,--- , K — 1);

7: Calculating ZkK;()l Ok T (L*)x;

8: Calculating the convolution results and regularizing
the result using the Relu operation;

9: Calculating the results of the full connection layer;

10: Calculating the loss function using (10);

11: Updating model parameter;

12: until the iterations satisfies the predefined algorithm
convergence condition.

B. P-GCNN MODEL CONSTRUCTION

The P-GCNN model is proposed according to equations (6)
and (9) as shown in Figure 1. The model framework consists
of two modules, i.e., PLV-based graph signals construction,
graph convolution and classification prediction.

The graph signal construction module includes two parts:
time-frequency domain feature extraction and PLV-based
brain network construction. Among them, the extracted time-
frequency domain EEG features include the differential
entropy (DE) feature [34], the power spectral density (PSD)
feature [35], the differential asymmetry (DASM) feature [36],
the rational asymmetry (RASM) feature [37] and the dif-
ferential caudality (DCAU) feature [41]. The construction
of the brain network: We use the formula (9) to achieve

93714

brain network construction under different emotional states.
The graph convolution and classification prediction modules
include a graph convolution layer, two Relu active layers,
a graph pooling layer, a fully connected layer, and a softmax
layer.

The input of the P-GCNN model is the preprocessed EEG
timeseries. The vertices in Figure 1 represent the EEG chan-
nels, and the line connecting the vertices indicate the rela-
tionship of the brain regions corresponding to the electrode
positions in an emotional state. The purpose of the graph con-
volution operation is to extract more discriminative features.
In order to increase the nonlinearity of the neural network
model, the Relu function [38] is used to alleviate the occur-
rence of over-fitting problems. Then there is a fully connected
(FC) output layer, which is used to integrate the global infor-
mation about the graphics from previous localization filters.
Finally, the Softmax function [39] is used for classification
and identification. we define a cross-entropy loss function to
optimize network parameters, which is expressed as follows:

Loss=— ) _(p(x)logg(x)+(1 — p(x)) log(14(x))) + AR(w)

(10)

where p(x) and q(x) represent the true and predicted value
of the training data, R(w) is an indicator for evaluating the
complexity of the model, and AR(w) is intended to prevent
over-fitting of the model.

Algorithm 1 summarizes the detailed steps for training the
P-GCNN model in EEG emotion recognition.

IV. EXPERIMENTS

In this section, we will conduct extensive experiments on
two emotional EEG datasets that are used to evaluate the
effectiveness of the proposed P-GCNN method. One is the
SEED dataset established by Shanghai Jiao tong University,
and the other is the internationally open multimodal DEAP
dataset.

A. EMOTIONAL EEG DATABASES
In the SEED dataset [40], 15 subjects (7 males, 8 females)
participated in the experiment, and each subject performed
3 experiments with an interval of about one week. Each
participant watched 15 videos, which corresponded to the
three emotional categories of Positive, Neutral and Negative.
They recorded their EEG signals through the electrode cap
while the subjects watched the movie clips. The EEG signal
sampling frequency is 1000 Hz. According to the interna-
tional 10-20 system [41], the experiment uses a 62-channel
electrode cap. The layout of EEG electrodes on the cap is
shown in Figure 2. The four electrodes T7, T8, FT7, and
FT8 are distributed in the temporal lobe area above the ear,
which is called the conductive electrode. The role of the
electrode group is to amplify the collected raw EEG signal
and output it to the preprocessing module.

The DEAP dataset [42]- [46] included a total of 40 chan-
nels of physiological signals from 32 subjects (16 males

VOLUME 7, 2019
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FIGURE 1. The framework of the P-GCNN model for EEG emotion recognition, which consists of the PLV-based graph signals construction, graph
convolutional operation, graph pooling operation, Relu activation and the full connection. The inputs of the model are the preprocessed EEG timeseries.

The outputs are the predicted labels through softmax.

and 16 females) and facial expression videos from the top
22 subjects. Among the physiological signals of 40 chan-
nels, the first 32 channels are EEG signals, and the last
8 channels are autonomous physiological signals, includ-
ing Electro-oculogram (horizontal and vertical Electro-
oculogram), myoelectricity, skin electricity, respiratory
rhythm, etc. Each participant watched 40 videos. After watch-
ing the video, they were asked to mark the valence, arousal,
and dominance of the video being watched according to the
size relationship from 1 to 9.
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B. EEG EMOTION RECOGNITION ON SEED DATABASE

The pre-processed SEED dataset was used for the experi-
ment, and the three experiments of each subject were divided
into three groups for research. The EEG data of 11 indi-
viduals randomly selected from 15 subjects in each group
were the training set, 2 were the verification set, and the
remaining 2 were the test sets, and the classification accuracy
of each group was obtained. Finally, the average classifica-
tion accuracy and standard deviation of the three groups are
calculated.
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FIGURE 2. The EEG cap layout for 62 channels.

Since the connection mode of the brain network in the
initial stage of data collection and the end of the experimental

task is difficult to maintain relatively stable (i.e., does not
meet the basic assumption of static connection). Therefore,
the time series of 4 minutes is equally divided into four
parts before calculating the PLV, each segment is 60s, and
the time series of the 90s-150s between the cuts is used as
the calculated time series. The experiment selects the sliding
time window with a step size of 0.12s to calculate the PLV.
Figure 3 (a) (b) is the PLV correlation matrix of the first
and seventh subjects under the three emotional categories of
Positive, Neutral and Negative. (c) is the average PLV matrix
of all subjects under three emotions.

Itis observed from Fig. 3 that the degree of some electrodes
is significantly higher than other electrodes. This shows that
some brain parts having higher degree electrodes are more
involved and synchronized with other brain parts, which also
implies that these brain parts may be responsible for genera-
tion of particular emotions.

Analysis of Figure 3, in the same band, the number
of electrode pairs with a phase locking value greater than
0.6 in the pleasant state is relatively less than the sad
state. so overall, the phase synchronization of different
brain regions in the negative state is higher. It is the

Positive Neutral Negative
Trial 1(a)
h
|87
Trial7(b)
Average(c)

FIGURE 3. (a) (b) is the PLV correlation matrix of the first and seventh subjects under the three emotional categories of Positive, Neutral and Negative.

(c) is the case of taking the average of all the subjects.
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FIGURE 4. Brain connectivity plots of there synchrostates from multiple subject EEG.

range of activated brain regions wider and forms a large
range of intraceramic phase synchronization. The state of
pleasure is relatively less active and concentrated in the
brain area. It is thus assumed that in the negative state,
the human brain pays more attention to details than pleasure,
thereby activating more relevant brain regions for information
processing.

EEG Scalp Connectivity networks: Also known as
functional connectivity networks which aim to identify the
changing pattern of functional interconnections among dif-
ferent lobes and parts of the brain. These lobes and parts
are represented by EEG electrode, placed according to
10-20 electrode placement system. To generate functional
connectivity network corresponding to particular state or
stimulation. To the correlation analysis between EEG chan-
nels, three different threshold ranges are set r > 0.80,
T > 0.60, and T > 0.40, respectively. For more accurate
and easy visualization connectivity network between channel
locations has been shown for the average theme selected.
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Fig 4. shows the brain connection relationship in the
three emotional states obtained by setting different thresholds
under the average experiment. When the state of pleasure
T > 0.80, we see 18 related pairs (AF3-FPZ’, 'FPZ-
FP1’, ’AF3-F3’, 'F8-PT8’, 'FP2-AP4’, *AP4-F4 °, * AP4-
FZ’,’ AF4-FPZ’,’FC2-FZ’,’FC4-FZ’,’02-PO6’, "PO6-P4’,
’PO3-01°, 02 -0Z’, ’0Z-01’, *02-CB2’, *F1-T7’, °F7-
FT7°,). When t > 0.60 and T > 0.40, there are 56 and
148 related pairs respectively. Similarly, Figure 4. (b) (c)
shows a connectivity network with different thresholds set in
neutral and sad states. (b) For different 7 values in the figure,
the number of related pairs is 103, 168 and 247, respectively.
(c) For different t values in the figure, the number of related
pairs is 181, 253and 269, respectively.

From the above findings, we can draw an intermediate
conclusion: emotions are mainly related to the brain regions
of the human brain and temporal lobe. Through research, it is
found that when watching videos of positive emotions, the left
forebrain produces strong EEG activity, while when listening
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TABLE 1. Comparisons of the average accuracies and standard deviations (%) of subject dependent EEG-based emotion recognition experiments on seed

database among the various methods.

Feature Classifier Delta Theta Alpha Beta Gamma Total
SVM [23] 60.50/14.14 60.95/10.20 66.64/14.41 80.76/11.56 79.56/11.38 83.99/9.72
DNN [23] 64.32/12.45 60.77/10.42 64.01/15.97 78.92/12.48 79.19/14.58 86.08/8.34
DE GCNN [28]  72.75/10.85 74.40/8.23 73.46/12.17 83.24/9.93 83.36/9.43 87.40/9.20
P-GCNN 73.05/11.36 75.49/8.41 75.66//13.3 82.32/10.96 $3.55/10.18 84.08/8.50
SVM [23] 58.03/15.39 57.26/15.09 59.04/15.75 73.34/15.20 71.24/16.38 59.60/15.93
DNN [23] 60.05/16.66 55.03/13.88 52.79/15.38 60.68/21.31 63.42/19.66 61.90/16.65
PSD GCNN[28]  69.89/13.83 70.92/9.18 73.18/12.74 76.21/10.76 76.15/10.09 81.31/11.26
P-GCNN 70.24/12.23 70.11/9.14 73.36/12.53 77.35/10.43 76.08/10.38 $1.62/10.82
SVM [23] 48.87/10.49 53.02/12.76 59.81/14.67 75.03/15.72 73.59/16.57 72.81/16.57
DNN [23] 48.79/9.62 51.59/13.98 54.03/17.05 69.51/15.22 70.06/18.14 72.73/15.93
DASM  GCNN [28] 57.07/6.75 54.80/9.09 62.97/13.43 74.97/13.40 73.28/13.67 76.00/13.32
P-GCNN 56.19/8.35 55.17/10.02 64.36/15.67 73.29/13.22 73.78/13.56 78.63/13.02
SVM [23] 47.75/10.59 51.40/12.53 60.71/14.57 74.59/16.18 74.61/15.57 74.74/14.79
DNN [23] 48.05/10.37 50.62/14.02 56.15/15.28 70.31/15.62 68.22/18.09 71.30/16.16
RASM  Genn 28] 59.70/5.65 55.91/8.82 59.97/14.27 79.45/13.32 79.73/13.22 84.06/12.86
P-GCNN 57.32/6.39 57.09/8.37 61.62/13.30 79.58/13.24 80.43/13.45 84.35/10.28
SVM [23] 55.92/14.62 57.16/10.77 61.37/15.97 75.17/15.58 76.44/15 41 77.38/11.98
DNN [23] 54.58/12.81 56.94/12.54 57.62/13.58 70.70/16.33 72.27/16.12 77.20/14.24
DCAU  GCNN[28]  62.60/12.88 65.05/8.35 66.41/11.06 77.28/11.55 78.68/13.00 79.02/11.27
P-GCNN 63.28/13.07 63.53/9.61 67.62/10.78 78.21/11.04 79.36/12.38 79.86/11.09

to videos watching negative emotions, the right forebrain
produces strong EEG activity. This shows that the forebrain
has a great correlation with emotions.

In order to verify that the EEG features extracted based on
the PLV relationship between scalp EEG pairs are more rep-
resentative of emotions, Experiments were carried out on the
P-GCNN method and compared with other emotion recogni-
tion methods. In this paper, five kinds of EEG features in dif-
ferent frequency bands are used to evaluate the performance
of EEG emotion recognition methods. The five EEG features
are the differential entropy (DE) feature, the power spectral
density (PSD) feature, the differential asymmetry (DASM)
feature, the rational asymmetry (RASM) feature, and the
differential caudality (DCAU) feature.

Table 1 summarizes the experimental results of the aver-
age accuracy and standard deviation (%) of different EEG
emotion recognition methods under five different EEG fea-
tures. For comparison, the experimental results of the DBN
and SVM methods in the literature [23] and GCNN in the
literature [27] are cited.

From Table 1, we can observe the following points:

o In terms of features, the average recognition rate
of RASM features under the P-GCNN method is
up to 84.35%. This indicates that RASM features
are more relevant to the emotions of the human
brain.

o In terms of frequency bands, the average recogni-
tion rate of the B and y bands in each emotion
recognition method is higher than the §, 6, and «o
bands, and the average recognition accuracy is the
highest when all five bands are used simultaneously.
This suggests that the higher frequency bands may
be more closely related with the emotion activities
whereas the lower frequency bands are less related with
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TABLE 2. Classification accuracy with different adjacency matrix.

Accuracy
Graph Alpha Beta Gamma Total
PLV 61.62/13.30  79.58/13.24  80.43/13.45 84.35/10.28
Identity  57.43/12.34  72.61/10.69  74.32/15.49  80.89/14.55
Random  51.22/14.81 63.30/11.36  67.28/12.77  74.48/12.67
MI 62.05/10.40  75.66/10.27  78.75/12.61  82.67/13.21

the emotion activities, which is consistent with the find-
ings of related biology [47], [48].

o Among the four EEG emotion recognition methods,
the average recognition rate based on GCNN and
P-GCNN methods is higher than the traditional machine
learning algorithm SVM and deep learning algorithm
DBN. This is probably due to the fact that GCN-based
method takes into account the functional relationship
between the various channels of EEG signals, which
makes the feature extraction more effective.

« Among the GCN-based emotion recognition methods,
the recognition rate of the P-GCNN method is higher
than that of the GCNN method, which indicates that the
phase synchronization phenomenon of EEG signals can
mine the intrinsic information of EEG signals, and it is
beneficial to emotional feature extraction and classifica-
tion recognition.

In order to better understand the importance and necessity
of incorporating the graph information in the neural net-
works, we replace the PLV-based adjacency matrix with an
identity matrix, a random symmetric matrix, and a mutual
information matrix and train the model. Table 1 shows that
the recognition accuracy of RASM features is highest under
the P-GCNN method, so this experiment was carried out on
different frequency bands of RASM features. The results are
shown in Table 2:
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FIGURE 5. The PLV relationship matrix of the two subjects in S2 and S7 and the average PLV matrix of all subjects in different states.

Table 2 shows that the network recognition rate based on
PLV adjacency matrix is higher than the identity matrix and
the random matrix. This may be due to the fact that the
EEG features modeled on the PLV matrix take into account
the correlation between the emotional features, while the
identity matrix and the random matrix ignore the correlation
between the features. The network recognition rate of the
PLV adjacency matrix is higher than the mutual information
matrix. This is because the PLV method can separate the
phase and amplitude components in the signal, which can
better measure the synchronism between signals.

C. EEG EMOTION RECOGNITION ON DEAP DATABASE

In this part, the pre-processed DEAP dataset was used for the
experiment. The sampling frequency of the pretreated EEG
data is reduced from 512 Hz to 128 Hz, and the length of
each sample data is 63 seconds.

In order to test the recognition performance of P-GCNN
method for multivariate and univariate features of EEG sig-
nals, We experimented with five univariate features and three
multivariate brain network attribute features in different fre-
quency bands on the valence dimension. The extracted five
univariate features are the differential entropy (DE) feature,
the power spectral density (PSD) feature, the differential
asymmetry (DASM) feature, the rational asymmetry (RASM)
feature, and the differential caudality (DCAU) feature.
The three multivariate features are the average clustering
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coefficient (ACC), the character path length (CPL) and the
global efficiency (GE) of the brain network.

Average cluster coefficient: used to measure the extent to
which points in a graph are clustered together.

acc=ty 2 (an
 n 4—ieN ki(K; — 1)

n represents the number of nodes in the network, #}" rep-
resents the total number of triangle structures around the i-th
node of the network, and k; represents the degree of the i-th
node of the network.

Character path length: used to measure the robustness of
the network topology.

1 2jen j#i 4
CPL = — ZEN /LSRR (12)

n n—1
n represents the number of nodes in the network, i and j are
two different nodes in the network, dl.;” is the distance between
two points i and j.
Global efficiency: A measure of the efficiency of informa-
tion exchange in a network.

1

GE = n ZieN

Global efficiency is the reciprocal of the distance between
any two points in the network.

In the process of calculating the phase synchronism

between the signals of each channel, considering the char-

acteristics of emotional excitation and the smoothness of the

Yjen.jri @)™

n—1 (13)
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TABLE 3. The average classification accuracies and standard deviations (%) of EEG emotion recognition on DEAP database using de feature.

Valence Arousal Dominance
Pacc Pstd Pacc Pstd Pacc Pstd
SVM 0.6200 0.1256 0.7060 0.1504 0.7440 0.1320
DBN 0.6730 0.1409 0.7273 0.1649 0.7299 0.1420
GCNN 0.7014 0.1560 0.7441 0.1850 0.7631 0.1234
P-GCNN 0.7331 0.1166 0.7703 0.1149 0.7920 0.1046

signal, the experiment selected 30s in the middle of each trial
as the research object. Figure 5 shows the PLV relationship
matrix of the two subjects in S2 and S7 and the average
PLV matrix of all subjects in different states. In the DEAP
database, S2 is a female subject, and S7 is a male subject.
It can be observed from the figure 5 that there are great
differences among different individuals and between female
and male. Female are more sensitive to emotional stimuli than
male.

In the experiment, the EEG data of all 32 individuals were
regarded as a group, 22 EEG data were randomly selected as
the training sets, and the remaining 10 were used as test sets
to calculate the average classification accuracy and standard
deviation. The experimental results are shown in Figure 6:

Figure 6. shows that the recognition accuracy of univariate
features is higher than that of multivariate features when
the P-GCNN method is used for emotion recognition, which
may be due to the fact that the selected multivariate features
are global attribute features, while the main advantage of
P-GCNN method is to discover the correlation between uni-
variate features in different channels.

At the same time, in order to verify the effectiveness
of the proposed P-GCNN method in the three emotional
dimensions (i.e., valence, arousal, dominance), we set up
the same experiment using DBN, SVM and GCNN meth-
ods to compare. It can be seen from Figure 4 that the
recognition accuracy of the DE feature is the highest under
the P-GCNN method, so the experiment is studied on the
DE feature, and the experimental results are shown in
table3.
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From Table 3, we can obtain the following major points:

o The proposed P-GCNN method achieves much higher
classification accuracies than the other three state-of-
the-art methods, in which the classification accuracies
could be as high as 73.31% for valence classification,
77.03% for arousal classification, and 79.20% for dom-
inance classification, respectively.

« Among the four recognition methods, the recognition
rate based on dominance in the same emotional state
is higher than the other two dimensions, which may be
more likely to stimulate emotion when the subject is
more familiar with the video being watched.

V. CONCLUSION

In this paper, we have proposed a deep learning model,
P-GCNN, which integrates PLV and GCNN, for emotion
recognition based on multi-channel EEG signals. Specifi-
cally, the PLV component has the ability to separate phase
and amplitude components in the EEG signal and to mine
inter-channel correlation information. On the other hand,
the model structure based on GCNN can integrate graphical
information such as brain connections with fully-connected
layers, and can learn surrounding node information from the
modeled graphic signals. We propose the P-GCNN method
by combining PLV and GCNN. The method can extract the
emotional information implicit in the brain network graph
more effectively, and provides protection for classification
identification. This method utilizes a PLV matrix to represent
the inter-channel relationships. Then based on the constructed
brain network, the EEG features are modeled as graph data,
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and finally the proposed model is used for classification
and recognition. Experiments were carried out on two public
datasets. On the SEED dataset, when the RASM features
of five frequency bands are combined together, the average
recognition accuracy of the P-GCNN method can be as high
as 84.35%. On DEAP dataset, the average accuracies of
valence, arousal, and dominance using the proposed P-GCNN
are 73.31%, 77.03% and 79.20% respectively, which are
higher than SVM, DBN and GCNN. The better recognition
performance of P-GCNN is most likely due to the following
major points:

o The P-GCNN method models the spatially discrete EEG
signals using the intrinsic relationship between the chan-
nels as the data of the network structure, which restores
the spatial and functional connection of the data.

o Compared with the GCNN method, P-GCNN is based
on the functional connection of EEG signals, and is not
limited to the spatial position of EEG signals in each
channel. Therefore, the relationship between EEG chan-
nels described by the P-GCNN method is more accurate
than the GCNN method, and the extracted EEG features

are more representative of emotions.
At present, EEG-based emotional recognition research is

mostly based on full-channel EEG signals, but the acquisi-
tion of full-channel EEG signals is not convenient for the
development of wearable devices. For this problem, we can
eliminate some useless electrodes according to the synchro-
nization phase lock value between the EEG signals of each
channel, so as to reduce the number of channels. We leave
this interesting topic as our future work.
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