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ABSTRACT With a rapid increase in operating frequency and package complexity, conventional analysis
methods cannot efficiently cope with current complex electromagnetic interference (EMI) issues. In this
paper, a new method built on a deep neural network (DNN) model is proposed to accurately and rapidly
predict the maximum radiated electric field at 3-meters of a wire-bond ball grid array (WB-BGA) package.
The key hyper-parameters of the DNNmodel, such as the learning rate and type of optimizers, are discussed
in depth so as to attain optimal performance. Predicted radiation results by the DNNmodel and the results of
the full-wave simulation show good agreement. Once DNN is trained, the prediction time is in the order
of milliseconds and the model size is in megabytes, which can acquire the predicted radiation quickly
and accurately and save storage space. Furthermore, to prevent the radiation from exceeding requirements,
package structures are optimized by adjusting those parameters sensitive to radiation and disregarding
insensitive parameters. The sensitivity of these WB-BGA package structural parameters to EMI radiation
can be analyzed quickly based on data with different deviations generated by the trained DNN model. The
sensitive parameters are adjusted according to their correlation with EMI radiation. The effectiveness and
feasibility of the optimization method are verified by the WB-BGA package with two sets of different
structural parameters.

INDEX TERMS Deep learning algorithm, deep neural network, electromagnetic interference, radiation
prediction, sensitivity analysis, structure optimization, WB-BGA package.

I. INTRODUCTION
At present, electromagnetic interference (EMI) issues are
becoming prominent in the current design process of
high-speed electronic devices and systems as the operating
frequency and structural complexity rapidly increase [1]–[3].
After the design tape-out and fabrication stage, the maximum
radiated electric field at 3-meters of the entire device must
be evaluated to determine if it can satisfy regulatory EMI
requirements, such as the Federal Communications Commis-
sion (FCC) standards. Therefore, it is imperative to develop
an efficient method for fast radiation prediction. In general,
commercial full-wave solvers are usually adopted to calculate
the radiated emission. Nevertheless when structural parame-
ters are designed by prior experience, EMI radiation needs
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to be repeatedly evaluated, which takes extremely long time
without an efficient way of EMI predication. In previous
studies, many methods available to predict radiated emis-
sion have been considered. The improved partial element
equivalent circuit (PEEC) method [4] is proposed to evalu-
ate radiated emission, but it is restricted to specific models.
Furthermore, the particle swarm algorithm [5], differential
evolution algorithm [6] and artificial neural network [7] can
predict the maximum radiated emission from printed circuit
boards (PCB) by equivalent sources reconstruction based on
the near-field measurement. However, their effectiveness is
limited because equivalent dipoles cannot characterize the
inherent structure properties of PCBs. In [8], an algorithm
based on the discretization technique and the boundary inte-
gral equation is proposed to evaluate radiated emission in an
IC package that are applied in the low operating frequency
band.
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Additionally, in order to keep the EMI radiation below a
certain level, advanced methods should also be applied to
design structural parameters quickly rather than only depend-
ing on prior practical experience. Since a variety of structural
parameters must be adjusted to achieve the desired proper-
ties, the problem may be posed as a multivariate structure
optimization. For the optimization of structural parameters,
the usual focus is to determine the next set of structural
parameters in the search space by some methods, where the
search space is formed by the value range of these parameters.
Therefore, several stochastic optimization methods such as
the genetic algorithm [9] and simulated annealing [10] can be
adopted to find a solution, but these methods usually require
significant computation time. Several statisticalmethods such
as Monte Carlo analysis [11] and Bayesian optimization [12]
are applied to optimize microwave circuit and device design,
but large numbers of simulations are required and, with them,
intractable computation.

Recently, the concept of deep learning technology has
drawn considerable attention in the fields of speech recog-
nition and image processing [13], [14]. An extensive body
of studies have confirmed that deep learning models, formed
by stacking multiple layers of shallow structures, have bet-
ter feature representation capabilities, so nonlinear and high
complexity tasks can be handled more efficiently [15]–[17].
Given the nonlinearity and complexity of current EMI issues
into consideration, deep learning models could potentially
be used to deal with them exactly. To our knowledge, only
a few studies in this domain have considered deep learning
models: modeling the high-speed channel for signal integrity
analysis [18] and the prediction of high-speed via TDR
impedance [19].

In this paper, a deep neural network (DNN) model is
presented to accurately decipher the nonlinear black-box
function between package structures and the maximum
radiated electrical field at 3-meters. The trained DNN could
generate sufficient data with different variance to analyze
the sensitivity of structural parameters to EMI radiation.
Sensitive parameters should be carefully tuned in the design
process to avoid exceeding FCC requirements. As a result, the
package structure can be optimized by modifying sensitive
parameters and keeping others unchanged according to the
correlation of structural parameters and EMI radiation.

The remaining of this paper is organized as following:
Section II introduces the construction of the DNN model
for EMI radiation prediction of wire-bonded ball grid array
(WB-BGA) package and its flowchart. Then, the accuracy
and advantages of this DNN model, as well as the hyper-
parameters, are discussed in Section III. In Section IV, sen-
sitivity analysis and the correlation of structural parameters
and EMI radiation based on the trained DNN model are
carried out for WB-BGA package structure optimization.
In addition, the effectiveness and feasibility of the opti-
mization method are demonstrated by the package with two
sets of different structural parameters. Section V contains
conclusions.

FIGURE 1. A typical, fully connected DNN model with an input layer,
multiple hidden layers and an output layer.

TABLE 1. Seven key structural parameters of the WB-BGA package model.

II. CONSTRUCTION OF DNN MODEL FOR EMI RADIATION
PREDICTION OF WB-BGA PACKAGE
A DNN model consists of an input layer, multiple hidden
layers and an output layer as illustrated in Fig. 1, where each
layer contains multiple neurons that are fully connected to
neurons of the next adjacent layer by weights. The DNN
model has the capacity to learn the complex function between
input features matrices and output target labels due to the
multiple hidden layers and neurons.

In this study, seven key parameters of the package at the
input layer are shown in Table 1, and outputs are the maxi-
mum radiated electric field at 3-meters within the 0.2 GHz
to 20 GHz frequency band. Fig. 2 illustrates details of the
package structure model based on the commercial WB-BGA
package. Seven key design parameters with different value
ranges are considered, and their description is summarized
in Table 1. Symbols h1, h2, h3, ε1, ε2, r and N correspond
to the package lid height, the bump height, the bonding
wire height, the relative permittivity of the central dielectric,
the relative permittivity of the top and bottom dielectric,
the radius of the signal via, and the number of ground vias,
respectively. The dimension of the lid and the four-layered
package substrate is 26.6 mm× 26.6 mm. The die consists of
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FIGURE 2. The various design parameters and structural details of the
WB-BGA package model.

FIGURE 3. Flowchart of the DNN model for training, validation, testing
and predicting.

an oxide layer, a die ground and a silicon layer, with a dimen-
sion of 4.5 mm× 4.5 mm. The 3.63 mV common-mode exci-
tation source is located at the end of the bonding wires inside
the die with the other ports terminated by 50 Ohm loads.
The bonding wires are connected to differential traces with
100 Ohm differential characteristic impedance and 25 Ohm
common-mode characteristic impedance, of which the length
is 15 mm. The differential pair is connected to the bottom
layer through signal vias and bumps.

In order to predict the EMI radiation of the WB-BGA
package, the flowchart of the DNN model is given in Fig. 3,
where the important process steps and issues in the DNN
model development are involved as follows:

Step 1) Pre-processing the datasets: Considering features
of the collected data sets have different dimensions and units,

the original data should be normalized first to ensure that
these features have the same order of magnitude. Normaliza-
tion of the features has the additional benefit of improving
the accuracy of the DNN model and accelerating its training
process. The formula of the normalization can be expressed
as

X =
(
X0 − X̄

)/
δX (1)

where X0 is the original value. X̄ is the mean value and δX the
standard deviation of the datasets. The above normalization
transforms the mean value of all features to 0 and the standard
deviation of all features to 1.

Step 2) Shuffle and batch the datasets: Before training
the model, normalized training datasets should be shuffled
randomly to obtain good prediction performance and enhance
the generalization ability of the model. Then the reshuffled
datasets will be trained in batches, which have the advantages
of achieving lower memory requirements and accelerating
training speed.

Step 3) Train and validate the DNN model: The DNN
model learns the black-box target function with training
datasets, while the validation datasets are used to adjust con-
tinuously the hyper-parameters of the DNN model to attain a
more accurate black-box target function. During the learning
process, if the training loss and validation loss are not declin-
ing simultaneously, then both the datasets and the network
structure need to be improved by cleaning the datasets and
modifying the hyper-parameters of the DNN model. If the
training loss and validation loss are declining simultaneously,
the network is still in the process of continuous learning.
When the preset accuracy is achieved, the DNN model has
completed its learning process. Otherwise, continue to train
and validate the DNN model up to a maximum number of
iterations.

Step 4) Test the DNN model: Testing datasets are utilized
to test the performance of the DNNmodel after learning. The
root-mean-square error (RMSE), an indicator of the predic-
tion accuracy, is adopted to evaluate the performance of the
DNN model. Note that the unit of RMSE is consistent with
the original data, which could be more direct to reflect the
accuracy of the model than other indicators. RMSE is defined
as [20]

RMSE =

√√√√1
n

(
n∑
i=1

(
yi −

∧
yi
)2)

(2)

where yi is the target label data, and
∧
yi is the predicted data.

Step 5) Predict the EMI radiation of the WB-BGA pack-
age: The input formation for the package parameters should
be consistent with the DNN input matrix. After that, the
EMI radiation of the package can be obtained accurately and
quickly by the trained DNN model.

III. DNN FOR RADIATION PREDICTION OF WB-BGA
PACKAGE
In this study, seven hidden layers at the DNN model for EMI
radiation prediction of the WB-BGA package are selected
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with 300, 200, 180, 150, 120, 100 and 80 neurons at each
layer, respectively. The input layer and the output layer con-
tains 7 and 100 neurons corresponding to seven structural
parameters shown in Table 1 and EMI radiation from 0.2 GHz
to 20 GHz. All data are collected during the design process
from full-wave simulation of the package model shown in
Fig.1. The Halton sequence is adopted to generate 2000 sets
of quasi-random data of the package structures from the pre-
set ranges, which are of low discrepancy and help to decrease
the number of training datasets. The datasets are randomly
divided into separate portions: 67.5% for training, 7.5% for
validation and 25% for testing. Training datasets, validation
datasets and testing datasets are independently and identically
distributed.

The rectified linear unit (ReLU) function [21] is adopted
as the activation function and introduce nonlinearity to the
network output, which is given by

ReLU (v) = max (0, v) (3)

In addition, the batch size is set to 25. The back propagation
algorithm is utilized during the development of the DNN
model. The learning rate and the optimizers used in the back
propagation algorithm are discussed in the following. Note
that the proposed DNN model is constructed in Google’s
TensorFlow [22].

A. SELECTION OF DNN HYPER-PARAMETERS
In deep learning, different optimizers utilized in the back
propagation algorithm result in different ways to search for
accurate prediction results, each with different convergence
rates during the training process and accuracy of the DNN
model. In addition to the conventional Gradient Descent
optimizer, the Momentum optimizer includes a momentum
parameter that can accumulate gradient information to accel-
erate the learning process. The Adam optimizer combines the
gradient descent algorithm and the momentum parameter and
can adaptively adjust the learning rate to result in a relatively
stable training process. Fig. 4 (a) shows the convergence pro-
cess during the DNNmodel training with three different opti-
mizers, namely the Adam optimizer, the Gradient Descent
optimizer and the Momentum optimizer. Compared with the
other two optimizers, the Adam optimizer is demonstrated
to have faster and more stable convergence in the training
process, which also illustrates the best accuracy in this work.

Furthermore, the learning rate is another important param-
eter of the DNN model. It is step-size taken at each iteration,
which controls the learning progress of the model. If the
learning rate is small, the training process will converge
slowly and increase the training time. In addition, a small
learning rate may also cause over-fitting, which means the
DNNmodel will only remember the datasets rather than learn
the implicit function between the structural parameters and
the EMI radiation. Conversely, if the learning rate is large,
although the training process will be fast, it may cause non-
convergence and under-fitting of the model, which means
the DNN model will not capture the implicit input to output

FIGURE 4. Evolution of the RMSE during the learning process of the DNN
model for EMI radiation prediction of WB-BGA package.

function. Consequently, there exists an application dependent
trade-off for the learning rate. Fig. 4 (b) illustrates the training
process with different values of the learning rate in this DNN
model with the Adam optimizer. When the learning rate is
10−3, the accuracy of themodel is best and themodel does not
exhibit under-fitting or over-fitting according to the Step 3)
in Fig. 3. The learning process with a 10−3 learning rate is
more stable than others as well as acceptable training speed.
Therefore, the value of 10−3 is chosen as the optimal learning
rate in this work.

B. PERFORMANCE AND RESULTS
Four representative sets of data from test datasets are chosen
discretionarily to illustrate the deviation of the predicted EMI
radiation and target labeled radiation of the WB-BGA pack-
age. Predicted results are calculated from the DNN model,
and the target labeled results are from full-wave simulation.
Fig. 5 shows the comparison of predicted results and the
corresponding labeled results based on the four cases. The
radiation predicted by the proposed DNN model has good
agreement with the target labeled radiation. Fig. 6 shows the
average relative error of predicted results based on all test
data. The relative error at every frequency is all below 2%,
which proves the trained DNN model fits well for this work.

Additionally, the RMSE for the test data is 1.87 dBuV/m
and the RMSE for the validation data is 1.91 dBuV/m when
predicting the EMI radiation of the WB-BGA package. Once
the DNN model is developed, the computing time for one
prediction run of the developed DNN model is on the order
of milliseconds. In addition, the model size is only 3 MB that
can greatly save storage space when repeatedly computing
EMI radiation. As a result, the trained DNN model for EMI
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FIGURE 5. The comparison of the predicted results and the labeled results in four cases. (a) Case 1 with structural
parameters (h1, h2, h3, ε1, ε2, r, N) in sequence of (0.89, 0.31, 0.32, 2.41, 4.60, 0.18, 76), (b) Case 2 with structural
parameters (1.28, 0.38, 0.28, 3.48, 3.42, 0.12, 103), (c) Case 3 with structural parameter (1.21, 0.19, 0.23, 5.45, 5.08,
0.08, 16), and (d) Case 4 with structural parameters (1.52, 0.14, 0.25, 4.74, 4.55, 0.18, 23). Predicted results are from
DNN model, and labeled results are from full-wave simulation.

FIGURE 6. The average relative error of the DNN model over the complete
frequency band of the test datasets.

radiation prediction of the WB-BGA package has the advan-
tages of low computation cost and small memory usage while
also achieving good accuracy.

IV. DNN FOR WB-BGA PACKAGE STRUCTURE
OPTIMIZATION
The WB-BGA package EMI radiation must satisfy the EMI
design as well as performance requirements, where the max-
imum radiated electric field at 3-meters from the package
cannot exceed 54 dBuV/m (FCC requirement) within the two
frequency ranges of 9 GHz to 11 GHz and 18 GHz to 20 GHz.
The former requirement is because the operating frequency of
the package and chip is at 10GHz and the latter one is because

the operating frequency of the package could be higher in
future designs. These two aims are taken into considera-
tion for sensitivity analysis and structure optimization of the
WB-BGA package.

A. SENSITIVITY ANALYSIS OF PACKAGE STRUCTURES
In order to evaluate the sensitivity of the seven design param-
eters ofWB-BGA packages to EMI radiation, each parameter
should be discussed separately. For example, the discreteness
of h1 should be adjusted while others remain the same when
analyzing the sensitivity of h1. Meanwhile, the mean of all
parameters remains unchanged. The standard deviation is
adopted to measure datasets discreteness. Finally, the sensi-
tivity can be quantified by the pass rate, which is expressed
as

pass_rate =
nump
numtot

(4)

where nump is the number of structures that satisfy the radia-
tion requirements in the two frequency ranges, and numtot is
the total number of structures.

Table 2 tabulates the pass rate for the seven design param-
eters and different discreteness. The lid height h1 is chosen
as one design parameter due to the practical assembly error.
The bump height h2 and the number of ground vias N are
analyzed because package structures tend to be miniaturized
in the future so it is important to reduce the real estate
consumed by the ground vias N when satisfying the EMI
requirement. Ground vias are connected to the bumps, hence
the bump height may cause EMI risk. Besides, the bonding
wire height h3 and the signal vias radius r could lead to
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TABLE 2. The pass rate of the WB-BGA package structural parameters
subject to different values of standard deviation.

unintentional radiation. The permittivity of the dielectric ε1
and ε2 are taken into account due to the package cost.
As shown in Table 2, the datasets with 3, 5 and 10 times

standard deviation are generated by the well-trained DNN
model in Section III, and the total number of these datasets
is 20000. The parameters h1, h2, h3 and ε1 can maintain a
good pass rate even when the standard deviation is changed
from 1 to 10 times. The pass rate of ε2 is below 85% when
the standard deviation is 3 times of the original. It drops to
about 50% when the standard deviation is increased to 5 and
10 times. The trend implies that ε2 is very sensitive to the
EMI radiation. In addition, r and N are also sensitive when
the standard deviation is 5 times and 10 times, so they should
be appropriately and carefully considered in the package
design process to achieve better EMI performance. Thus, this
tabulation can quantify the sensitivity of each key parameter
to EMI radiation and provides insightful guidance for the
design of package structures.

B. OPTIMIZATION METHOD
According to the results in Table 2, among all the 7 key
parameters, the permittivity of the top and bottom dielectric
ε2, the signal vias radius r and the number of ground vias
N are the three critical parameters most sensitive to the
EMI radiation. For a WB-BGA package with severe unin-
tentional radiation, the structure parameters can be rapidly
optimized to satisfy the EMI design and performance require-
ments by modifying sensitive parameters. Fig.7 illustrates the
flowchart for WB-BGA package structure optimization with
key process steps detailed as follows:

FIGURE 7. Flowchart of the WB-BGA package structural optimization
based on sensitivity analysis and correlations.

Step 1) Sensitivity analysis: The sensitive parameters can
be obtained by the analysis of Table 2 in Section IV.

Step 2) Calculate the correlation between structures and
EMI radiation: The next set of structural parameters is to be
acquired by modifying the sensitive parameters ε2, r and N
while keeping others (i.e., h1, h2, h3 and ε1) unchanged. The
correlations of structures and EMI radiation at each frequency
are calculated to determine how to adjust the sensitive param-
eters. Since small changes of sensitive parameters could cause
dramatic changes to EMI radiation, the trends of radiation
while adjusting structure parameters are more important than
whether their correlations are linear or nonlinear. As a result,
the Pearson correlation coefficient [20] is adopted and can be
expressed as

ρX ,Y =
cov (X ,Y )
σXσY

(5)

where cov (X ,Y ), σX and σY are the covariance and the
standard deviation of variables X and Y . If the positive and
negative correlations are consistent in the desired frequency
range, the sensitive parameters ε2, r and N will be modified
according to the preset step and value range. Otherwise,
it is important to check the magnitude of the correlation
coefficient (|ρ|). When |ρ| is larger than 0.3, the structural
parameters and the EMI radiation have a strong correlation.
If the number of strong positive correlations in a desired
frequency range is more than the number of negative corre-
lations, the sensitive parameters should be modified depend-
ing on the positive correlations. By now the next structural
parameters matrix is completely constructed.

Step 3) Predict the EMI radiation: The radiation of a
WB-BGA package can be predicted quickly and accurately
by the well-trained DNN model as shown in Section II when
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FIGURE 8. The heat map of the correlations of the package structures and
the EMI radiation at 10 GHz.

inputting the matrix of package structures determined in
Step 2).

Step 4) Acquire the optimized structural parameters: If the
predicted radiation in Step 3) satisfies the EMI performance
requirement, the corresponding structural parameters are the
optimized results. Otherwise, Step 2) is repeated to adjust the
value range of the sensitive parameters as well as the step
size. Generally, a small value range and large step size works
well to quickly optimize the package structure. For extremely
sensitive parameters, the step size should be further decreased
because the EMI radiation could change drastically even with
a small change in these parameters.

C. EXAMPLES AND RESULTS
In this work, the WB-BGA package with two sets of different
structural parameters are used as numerical cases to verify
the proposed optimization method to avoid EMI radiation
exceeding 54 dBuV/m within the two frequency ranges:
9 GHz to 11 GHz and 18 GHz to 20 GHz.

To begin, the sensitive parameters of this WB-BGA
package structure are identified as ε2, r and N through the
analysis in Table 2. Then, the correlations of seven struc-
tural parameters and the EMI radiation at each frequency
(e.g., 10 GHz) are quantified by the Pearson correlation
coefficient (cf. Eq. (5)) as illustrated in Fig. 8. Its last row or
column shows that the correlation coefficients between the
sensitive parameters (i.e., ε2, r andN) and radiation at 10GHz
are −0.18, 0.35 and −0.64, respectively. In this way, the
correlation coefficient distribution of the sensitive param-
eters and the EMI radiation from 9 GHz to 11 GHz and
from 18 GHz to 20 GHz can be collected, which are shown
in Fig. 9. In this work, r is positively related and N is neg-
atively related to the EMI radiation in the desired frequency
range, so r should be decreased and N should be increased to
satisfy the EMI requirement when constructing the structural
parameter matrix at each iteration. However, the positive and
negative correlation of ε2 is not consistent in the frequency

FIGURE 9. The correlation coefficient distribution of the sensitive
parameters and the EMI radiation within the frequency range from 9 GHz
to 11 GHz and from 18 GHz to 20 GHz. (a) The permittivity of the top and
bottom dielectric ε2, (b) the signal via radius r, and (c) the number of
ground vias N.

range under consideration. As shown in Fig. 9 (a), it is obvi-
ous that the number of strong positive correlations (|ρ|> 0.3)
is more than the number of negative correlations in the two
frequency range. Consequently, ε2 should be decreased for
EMI radiation mitigation.

Furthermore, the value ranges of the sensitive parameters
are same as those in Table 1. Since ε2 is more sensitive to the
EMI radiation than r andN , a smaller step size of ε2 should be
chosen while a larger step size can be used for other sensitive
parameters. The actual values of the step size for ε2, r and N
used in this work are 0.02, 0.03 and 6, respectively.

Finally, Fig. 10 is presented to compare the radiation before
and after the optimization of two sets of different structural
parameters. After optimization, the maximum electric field at
3-meters for both cases do not exceed 54 dBuV/m within the
frequency range from 9 GHz to 11 GHz and from 18 GHz
to 20 GHz. The optimized structural parameters are shown
in Table 3. As a result, the structure optimization method
based on the DNN model is demonstrated to have good
effectiveness.
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FIGURE 10. Comparison of the optimized results based on the proposed
optimization method with the original results prior to optimization.

TABLE 3. The structural parameters of the WB-BGA package before and
after optimization.

V. CONCLUSION
In this paper, a DNN model is employed to predict EMI
radiation for a realistic commercial WB-BGA package. The
DNN model with 10−3 learning rate and Adam optimizer
can lead to rapid and stable convergence, and achieve good
accuracy where the RMSE is 1.87 dBuV/m and the average
relative error is below 2%. The computing time for running
one EMI prediction is on the order of milliseconds once the
DNN model is developed. Taking advantage of the trained
DNN model, the sensitivity of seven structural parameters is
able to be quantified by the pass rate. The three parameters
ε2, r and N are found to be sensitive to the EMI radiation in
this work, where ε2 is the most sensitive one. The sensitive
parameter analysis together with their correlations facilitates

the construction of an updated set of structural parameters in
the optimization process, which resolves a key and difficult
step for structural optimization. Finally, the WB-BGA pack-
age structure was optimized to satisfy the EMI performance
requirement that the maximum electric field at 3-meters can-
not exceed 54 dBuV/m in the frequency range from 9 GHz
to 11 GHz and 18 GHz to 20 GHz. Two numerical cases of
a WB-BGA package with different structural parameters are
conducted, which verifies and demonstrates the effectiveness
of the proposed optimization method.
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