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ABSTRACT The increase in the scale of distribution networks significantly reduces the efficiency of
intelligent planning for distributed generation (DG). To improve the efficiency of intelligent DG planning
and avoid the impact of uncertainty concerning renewable energy on it, this paper proposes a sensitivity
index for the bus-embedded multi-objective estimation of distribution algorithm (MEDA) based on the semi-
invariant probabilistic power flow approach to achieve an optimal solution. The sensitivity indices of the
buses are comprehensively enabled to obtain a new index and determine their sensitivity sequences based
on the area grey incidence decision-making method. Subsequently, according to the uncertainty of wind
turbine generators and photovoltaics, a probability model is established, and the semi-invariant method is
used to solve for the probabilistic power flow according to a correlation model. Finally, the sensitivity of
the proposed bus-embedded MEDA to enhancing the efficiency of the solution is examined. The optimal
DG allocation scheme is obtained with the goal of achieving the lowest total cost in the planning year.
Finally, the feasibility and effectiveness of the proposed model and method are verified using simulations of
the IEEE 33-bus, IEEE 69-bus, and IEEE 118-bus test systems.

INDEX TERMS Distributed generation, sensitivity index, multi-objective estimation of distribution
algorithm, area grey incidence decision making, probabilistic power flow.

I. INTRODUCTION
Distributed generation (DG) has the advantage of cleanliness,
and is environmentally friendly, low cost, and reliable [1]–[3].
The suitable installation of DG in distribution networks can
improve the quality of voltage, reduce network loss, reduce
peak-valley differences, and improve the reliability of power
supply [4], [5]. However, due to the randomness and volatility
of outputs of DG, such as wind power and photovoltaics
(PV), there are adverse effects on distribution networks, such
as voltage fluctuation [6] and the influenced economics of
distribution networks.

The incorporation of DG into distribution networks has an
important impact on line losses and voltage distribution in
distribution systems [7], and the power flow calculation is
the primary approach to quantify this impact. An objective
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function is set based on the calculated bus voltage and line
losses to carry out the DG planning [8].

DG planning generally consists of two tasks: selecting
location and determining capacity. Reasonable optimal instal-
lation location and capacity of DG are obtained according
to different planning objective. Depending on the planning
objective, different planning methods can be used to opti-
mize planning under different scenarios. Prevalent planning
methods [9] can be divided into two categories: classical
approaches and Artificial Intelligence algorithms. Classical
approaches are mostly based on determining the mathemati-
cal solution to the given problem [10]. Reference [11] used
linear programming (LP) to determine the optimal loca-
tion and capacity of embedded generation (EG) under the
constraints of the relevant phase technology. El-Khattam
et al. proposed a mixed-integer non-linear programming
(MINLP) model [12] to solve for the optimal location and
capacity of a DG. However, as the size of the distribution
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network increases, the classical method becomes relatively
time-consuming and is slow to converge. To solve this
problem, Artificial Intelligence-based algorithms have been
widely used in DG planning. In [13] the authors established
a multi-objective optimization model of power loss, cost,
and voltage deviation, and used the multi-objective shuffled
bat algorithm (MOShBAT) to determine the location and
capacity of DG. In [14] studies the energy storage placement
problem for voltage stability by using the GA algorithm.
In [15] studies the energy storage placement problem from
the small signal (oscillation damping) stability perspective by
using PSO algorithms.

Although the above studies analyze the DG planning prob-
lem from different perspectives, the efficiency of intelligent
planning is clearly reduced with an increase in the scale of the
distribution network. As well as, in large-scale distribution
network planning, a single artificial intelligence method is
prone to premature convergence and local optimum prob-
lems. And it is difficult to meet the requirements of distri-
bution network planning.

To improve the efficiency of the Artificial Intelligence-
based algorithms, many methods have been employed to
analyze the sensitivity of buses of the distribution network to
system fluctuations. Buses are ordered in descending order
of sensitivity to reduce the scope of the potential solution
space and speed up optimization. The voltage stability index
(VSI) [16] analyzes vulnerable buses in the system as candi-
date access buses of the DG from the perspective of voltage
stability. It then uses a search algorithm to determine the
optimal capacity of the DG to minimize line losses. The
loss sensitivity factors (LSFs) method [17] analyzes sensi-
tive buses in the system as the DG access buses from the
perspective of network loss, thereby significantly reducing
the range of candidate locations for the installation of DG,
and uses the ant lion optimization algorithm to determine the
location and capacity of DG. In [18], the combined power
loss sensitivity method, index vector method (IVM), and
voltage stability index (VSI) method were used to determine
the order of candidate positions for DG installation, and
the best planning result was obtained by using the com-
bined power loss sensitivity method. In the above litera-
ture, several methods that determine the optimal location of
DG have been used to evaluate the sensitivity of the system
bus. And buses with higher sensitivity have been selected
to access the DG, which helps improve system reliability.
However, different bus sensitivity indices consider the oper-
ating characteristics of the distribution network from dif-
ferent perspectives. Using different methods to analyze the
sensitivity of buses may lead to conflicts in their analysis,
and it is impossible to directly guide such planning. The
comprehensive weighting method can effectively avoid such
problems.

The DG accessed to highly sensitive nodes can improve the
reliability of the system voltage. However, highly sensitive
buses are vulnerable to the randomness of output of PVs
and wind energy (WE), which reduces voltage stability.

Therefore, it is important to consider the influence of the
randomness of output of the DG on the stability of the dis-
tribution network in DG planning. The conventional power
flow does not consider this randomness in calculating the
distribution network, and the results of its analysis thus can-
not guide distribution network planning of highly volatile
DGs. The investment in DG, and the costs of operating
and maintaining of DG, and purchasing electricity from the
main network are introduced into the objective function in
this paper, which renders it divergent from optimal power
flow (OPF). Therefore, when planning distribution networks
that consider the randomness of outputs of PVs and WEs,
probabilistic power-flow analysis should be used to analyze
the impact on the system voltage and line losses after DG
access based on an analysis of the characteristics of the
output of the PV and WE. In [19], with the lowest total cost
and minimum technical risk, the Monte Carlo method was
used for probabilistic power flow analysis to solve problems
related to the location and capacity of the DG. In [20],
considering the randomness of PV and the random charging
characteristics of electric vehicles, the 3 point estimation
method (3PEM) was used for probabilistic power flow anal-
ysis to determine the location and capacity of DG. In [21],
considering uncertainty in such factors as plug-in electric
vehicles (PEV), DG, and fuel price, the Monte Carlo sim-
ulation method was used to calculate probabilistic power
flow. And the genetic algorithm was used to solve the prob-
lem of the location and capacity of DG according to the
results. Although the Monte Carlo simulation can provide
accurate results, the computation is time-consuming, because
of which it is not suitable for dealing with practical systems.
The semi-invariant method using the Gram-Charlier series
expansion avoids complicated convolution calculations, and
can accurately calculate the probability distribution with
fewer computations [22], which is more keeping with the
requirements of efficient and intelligent distribution network
planning.

To improve the efficiency of the distribution network
through intelligent planning, and balance the conflict between
methods used to determine the optimal location of DG.
A sensitivity index of buses embedded multi-objective esti-
mation of distribution algorithm (MEDA) based on the semi-
invariant probability power-flow approach is proposed in this
paper to obtain the optimal solution. The comprehensive
empowerment of the LSFs, VSI, and IVM to obtain the new
index and the sequence of sensitivities of the buses based on
the area grey incidence decision making (AGIDM) method
is first carried out. According to the uncertainty of WE and
PV generators, a probability model is then established, and
the semi-invariant method is used to solve for the probabilis-
tic power flow of the distribution network according to a
probability model. The constraints are then tested according
to the results of flow, after which the objective function is
calculated. Finally, the optimal DG configuration scheme
with the lowest total cost in the planning year is obtained
using the MEDA.
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FIGURE 1. Equivalent circuit of radial distribution system.

II. MULTI-INDEX COMPREHENSIVE EMPOWERMENT
BASED ON AGIDM
A single bus sensitivity index considers the operating char-
acteristics of the distribution network system from a single
perspective, and thus can make only limited use of sys-
tem variables and parameters. When different methods are
used to analyze the sensitivity of system buses, analyses
of the same bus may cause a conflict, and planning can-
not be directly guided in this case. To solve this problem,
the AGIDM method is proposed to comprehensively weight
multiple indices, and achieve a comprehensive evaluation of
buses that are candidates for DG.

A. METHODS TO DETERMINE OPTIMAL DG LOCATION
1) LOSS SENSITIVITY FACTORS
The sensitivity factor method is based on the principle of
linearization of an originally nonlinear equation around the
initial operating point, which helps reduce the number of
solution space [17]. Buses with high LSF values can be
considered candidates for installing DG. The LSFs approach
analyzes sensitive buses in the system from the perspective
of network loss, and can be computed from the following
equation:

PL,ki =
(
P2load,i + Q

2
load,i

)
Rki/U2

i (1)

LSFs = ∂PL,ki/∂Qload,i = 2Qload,iRki/U2
i (2)

where Rki represents the resistance of branch k − i.
Pload,i and Qload,i represent the active and reactive powers
of the load at the ith bus. PL,ki represents active loss of
branch k − i. Ui represents the voltage of the ith bus.

2) VOLTAGE STABILITY INDEX
Reference [16] proposed a VSI method, which analyzes vul-
nerable buses in the system from the perspective of voltage
stability. If the VSI is close to zero, the system is more stable.
If the VSI is high, the system is vulnerable to stability. A bus
with a high VSI is more sensitive and is selected for optimal
DG deployment. It can be computed from the following
equation:

VSI = 4
((
P2load,i + Q

2
load,i

)
/Qload,i

)
Xki/U2

k (3)

where Xki represents the reactance of branch k − i.

3) INDEX VECTOR METHOD
Index Vector is formulated by running the base case load
flow on a given radial distribution network, and calculating

the reactive component of current in the branches and the
concentration of reactive power load at each node [18]. In this
work, the IVM is used for the optimal DG allocation prob-
lem. It analyzes buses in the system that can be installed
with DG from the perspective of bus voltage, branch current,
and the system reactive load. It can be computed from the
following equation:

IVM (i) =
1

U2
i

+
Iq,ki
Ip,ki
+
Qload,i
Qall

(4)

where Iq,ki and Ip,ki represent the imaginary and real com-
ponents, respectively, of the current of branch k − i, and
Qall represents the total reactive load of the given distribution
system.

Different bus sensitivity indices consider the operating
characteristics of the distribution network from different per-
spectives, because of which the variables and parameters
of the system can only be used in a limited way. Single
indices can meet only some optimization goals. However,
using different methods to analyze the sensitivity of buses,
may lead to conflicts in the analysis of the same bus, and it
becomes impossible to directly guide planning.

B. OPTIMAL COMPREHENSIVE EMPOWERMENT BASED
ON AREA GREY INCIDENCE DECISION MAKING
Because the grey relational decision-making method belongs
to objective weighting method, it can effectively analyze
the correlation and conflict among various indicators to
determine the weight of different indicators. The area grey
incidence decision-making method (AGIDM) improves the
traditional grey relational decision making method, and
uses the area to analyze the correlation and conflict
between indicators. To solve the above problems, the com-
prehensive empowerment of multiple indices using the
AGIDMmethod [23] to evaluate the sensitivity of buses of the
distribution network is proposed to avoid conflicts between
indices.

The procedure of optimal comprehensive empowerment
for AGIDM is as follows.

The number of buses in the system is the number of candi-
date solutions for DG planning.

(1) Calculate the LSFs, VSI, and IVM to construct the
original index matrix A

′

=

(
a
′

ij

)
m∗n

.
Wherem and n represent the numbers of buses and indices,

respectively.
(2) Standardize A

′

to get A =
(
aij
)
m∗n. Then normalize

A according to Eq. (5). According to Eq. (6), calculate the
entropy of each index. Finally, calculate the weight of each
index according to Eq. (7).

Hij = aij/
∑m

i=1
aij (5)

Ei = − (1/ln(n))
∑n

j=1
Hij lnHij (6)

ωi = (1− Ei)/
(
m−

∑m

i=1
Ei
)

(7)
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whereHij represents the normalized result of aij,Ei represents
the entropy of the ith index, and ωi represents the weight of
the ith index.

(3) The maximum value of each index in A
′

is composed of
the ideal ranking scheme vector A+, and the minimum value
constitutes the negative ideal ranking scheme vector A−. The
ideal ranking decision matrix B =

(
A+;A

′
)
and the negative

ideal ranking decision matrix C =
(
A−;A

′
)
are constructed,

respectively.
(4) Normalize B and C to obtain new matrices B1 and C1,

respectively, according to Eq. (8).

a∗ij =
(
aij − mj

)
/
(
Mj − mj

)
, a∗ij ∈ [0, 1] (8)

where mj and Mj represent the minimum and maximum val-
ues, respectively, of the jth index.

(5) Construct the area matrix of the ideal sorting scheme
vector S1 and negative ideal sorting scheme vector S2
according to Eq. (9), and the area correlation coefficient
matrices γ+ and γ− according to Eq. (10).

S0i (k)=
∫ k+1

k

∣∣∣X0
0 (k)− X

0
i (k)

∣∣∣dt
=

∣∣X0
i (k + 1)− X0

0 (k + 1)
∣∣+ ∣∣X0

i (k)− X
0
i (k)

∣∣
2

(9)

γ (X0,Xi)=
1
n

n∑
k=1

γ
(
X0
0 (k) ,X

0
i (k)

)
(10)

where X0
0 (k) and X0

i (k) represent the sequence of the
ideal sorting scheme, and the candidate sorting scheme
sequence is normalized. S0i (k) represents the area formed
by two adjacent indices between the curves of the ideal
sequence of sorting schemes and the candidate sequence
of sorting schemes. γ (X0,Xi) is called the area grey inci-
dence of X0 and Xi, and satisfies the four axioms of grey
incidence.

(6) Calculate the incidence γ+0i between the candidate rank-
ing scheme and the ideal ranking scheme, as well as incidence
γ−0i between the candidate ranking scheme and the negative
ideal ranking scheme using the index weights values obtained
in step (2).

(7) Calculate the grey incidence relative closeness value of
each candidate sorting scheme according to Eq. (11), and sort
the candidate sorting schemes according to size.

C0i =
γ+0i

γ+0i + γ
−

0i

(11)

The area grey incidence decision making method can con-
sider the angles of analysis of several methods, and make
better use of system parameters to obtain reasonable evalua-
tion results. It can also better guide DG planning, to improve
efficiency and effectiveness.

III. PROBABILISTIC POWER FLOW OF DISTRIBUTION
NETWORK BASED ON SEMI-INVARIANT METHOD
It is necessary to consider the impact of the randomness of
output of WEs and PVs in DG planning. Therefore, the semi-
invariant method is used to analyze the probabilistic flow
of the distribution network with uncertain factors, and the
probability distributions of voltage, phase angle, and power
are obtained to analyze the influence of accessing DG on the
distribution network in scenarios involving uncertainties.

A. PROBABILISTIC MODELING OF DG
1) Wind energy

The output of the WE is significantly influenced by wind
speed, and the change in wind speed can be described
using a probability distribution function (PDF). For example,
the PDF of the Weibull probability distribution [7] is:

f (v) =
(
k
v

)(v
c

)k−1
exp

(
−
v
c

)k
(12)

where v represents wind speed. c and k represent the
scale and shape factors of the Weibull distribution function,
respectively.

We compute the power generated by the WE as
follows [24]:

PW ,WT =


0, 0≤v≤vci or v≥vco

PW ,Wr ×
(
v− vci
vr − vci

)
, vci ≤ v ≤ vr

PW ,Wr , vr ≤ v ≤ vco

(13)

where PW ,Wr represents the rated power of the WE. vr rep-
resents the rated wind speed. vci and vco represent the cut-in
and cut-out speeds, respectively.

(2) Photovoltaic energy
The solar irradiance r can be approximated as a Beta

distribution [24] for a specific period of time, and its
PDF is:

f (r) =
0 (α + β)

0 (α) 0 (β)
rα−1 (1− r)β (14)

where r is solar radiation, W/m2. α and β are the shape
parameters of the Beta distribution, respectively. 0 (·) is an
incomplete gamma function.

The relationship between the active output of the PV and
solar radiation is as follows:

PW ,PV =


PW ,PVr

(
r

rCrSTD

)
0 ≤ r ≤ rC

PW ,PVr

(
r

rSTD

)
rC ≤ r ≤ rSTD

PW ,PVr rSTD ≤ r

(15)

where PW ,PVr is the rated PV power. rC and rSTD [W/m2]
represent a certain radiation point, which is usually set
to 150W/m2, and the solar radiation in standard conditions
is typically set to 1000W/m2.
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B. SEMI-INVARIANT PROBABILISTIC POWER-FLOW
METHOD
The semi-invariant method using the Gram-Charlier series
expansion avoids complicated convolution calculations, and
can accurately calculate the probability distribution with
fewer calculation amount, and improve the calculation effi-
ciency [22]. The semi-invariant method is used to calculate
the probabilistic power flow, which can better describe the
probability characteristics of the wind turbine and the pho-
tovoltaic output. The expansion of the Gram-Charlier series,
which is more keeping with the requirements of efficient and
intelligent distribution network planning. The semi-invariant
method is used to calculate probabilistic power flow as
follows:

(1) Input the network parameters of the distribution net-
work system to be planned.

(2) Calculate conventional power flow under normal oper-
ating conditions to obtain the state variables X0, the branch
power variable Z0, the Jacobian matrix J0, and the sensitivity
matrix S0 at the reference operating point. Perform proba-
bilistic modeling for the characteristics of random output of
PV and WE. Calculate the semi-invariant1W of the random
output of PV, and WE, and the power of the bus with DG to
the eighth order.

(3) Linearize the equations of bus flow and branch flow
equation at the reference operating point, and obtain Eqs. (16)
and (17), respectively. X is the state column vector, compris-
ing the amplitude of the bus’s voltage and its phase angle,
and Z is the column vector, consisting of the active and the
reactive power flow.

1X = X − X0 = J−10 1W = S01W (16)

1Z = Z − Z0 = G01X = G0S01W (17)

where G0 =
∂Z
∂X

∣∣X=X0 .
(4) The semi invariant of each order of 1X and 1Z can

be calculated based on the above formula, and the PDF and
cumulative distribution function of 1X and 1Z are obtained
using the Gram-Charlier series expansion.

IV. SENSITIVITY INDEX OF BUS EMBEDDED MEDA FOR
DG EFFICIENT PLANNING
The WE and PV are used as planning objectives to establish
the minimum objective function for the total cost of net-
work loss, investment required for DG, the operation and
maintenance of DG, and the cost of purchasing electricity
from the main network. To solve the optimal DG alloca-
tion scheme, the sensitivity of the bus is embedded into the
MEDA method [25] to improve the global optimization abil-
ity and efficiency of the algorithm.

A. OBJECTIVE FUNCTION
From an economic perspective, the costs of network loss,
DG installation, operation and maintenance of DG, and the
sum of the cost of purchasing electricity from the main net-
work are used as the total cost in the planning year, with the

lowest total cost used as objective function.

min f = min
(
Closs + Cinv + Cre + Cbuy

)
Closs = pc · T ·

NY∑
m=1

NL∑
j=1
βmPloss,j

Cinv = C inv
WT

NWT∑
i=1

PWT ,i + C inv
PV

NPV∑
i=1

PPV ,i

Cre =
NY∑
m=1

βm

(
NWT∑
i=1

Cre
WT ,iPWT ,i +

NPV∑
i=1

Cre
PV ,iPPV ,i

)
Cbuy = pc · T ·

NY∑
m=1

βm(
N∑
i=1

Pload,i +
NL∑
j=1

Ploss,j −
NWT∑
i=1

PWT ,i −
NPV∑
i=1

PPV ,i

)
(18)

where Closs is the cost of network loss. Cinv is the cost of
the DG investment. Cre is the cost incurred to operate and
maintenance of DG. Cbuy is the cost of the cost of purchasing
electricity from the main network. pc is unit electricity price.
T is the number of hours of the annual maximum loss of load.
NY is the number of planning level years of DG. NL is the
number of total branches of the distribution network. βm is
the present value factor, βm = 1/(1+ d)m, d is the discount
rate, and m is an incremental interval (in a year). Ploss,j is the
active power loss of the jth branch.C inv

WT is the investment cost
of the unit capacity of WE. C inv

PV is the investment cost of the
unit capacity of PV. NWT is the total number of WEs installed
in the distribution network. NPV is the total number of PVs
installed in the distribution network. PWT ,i is the installation
capacity of the ith WE, and PPV ,i is the installation capacity
of the ith PV. Cre

WT ,i and C
re
WT ,i are the cost of operating and

maintaining the ith WE and PV, respectively. N is the number
of power system buses.

B. CONSTRAINTS
The proposed DG allocation problem is designed to meet the
following constraints:

(1) Constraints on active and reactive power flows
Pin − Ui

∑
m∈i

Um (Gim cos δim + Bim sin δim) = 0

Qin − Ui
∑
m∈i

Um (Gim sin δim − Bim cos δim) = 0
(19)

(2) The chance constraint of bus voltage [26]

Pr {|Ui| ≤ Uimax} ≥ ε (20)

(3) The chance constraint of the branch power [26]

Pr
{
Pjmin ≤ Pj ≤ Pjmax

}
≥ θ (21)

(4) Constraint on the capacity of the DG
NDG∑
i=1

SDGi ≤ Smax (22)

where Pin and Qin are the active and reactive injection
powers of the ith bus, respectively. Gim and Bim are the
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bus admittances of the system. δim is the difference in
voltage angle between the ith bus and the mth bus. Pr {·}
indicates the probability of branch power and bus voltage
satisfying the constraints, and Uimax is the upper limit of
the amplitude of voltage of the ith bus. Pj is the trans-
mitted power of the jth branch, Pjmin and Pjmax are the
lower and upper limits of the transmitted power of the
jth branch, respectively. ε and θ are the confidence levels for
the bus amplitude of voltage and branch power not exceeding
limits. SDGi is the capacity of the ith DG, and Smax is the total
installed capacity required for DG to allow access.

To save space, the relevant constraints of WE and PV are
described in [24].

C. EFFICIENT MEDA BASED ON BUS SENSITIVITY
The MEDA is a stochastic optimization algorithm developed
using traditional genetic algorithm. According to the charac-
teristics of the optimization and parameters of the MEDA,
the sensitivity of the bus embedded MEDA is proposed as a
solution to the problem of optimal DG allocation. The steps
to solve the DG optimization model are as follows:

(1) Input the basic parameters of the distribution network,
and set the population size to Nsizepop, and the maximum
number of iterations to Nmax gen.

(2) Run the power flow to calculate the LSFs, VSI, IVM,
and AGIDM of each bus, and obtain the order of sensitivity
of the buses of the DG to be installed to initialize the MEDA
population. Then obtain the initial DG allocation scheme.

(3) Use the semi-invariant method to calculate the prob-
abilistic power flow of the population, and calculate the
objective function and fitness value according to the results
of the power-flow. Check whether the constraint is met. If the
constraint is met, the optimal solution is retained to perform
the next step; otherwise, the fitness is added to the penalty M,
and the next step is performed.

(4) According to the fitness value, update the allocation of
theDG, and select the fitness groupwith a better fitness value.
Determine whether the constraints are me and, if so, go to the
next step; otherwise update the counter N = N + 1 and go to
the next step.

(5) According to the information of each individual in the
dominant group, estimate the mean µ and variance σ of each
variable according to the normal distribution in Eqs. (23)
and (24). The normal distribution probability model of the
dominant group is thus obtained.

µ = S =
1
L

∑L

k=1
Sk (23)

σ =

√
1

L − 1

∑L

k=1

(
Sk − S

)
(24)

(6) From the estimated normal distribution probability
model, perform random sampling according to Eq. (25), and
obtain Nsizepop new solutions to form the new population.x1 = µ+ σ (−2 ln y1)

1/2 cos 2πy2

x2 = µ+ σ (−2 ln y1)
1/2 cos 2πy2

(25)

FIGURE 2. Flowchart of AGIDM-MEDA.

where y1 and y2 are two independent random numbers in the
interval [0,1].

If the termination condition of the algorithm ismet, the best
individual in the new population is the optimal allocation.
Otherwise, the algorithm performs (3). The process of the
proposed method is shown in Fig.2.

V. NUMERICAL RESULT
To evaluate the advantages of the proposed method in terms
of planning efficiency and effect, we implemented it on
IEEE 33-bus, IEEE 69-bus and IEEE118-bus power sys-
tems. The parameters and values in calculation example are
shown in Table 1. Considering the active and reactive powers
injected by WE, the power factor was set to 0.9. Considering
that PV only provides active power, its power factor was set
to 1. The planning period considered in this paper is 20 years.
In our experimental part, 10 simulations were carried out
for each method to verify the proposed method, and the
results were also averaged. The simulation was implemented
in MATLAB.

A. DISTRIBUTION NETWORK PLANNING BASED ON
PROBABILISTIC POWER FLOW
Although deploying DG at on vulnerable buses can improve
system reliability, the volatility of DG may affect voltage
stability of distribution systems. To avoid the impact ran-
domness of output of DG on the stability of voltage of the
buses, distribution network planning based on the MEDA
optimization algorithm was performed using the results of
the probabilistic flow analysis of the sorting of candidate
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FIGURE 3. Graphical abstract of the overall passage.

TABLE 1. Parameters and values in calculation example.

buses for DG based on the AGIDM method. In the optimiza-
tion, the probability of voltage limit in the probability flow
was constrained to avoid PV or WE and other types of DG
access, which can lead to a violation of the bus voltage. This
improved the stability of the system following DG access.
The results of the simulation show that the capacity of bus
number 9 accessing PV was 1899KVA, and the capacities
of bus number 31 to access PV and WE were 305KVA and

FIGURE 4. Probability density curves showing voltage of bus number 13.

FIGURE 5. Probability density curves showing voltage of bus number 31.

FIGURE 6. The values of (a)LSFs (b)VSI (c)IVM (d)AGIDM for IEEE 33-bus
power system.

863KVA, respectively. The capacity of bus number 13 to
access WE was 655KVA. The probability density curves of
the amplitude of voltage before and after buses number 13
and 31 accessed DG are plotted in Figs.4 and 5, respectively.

As shown in Fig.4, the amplitude of voltage of the bus
was not limited before bus 13 accessed DG. After accessing
the DG, it is known that the amplitude of voltage of the bus
increased, and was concentrated at the required voltage.
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TABLE 2. Results of optimization for IEEE 33-bus power system.

Fig.5 shows that depending on an analysis of the proba-
bilistic flow, the amplitude of voltage of bus number 31 had
a lower limit probability before it accessed DG, and the
amplitude of voltage improved after its access to DG. The
amplitude of voltage was distributed in [1, 1.02], and there
was no voltage limit.

This indicates that when DG was placed in the vulnerable
buses in the system, their amplitude of voltage improved. The
use of the probabilistic power flow to obtain the probabil-
ity distribution of bus voltage after accessing volatile DG,
ensured that the voltage of the bus with the strong volatility
of PV or WE, stabilized within the required voltage.

B. IEEE 33-BUS POWER SYSTEM
The IEEE 33-bus power system had a total load of 3720 KW
and 2300 KVAr at a voltage of 12.66 KV. The system data
are presented in [27]. The values of the LSFs, VSI, IVM, and
AGIDM for the IEEE 33-bus power system were as shown in
Fig.6 (a), (b), (c), and (d), respectively.

1) ANALYSIS OF ALGORITHM PERFORMANCE
In this section, the proposed intelligent algorithm MEDA
as well as the prevalent optimization algorithms,
MOPSO (Multi-Objective PSO) [28], CSA (Crow Search
Algorithm) [29], MOICA (Multi-Objective Imperialist Com-
petitive) [30], and NSGA-II (Non-dominated Sorting Genetic
Algorithm II) [31] are introduced. A comparative experiment
was performed to show that the proposedMEDA has a higher
planning efficiency and better planning effect. The group size
of the five algorithms was 100, the maximum number of
iterations was 200, and the penalty item M=1e15.The results
of the experiment are shown in Table 2, and a comparative
result of the curves of convergence to optimization of the
methods is shown in Fig.7.

Fig.7 shows that the rate of convergence of MEDA
was higher than that of the other optimization algorithms.
Combined with data in Table 2, it is clear that using
CSA for distribution network planning is not ideal because
the location of DG is not the most suitable. Although it

FIGURE 7. Comparison of optimization convergence curves for IEEE
33-bus power system.

provided a 61.079% reduction in total power losses, its
value of 6.5396×107($) was worst of the five optimiza-
tion algorithms. MEDA, MOICA, and NSGA-II chose bus
numbers 28 and 9 as the best locations for DG installation,
but because of their different capacities for DG, the effects
of planning were different. By using MEDA for planning,
the optimal objective function value of 4.6871×107($) is
obtained in the minimum number of iterations, 28.327%
lower than the function value obtained by planning with CSA,
effectively reducing the network loss of 65.511%. Moreover,
the voltage level of system nodes tends to bemore stable. This
confirms that the proposed intelligent planning algorithm
MEDA is more efficient in terms of planning the DG of the
distribution network, and the obtained planning results are
optimal.

2) COMPARISON OF THE PLANNING METHODS OF
DIFFERENT OPTIMAL DG LOCATION METHODS
COMBINED WITH MEDA
(1) A new intelligent algorithm MEDA that is not combined
with any sort method;

(2) The LSFs method is combined with the MEDA
(LSFs-MEDA) method;

(3) The VSI method is combined with the MEDA
(VSI-MEDA) method;
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TABLE 3. Results of planning methods for IEEE 33-bus power system.

FIGURE 8. Optimization convergence curves of planning methods for IEEE
33-bus power system.

(4) The IVM method is combined with the MEDA
(IVM-MEDA) method;

(5) The AGIDM method is combined with the MEDA
(AGIDM-MEDA) method.

In this section, from the perspective of planning efficiency
and the results obtained, the five planning methods discussed
in this paper are compared and analyzed. The results show
that the proposed AGIDM-MEDA was the most efficient in
terms of planning, and can yield the best planning results. The
results obtained from the experiment are shown in Table 3.
The curves of algorithm convergence of the five planning
methods are shown in Fig.8, and the effect of the number
of DGs on the efficiency of the planning methods is shown
in Fig.8. In Table 3, PV and WE locations mean that the bus
installing PV andWE, PV andWE sizemean that the capacity
of the bus installing PV and WE.

Fig.8 shows, that the optimization efficiency of the
AGIDM-MEDA method was the highest, and it quickly
converges to the optimal solution. The results shown
in Table 3 show that the planning results obtained by the
AGIDM-MEDA method are better than those of the other
planning methods, whether in terms of voltage, the reduction

FIGURE 9. Effect of the number of DGs on the efficiency of planning
methods for IEEE 33-bus power system.

TABLE 4. Details of the power systems under study.

in network loss, or objective function value. The optimal
objective function was 3.8514×107($), which was obtained
in 60 iterations, 68.75% higher than the planning efficiency
of theMEDAmethod.Moreover, Figure 9 shows that the effi-
ciency of AGIDM-MEDA increased with the number of DG
deployments. The simulation results show that the
AGIDM-MEDA had the best planning efficiency and
obtained the best planning results.

C. MEDIUM AND LARGE-SIZE POWER SYSTEMS
Based on the advantages of the proposed AGIDM-MEDA, a
medium-size (IEEE 69-bus) and large-size (IEEE 118-bus)
power system were used to verify its superiority with respect
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TABLE 5. Comparison of planning methods for the 69-bus and 118-bus power systems with four DGS.

FIGURE 10. Curves of optimization convergence of planning methods for
69-bus system.

to planning efficiency and effect. The details of IEEE
69-bus power system and 118-bus power system are shown
in Table 4. The 69-bus power system had a total load
of 3802 KW and 2694 KVAr [27]. The 118-bus power system
had a total load of 4242 MW and 1438 MVAr [32].

1) COMPARISON OF PLANNING METHODS OF DIFFERENT
OPTIMAL DG LOCATION METHODS COMBINED WITH MEDA
Likewise, from the planning efficiency and planning effect,
this section presents details of the planning experiments,
and contrasts the five planning methods on the IEEE
69-bus and IEEE 118-bus power systems. It verifies that
the proposed AGIDM-MEDA can adapt to different scales
of distribution network systems: the larger the scale of the
distribution network, the higher its efficiency, and the better
its effect. The results obtained from the experiment are shown
in Table 5. The convergence curves of the five planning
methods for the 69-bus and 118-bus power systems are shown
in Figs.10 and 11. The percentage of planning to increase the

FIGURE 11. Optimization convergence curves of planning methods for
118 bus system.

FIGURE 12. Efficiency increment of planning methods for two power
systems.

efficiency of different planning methods in the two systems
is shown in Fig.12.

It is clear from Figs.10 and 11 that the efficiency of
AGIDM-MEDAwas the higher of the two systems. As shown
in Table5, it quickly converges to the optimal objective func-
tion values, which were 3.6431×107($) and 1.6288×1011($),
and effectively reduced the network loss by 70.810% and
20.335%, respectively. Further, from Fig.12, we see that
the planning efficiency of AGIDM-MEDA in the two sys-
tems was 70% and 75% higher than that in MEDA.
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The size of the distribution network system also increased,
and the proposed AGIDM-MEDAmethod was more efficient
when considering multiple DG programming. The results
prove that the AGIDM-MEDA can adapt to the distribution
network systems of different scales.

VI. CONCLUSION
This paper considered the randomness of output of WEs and
PVs to establish an optimal allocation model for DG based on
the cost of the network loss, the total cost for the installation
and investment of DGs, the operating and maintenance cost
of the DGs, and the cost of purchasing electricity from the
main network.

(1)The comprehensive application of the sensitivity indices
of the bus were applied to obtain a new index and the
sequence of the buses in order of sensitivity based on the
AGIDMmethod to determine candidate buses for the location
of deployment of DG.

(2)According to the uncertainty of WEs and PVs, a proba-
bility model is established, and the semi-invariant method is
used to solve for the probabilistic power flow according to a
correlation model.

(3)The sensitivity of the system’s bus was determined to
reduce the candidate solution space, and enhance the effi-
ciency of the MEDA solution.

In light of the impact of the strong fluctuation characteris-
tics of load affected by the behavior of electricity consump-
tion, the proliferation of electric vehicles in the future, and
the development of energy storage equipment on distribution
networks, our research in the future will consider planning
DG reasonably under such complex fluctuation factors.
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