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ABSTRACT This paper proposes an improved image high fidelity compression algorithm based on
the generative adversarial networks (GANs) to deal with the problem that the UAV image has a large
amount of data which is not conducive to post-processing. By adding an encoder in front of the generator,
the disaster area image transmitted by UAV is compressed to meet the requirements of the generator. After
the compressed image is trained together with the real image through the discriminator, the quality of the
compressed image is constantly improved. This image compression algorithm can fully synthesize the codes
of non-major areas such as trees and rivers in the image, and try to retain the codes of important areas such as
houses and roads. The experimental results show that the proposed compression method in this paper has a
higher compression ratio than the traditional compression method for the disaster area image, and can obtain
images with strong sense of hierarchy.

INDEX TERMS Complex disaster, convolutional neural networks, discriminator, generative adversarial
networks, generator, high fidelity, image compression.

I. INTRODUCTION
In recent years, a variety of natural and man-made disasters
have occurred frequently, seriously affecting people’s lives
in disaster areas. Although the damage caused by disasters
can be understood through various channels, people still lack
a clear understanding of the overall impact of disasters [1].
With the continuous development of uav technology, it has
been applied in many fields such as disaster assessment, envi-
ronmental detection, traffic management and aerial photogra-
phy recording [2]. The purpose of applying uav to complex
disaster relief is to replace the traditional and inefficient man-
ual rescue, and complete various tasks with high efficiency
and high reliability. The first priority for disaster relief is
to transmit high-definition disaster images, and eliminating
redundant data is the key to high-quality transmission. In this
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paper, a high fidelity image compression method is pro-
posed to reduce the pressure of storage device capacity, and
facilitate the later image processing [3].

Compared with other methods, video and image infor-
mation give people an intuitive feeling, and people mainly
obtain external information through them. However, video
and image contain a large number of invalid data, mainly
involving time redundancy, space redundancy and coding
redundancy [4]. Image compression is the basis of processing
and transmission. If the image is not compressed in the early
stage, it will increase the difficulty of image stitching in
the later stage and affect the transmission efficiency. This
may hinder people from using the effective data of video
and image [5]. How to transmit clear high-fidelity images
with limited bandwidth and get high quality compressed
data has become the focus of research. Image compres-
sion has become a frontier science in the field of computer
vision [6].
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Compression technology can be roughly divided into three
stages, each of which produces a number of creative results.
The first compression coding stage is mainly used to remove
redundancy, such as PCM [7] and transformation coding
method [8]. The emergence of arithmetic coding [9] marks
the beginning of the second generation of image compression
coding, followed by dictionary coding [10] and lossless com-
pression algorithm. The third generation compression tech-
nology mainly includes fractal image, wavelet transform [11]
and other coding algorithms, and has been developing till
now. The image recognition and synthesis method are used
to compress the data, mainly including the pixel coding,
prediction coding [12] and other main technologies. In recent
years, deep learning [13]–[16] has been widely used in data
analysis [17], image recognition [18], speech processing [19]
and other fields. Compression based on neural network struc-
ture is a hot topic in current research. The latest image com-
pression algorithm combines the neural network structure.
The compressed size is only about half of the size of the
traditional algorithm compression, and the visual quality is
not affected [20]. Convolutional neural network is a common
network structure in the field of image compression [21].

The compression of disaster image should consider not
only the details of each part, but also ensure that the image has
high fidelity [22]. The generative adversarial networks [23]
provides a new idea for image compression. The generative
adversarial networks was proposed by Goodfellow et al.
based on the relevant principles of game theory. The core of
generative adversarial networks is to generative model and
discriminative model. The role of generative model is to gen-
erate new samples, while the role of discriminative model is
to verify the authenticity of samples and determine the quality
of generative samples. The optimization of network struc-
ture refers to the strategy of ‘‘binary minimax game’’ [24].
During the training process, keep the parameters of onemodel
unchanged, change the parameters of another model, and
repeat them alternately. Finally, the data generated by the
model is close to the original sample. The application of
generative adversarial networks has expanded from the initial
image generation to various fields of computer vision [25],
such as image recognition and video prediction.

II. RELATED WORKS
A. IMAGE COMPRESSION BASED ON DEEP LEARNING
Image compression is an important research method in the
field of digital image processing, which has a broad appli-
cation in video transmission, image redundancy removal and
image stitching. Jiang [26] proposed a compression frame-
work based on CNNs, the two CNNS are seamlessly inte-
grated into an end-to-end compression framework, and has
accurate reconstruction of decoded images. Yoo et al. [27]
proposed a two-step framework for reducing blocking arti-
facts in different regions based on increment of inter-block
correlation, which classifies the coded image into flat regions
and edge regions. Sun and Cham [28] put forward the solution

with the maximum posterior criterion. The distortion caused
by coding is modeled as spatially related gaussian noise, and
the original image is modeled as a high-order markov random
field based on expert frame field. Prakash et al. [29] proposed
a new CNN architecture specifically for image compression,
which generates a label map that highlights semantically
annotated areas. Cavigelli’s et al. [30] took inspiration from
deep neural networks developed for semantic segmentation
and proposed a neural network with hierarchical skip connec-
tions and a multi-scale loss function for compression artifact
suppression. These papers provide some inspiration for the
algorithm design in this paper.

Although these algorithms utilize the powerful computa-
tional features of deep learning and save a lot of bandwidth,
they ignore the comparison with the original image and result
in low fidelity of partially compressed images. On the con-
trary, the proposed framework makes use of the character-
istics of the generative adversarial networks to compare the
compressed imagewith the original image in order to improve
the visual quality of the image.

The framework of image compression includes several
modules: encoder, quantizer, inverse quantizer, decoder and
entropy coding [31]. The function of the encoder is to convert
the image into the compression feature, and the decoder is
to recover the original image from the compression feature.
The encoder and decoder can be designed by convolution,
pooling, nonlinear and other modules. Taking a three-channel
picture of 768∗512 as the input of the encoder, after forward
processing, the compression feature occupying 96∗64∗192
data units can be obtained. If the compressed data are floating
point numbers, the quality of the restored image will be the
highest. But a floating-point number takes up 32 bits, and the
number of bits per pixel is much larger after compression.
The technique of quantization is used to convert floating point
numbers into integer or binary numbers. At the decoding end,
inverse quantization technology can be used to restore the
transformed feature data to a floating point number, which
can reduce the influence of quantization on the accuracy of
the neural network and improve the quality of the restored
image.

B. THE STRUCTURE OF GENERATIVE
ADVERSARIAL NETWORKS
Image compression based on generative adversarial networks
is a novel image compression method. Generative adversarial
networks is a method of modeling according to the character-
istics of training samples. The model contains two networks.
the generator obtains the distribution of data in the sample
and continuously generates new samples closer to the real
sample. The discriminator is usually a binary classifier, which
determines whether the input content is real data or generative
samples, and finds the difference between generative samples
and real samples. As a training framework, adversarial net-
work does not require a new neural network structure. Some
mature network models, such as RNN [32] or CNN [33],
can be selected for each component of the framework.
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FIGURE 1. The model of generative adversarial networks.

The basic structure of generative adversarial networks is
shown in Fig. 1.

In order to learn the generative distribution in the data
set, the generator G takes the prior distribution of random
noise PZ as input to generate the sample distribution PG (z)
approximate to the real data distribution Pdata(x), and try to
make the performance D(G(z)) of the generative data G (z)
on the discriminator D consistent with the performance D(x)
of the real sample x, that is, the scatter metric of Jensen-
Shannon [34] between x andG(z) is the minimum. The diver-
gence of Jensen-Shannon is used to measure the difference
between two probability distributions. It is the deformation
of KL divergence. The discriminator constantly extracts the
characteristics of real samples, so that the output probability
D(G(z)) tends to 0 and D(x) tends to 1. Finally, the discrim-
inator cannot distinguish whether the data belongs to real
samples or generative samples. The mini-batch stochastic
gradient descent training is used to generate the antagonistic
network. The discriminator D is updated by the stochastic
gradient ascending method, and the generator G is updated
by the stochastic gradient descent method. The process of
training is the process of game between the two, and the
model eventually tends to the global optimum. The total loss
function of G and D can be expressed as

L (D,G) = Ex∼Pdata(x) [logD (x)]

+Ex∼Pnoise(x)[log(1− D(G(z)))]→ min
G
max
D
.

(1)

G(z) is the image generated from using the input noise
z, and x is the image in the real sample. E represents the
expected value of the function. x ∼ Pdata(x) means that x
obeys the distribution of data. x ∼ Pnoise(x) means that x
obeys the distribution of noise variable.

GAN does not have fixed conditions, so on this
basis a conditional generative adversarial networks [35] is
designed(CGAN). In the modeling of generator G and dis-
criminator D, CGAN uses conditional variables and addi-
tional information to add conditions to the model, which can
supervise data generation and confrontation. Equivalent to
converting unsupervised GAN into supervised CGAN, this
condition variable y can be any type of data, such as category
label, used to repair part of the data of the image. Every data in
the CGAN model is associated with additional information s
to a certain extent, in which the binary group (x, s) obeys the
joint distribution Px,s. The additional information s is inte-
grated into the generator G(z, s) and the discriminator D(z, s)
as part of the input layer. In the generative network, input

FIGURE 2. The model of conditional generative adversarial networks.

noise z and additional information s constitute the joint hid-
den layer representation, and the structure is shown in Fig. 2.
The total loss function of G and D can be expressed as

V (D,G) = Ex∼Pdata(x) [logD (x, s)]

+Ex∼Pnoise(x)[log(1− D(G(z, s)))]→ min
G
max
D
.

(2)

s is additional information and i represents the uncom-
pressed original image. E represents the expected value of
the function. x ∼ Pdata(x) means that x obeys the distribution
of data. x ∼ Pnoise(x) means that x obeys the distribution of
noise variable.

C. SEMANTIC SEGMENTATION OF DISASTER IMAGES
BY FULLY CONVOLUTIONAL NETWORKS
Fully convolutional networks (FCN) was first proposed in
for solving the problem of semantic segmentation [36].
FCN mainly includes convolution layer, pooling layer
and deconvolution layer, and its basic structure is shown
in Fig. 3.

FIGURE 3. The basic structure of FCN.

The convolution operation [37] is used to extract features,
and the image matrix X is convolved with a set of filters F .
After convolution, the results as the input to nonlinear activa-
tion function f (.), the formula is as follows:

Yi′j′ = f
(∑m

i=1

∑n

j=1
FijX i+i′,j+j′ + b

)
. (3)

m × n is the size of the convolution kernel, Fij is the
parameter of the convolution kernel, Xi+i′,j+j′ are the input
of the convolution layer, b is the bias, Yi′j′ is the output of
the convolution layer. f (.) is the nonlinear activation function,
and can be expressed as follows:

f (xij) = max{0, xij}. (4)

The pooling layer reduces the dimension of image features
and retains the most critical information. Max-pooling is
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used instead of mean-pooling because max-pooling retains
more texture information, and mean-pooling retains more
background information. It calculates the maximum value of
the region within the range of m×n and the output Yi′j′ of the
pooling layer can be expressed as follows:

Yi′j′ = maxXi′+i,j′+j, i ∈ {1,m} , j ∈ {1, n} . (5)

The deconvolution is the inverse operation of the convo-
lution operation, which merely reverses the steps in the con-
volution transformation process. A prediction can be made
for each pixel while the spatial information in the original
input image is retained. The deconvolution is an up-sampling
operation. The output size after the deconvolution operation
is as follows:

O = (I − 1)× s+ p. (6)

I is the input of deconvolution, s is the sliding stride of
deconvolution kernel, p is the size of deconvolution kernel,
and O is the output size.
The softmax classifier as the last layer in the network,

which is used for the final classification and normalization.
The formula of softmax function is as follows:

hi =
eXi∑K
k=1 e

Xk
. (7)

Xi represents the input sample of the output layer, K repre-
sents the total number of classes in the sample, and hi repre-
sents the possibility that the classifier classifies the image as
class i.

III. HIGH FIDELITY IMAGE COMPRESSION OF UAV
BASED ON BASED ON GENERATIVE ADVERSARIAL
NETWORKS IMPROVEMENT
A. THE BASIC WORKING PRINCIPLE OF COMPRESSION
The model of uav image compression used in complex dis-
aster conditions is designed based on generative adversarial
networks. It has the basic structure of image compression,
including encoder E , decoder G, quantizer Q and inverse
quantizer Q̂. The encoder E converts the image to a com-
pression form w with less bit storage space. The decoder
G (also used as a generator) restores the information of the
image by forming a reconstruction G(Q(E(i))). The quan-
tizer Q transmits the gradient back to the input data of
the discriminator, and the inverse quantizer Q̂ reconstructs
the image based on the data provided by the decoder G.
The effect of compression needs to consider both visual
quality and compression rate. It can be expressed by the

formula
√
µ(E[L(i,G(z))])2 + δH (ŵ)2, where L is a loss

function to measure the visual similarity of the real image
and the compressed image. In the formula, entropy H (ŵ)
is the average information output of each gray level, and
can represent the minimum bit rate w required for the gray
level information in the image. The entropy can adjust the
code rate of the compressed image through the bound-
ary log2(Layer)dim(ŵ). Weight δ and µ are used to adjust

the compression effect of the model. The design of for-

mula
√
µ(E[L(i,G(z))])2 + δH (ŵ)2 may cause that the visual

quality is not optimal after image compressed, but the com-
pression rate is also guaranteed as the evaluation of the
compression effect. The value of the final formula tends to a
certain range, and the image will achieve the better compres-
sion effect.

The decoderG generates the decoded image representation
according to the vector z, and the discriminator finds the dif-
ference between the compressed image î and the real image i.
Compression can be optimized by solving the saddle point of
the function

min
E,G

max
D

E [f (D (i))]+ E [g (D (G (z)))]

+

√
µ(E[L(i,G(z))])2 + δ(H (ŵ))2. (8)

E represents the expected value of the function. It is dif-
ferent from the Encoder E . i represents the uncompressed
original image. z represents latent vector, and it is a combi-
nation of v and ŵ. v is the extracted noise. ŵ is the quantized
representation of the latent feature mapw.G represents a gen-
erator and D represents a discriminator. L is a loss function
for measuring the similarity between the original image i and
the compressed image î. Weight δ andµ are used to adjust the
compression effect of the model. f and g are scalar functions.
Here makes f (y) = (y− 1)2 and g (y) = y2. H (ŵ) is the
average information output of each gray level.

Since the last one term of formula (8) are not related to
discriminator D, it will not affect the ability of discrimina-
tor to estimate samples. So we can rewrite equation (8) as
follows:

min
E,G

`GAN +

√
µ(E[L(i,G(z))])2 + δ(H (ŵ))2. (9)

`GAN represents the minimum divergence on the genera-
tor G. The description of other variables has been explained
in equation (8).

The vector z in the formula contains ŵ, which stores the
information of disaster area image i. A key factor to improve
the image compression quality is to set δ close to 0 and make
the number of Layer or the dimension of ŵ large enough, so
that ŵ can contain more code rate and the model can almost
reconstruct the content of the disaster area image losslessly.
At this time, the divergence between pi and PG(z) tends to
be zero, and the code rate loss caused by the adversarial
network will not affect the overall quality of the disaster
image.

The work of compression is to remove redundant data, but
it also needs to ensure the fidelity of compressed images and
produce compressed images more and more real [38]. For
the damaged roads in the disaster image, encoder E cannot
effectively obtain the data of this part, and generator G needs
to use the extracted noise v and compression representation ŵ
to preserve the road texture as much as possible, rather than
simply synthesizing the data of this part. If the road in the
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image looks like a fuzzy gray stripe, it will not provide accu-
rate information to disaster relief workers. The generator G
can use vectors to repair images. The variables in the formula
are not fixed, but still have some association with the content
of the original image. In this way, the underlying structure
of the image remains consistent, that is, some information
is shared between the input and output, which is conducive
to improve the quality of the compressed image. At the end
of the iteration, the discrimination accuracy on the data set
is calculated. Once the discrimination accuracy is saturated,
the training is stopped to prevent the model from overfitting.

The above design is not able to judge the regions of
important and background in the image, and will not make
additional processing for local data. Encoder E and generator
G automatically handle the balance between the compression
quality of the whole image and the removal of redundant data
without any information guidance. However, the scene stud-
ied in this paper is relatively special. It is based on the com-
plex disaster conditions, and has no high requirements for the
visual quality of some regions in the image. It is hoped that the
amount of data can be reduced as much as possible for post-
processing, so that the amount of data in unimportant regions
can be greatly reduced. Referring to the structural design of
CGAN, this paper makes further improvement to the com-
pression structure. The additional information s of the image i
is semantic labels in a complex disaster scenario. The model
needs to provide relevant information to the encoder E and
the generative network G, and needs to combine semantics
in the encoding or decoding of images. This design is called
region of interest generative compression, which guides net-
work confrontation according to semantic labels. Region
of interest generative compression can specify important
regions in disaster images, and establish compression quality
standards for these regions during compression, or specify
decompression requirements for certain regions during image
reconstruction.

Providing semantic labels to the structure requires seman-
tic segmentation of disaster images [39]. Different parts of the
images are divided into different classes according to seman-
tics [40], and the images provided are RGB three-channel
images. The image is divided into nine classes, each with
a corresponding RGB value. These 9 different RGB values
are one-hot coding, and the output is a 9-channel encoded
image. Each channel represents a specific class. Table 1 is
the specific encoding scheme.

Before using generator to decode, bit allocation needs to
be combined with heat map. Roads, houses and other areas
are set as 1, while rivers, mountains, trees and other areas are
set as 0, which is converted into a binary heatmap m with the
same spatial dimension as ŵ. The region of 0 corresponds
to the region that should be completely synthesized (i.e.,
background region), and the region of 1 corresponds to the
region that should be retained (i.e., important region). The
synthesized region still contains a small amount of data from
the original image i. The original disaster image and semantic
segmentation image in the data set are shown in Fig. 4.

TABLE 1. Image encoding scheme.

FIGURE 4. Original disaster image and semantic segmentation image.
Fig (a) is original disaster image and Fig (b) is semantic segmentation
image. Each region of the image has a different label. Some regions are
labeled as region of interest, and some regions are labeled as region of
background.

The semantic s and the image encoding are stored in dif-
ferent spaces, so the feature extractor extracts the data from it
to the encoder. The data contains information to distinguish
the region of interest and background, and then the genera-
tor G receives the data for further processing. The algorithm
uses the semantic labels to guide the confrontation between
networks. The compressed item ŵ that should be synthesized
in the background region is mostly set to 0, but a small part
of data is also reserved for optimizing the visual effect. The
algorithm uses the heat map to encode only the region of
interest corresponding to item ŵ, which greatly reduces the bit
rate required for image storage. The bit rate of the compressed
item is much higher than that of the semantic label and heat
map information, and the semantic label will not increase the
data storage obviously. This method can save a lot of code
rate of the disaster area image.

With the addition of semantic labels, there is a large
difference in the amount of coding between the region of
interest and the background region, which may lead to the
lack of authenticity of the compressed image. We improve
formula (9) and added the energy function of MRF to the
loss function on the basis of GAN loss function. With the
addition of the energy function, the pixels of the region of
interest maintain continuity with the pixels of the region of
background in image features at the maximum probability.
The enhancement of image features between the region of
interest and background makes accelerate the loss function,
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and further improves the training speed of the model. The
energy function of MRF is defined as

K (x) = β
∑

j,k
xjyk . (10)

xj is the pixel point of the region of interest, yk is the
pixel point of the region of background, and β is the weight
parameter that makes the region of interest of the image
consistent with the background region. The loss function of
the final model is

min
E,G

max
D

E [K (i)+ f (D(i))]+ E [g (D (G (z)))]

+

√
µ(E[L(i,G(z))])2 + δ(H (ŵ))2. (11)

K is the energy function of MRF. f and g are scalar
functions. L is a loss function for measuring the similarity
between the original image i and the compressed image î.
The description of other variables has been explained in
equation (8).

FIGURE 5. The work schematic diagram of region of interest generative
adversarial networks.

In essence, the compression problem about the region of
interest is still to remove redundant data from the image, and
its working diagram is shown in Fig. 5. Firstly, the image is
randomly selected from the data set and divided by semantic
segmentation. Each part is marked and the corresponding fea-
tures are extracted. The labels generated by the currently stan-
dardized image and the additional information after semantic
segmentation are taken as the input of the encoder, and the
output generates the encoding representation, which is then
compressed by the quantizer. The compression representa-
tion is combined with the heat map to form a vector with
conditional information. The data of the region of interest
in the disaster image are reserved according to the vector,
and other regions are synthesized as far as possible. The
generative vector serves as the input of the generator, which
generates the compressed image and gives it to the discrim-
inator for judgment. The current standardized image and the
compressed image generated by the generator are taken as the
input of the discriminator, and the error result is used to make
the judgment. Then it is fed back to the generator, and the
weight of the generator and the discriminator is updated.

B. GENERATOR MODEL AND DISCRIMINATOR MODEL
The model of generator is essentially a decoder, which
receives the vector generated by the encoder as input.
It adopts the deconvolution neural network structure and
consists of four convolution layers. The size of convolution

kernel of each layer is 5× 5, and the number of convolution
kernel in the four layers is 512, 256, 128 and 64. Relu is
adopted as the activation function in the structure.

The model of discriminator adopts convolutional neural
network structure, including four convolutional layers and
one fully connected layer. The convolution layer is used to
compress the image, and then the full connection layer is used
to classify the image to judge the authenticity of the image.
The size of the convolution kernel of each convolution layer
is 5 × 5, and the number of the convolution kernel is 64,
128, 256 and 512. Finally, a vector of 1024 is generated and
processed by the sigmoid function to obtain a value in the
range of 0 to 1, which is the probability of being identified
as the original image. The model structure of generator and
discriminator is shown in Fig. 6.

FIGURE 6. The model structures of generator and discriminator. The left
side of Fig. 6. is the model structure of generator, and the right side is the
model structure of discriminator.

IV. EXPERIMENTS AND DATA ANALYSIS
In order to verify the feasibility of the compression algorithm,
the program is written based on python. GPU is used to
enhance the training speed, and Tensorflow is used to real-
ize deep learning algorithm. In the experiment, the disaster
images collected by the uav over the years are used as the
training set, and some images that do not meet the training
conditions are removed. There are about 5,400 images in
the training set. A large number of experimental data show
that after the training set reaches 5400 images, adding more
images can only bring insignificant parameter optimization,
and some generative redundant parameters are not required
for disaster scenarios. The test set also adopts the disaster area
image collected by uav, but it is different from the training set.
There are about 2500 images in the test set, and some images
are shown in Fig. 7.

Adam gradient is selected to update method, and all sam-
ples in the training set 128 times are trained. The batch
size of each processing in the training set is 1. The learning
rate of generator and discriminator is 2e-4. In the network
structure, the generator takes a 128 dimensional random
sampling evenly distribution between 0 and 1 as input, and
outputs a 64× 64 compressed image; the discriminator takes
a 64× 64 compressed image and an original image as input,
and the output is used to distinguish whether input image is
compressed or original.

Firstly, the experiment needs to conduct semantic segmen-
tation of the disaster image, analyze the key part of the infor-
mation in the image, and use it as conditional information
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FIGURE 7. Part of the images in the test set. Fig (a) is fire image, and the image name in the test set is fire0054. Fig (b) and (c) are earthquake
disaster images, and the image names in the test set are seismic0983 and seismic1106 respectively. Fig (d) and (e) are flood images, and the image
names in the test set are flood1417 and flood1643 respectively. Fig (f) is explosion disaster image, and the image name in the test set is blast2412.

FIGURE 8. Semantic segmentation results of some disaster images. Different parts of the image are semantically divided into different classes.
Fig (a) is the semantic segmentation of fire image. Fig (b) and (c) are the semantic segmentation of earthquake disaster image. Fig (d) and (e) are
the semantic segmentation of the flood image. Fig (d) and (e) are the semantic segmentation of the explosion disaster image. These six images are
semantic annotation images of Fig. 7.

FIGURE 9. Comparison results of image compression for flood1643 in the case of BPP = 0.3. From left to right and top to bottom: Original
image, the proposed algorithm (PSNR = 28.74 dB, MS-SSIM = 0.908), GAN (PSNR = 27.17 dB, MS-SSIM = 0.904), JPEG2000 (PSNR = 28.33 dB,
MS-SSIM = 0.897), JPEG (PSNR = 25.14 dB, MS-SSIM = 0.827), Jiang’s (PSNR = 28.45 dB, MS-SSIM = 0.899), Yoo’s (PSNR = 26.27 dB,
MS-SSIM = 0.862), Sun’s (PSNR = 26.15 dB, MS-SSIM = 0.843), Prakash’s (PSNR = 27.10 dB, MS-SSIM = 0.887) and Cavigelli’s
(PSNR = 26.59 dB, MS-SSIM = 0.876).

after processing. The semantic segmentation of some disaster
images in the data set is shown in Fig.8. After continuous
training, the discriminator cannot distinguish whether the
image is original or compressed, the compression quality is
constantly improved.

In order to further evaluate the effect of the proposed
compression framework, the compression algorithm of this
paper is compared with the standard compression methods
(e.g., JPEG and JPEG2000). JPEG2000 is an image compres-
sion standard based on wavelet transform. Compared with

JPEG, JPEG2000 has higher compression ratio and no block-
blur defect. The proposed compression framework draws
on some creative designs of Jiang’s [26], Yoo’s [27], Sun’s
[28], Prakash’s [29] and Cavigelli ’s [30], so the compression
effects of these algorithms will also be used for comparison to
prove that the design of the region of interest does enhance the
compression effect of disaster images. In order to facilitate
display, a disaster image is selected from the data set, and
the compressed image of the improved algorithm is compared
with that of other algorithms.
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FIGURE 10. Training loss value of generators and discriminators under
different epochs. Fig (a) is about the generator loss value. Fig (b) is about
the discriminator loss value. Limited by the calculation conditions,
the image is basically stable considering that the epoch is within 64. The
value of epoch ranges from 0 to 64. The range of loss value is between
0.4 and 1.

The contrast effect is shown in Fig. 9. In image directly
compressed by JPEG, significant blockiness occurs and the
texture is blurred. Some artifacts appear when Yoo’s [27] and
Sun’s [28] reconstruct the image. Prakash’s [29], Cavigelli’s
[30] and JPEG2000 have better visual quality, but the edge of
the area produce blurring effects. Jiang’s [26] obtains better
PSNR and SSIM, but the edge grayscale of the image changes
drastically, and color saturation of the image is relatively low,
which will lead to the compressed image looking uncoordi-
nated. GAN has a higher visual quality, but cannot synthesize
blocky or blurred spots. GAN does not highlight important
areas such as houses. Compared to others compression algo-
rithms, proposed compression algorithm retains more edge
and texture details, and the resulting image has higher fidelity.

The traditional compression algorithm has obvious defects
such as block effect in image reconstruction. The compres-
sion algorithm in this paper can retain the details of the
road, house and other objects, and still be more similar to
the original image after compression. Both the generator
and discriminator use 64 epochs for training. The loss value
decreases exponentially over 64 epochs, from 0.9 to about
0.5. Under different epochs, the loss value of the generator
and discriminator of the algorithm is shown in Fig. 10.

FIGURE 11. Compressed quality evaluation results of nine algorithms.
BPP is used to measure image resolution. The higher the BPP, the more
colors are available. The measurement range of BPP is 0-1, and the value
range of MS-SSIM is 0-1. The MS-SSIM of the all algorithms is basically
stable when BBP is between 0.6 and 1.
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TABLE 2. PSNR results of 9 contrast algorithms for BPP = 0.4 for multiple different disaster images.

FIGURE 11. (Continued.) Compressed quality evaluation results of nine
algorithms. BPP is used to measure image resolution. The higher the BPP,
the more colors are available. The measurement range of BPP is 0-1, and
the value range of MS-SSIM is 0-1. The MS-SSIM of the all algorithms is
basically stable when BBP is between 0.6 and 1.

The proposed compression algorithm preserves more
image detail with a higher compression ratio, so that the
image quality is not greatly damaged. We use MS-SSIM to
further evaluate the performance of the algorithm. MS-SSIM
is used to evaluate the visual quality of image compression
algorithm. The higher the value is, the better the image
reconstruction [41] will be. The comparison results are shown
in Fig. 11.

From the six graphs in Fig. 11, it can be seen that when the
BPP reaches about 0.9, the proposed compression algorithm,
GAN, Jiang’s [26], and JPEG2000 remain around 0.95, while
Yoo’s [27], Sun’s [28], Prakash’s [29], and Cavigelli’s [30]
remain around 0.90. JPEG remains around 0.85. Under the
same BPP, the MS-SSIM of the proposed compression algo-
rithm is slightly better than other algorithms. The recon-
struction of the proposed algorithm and GAN algorithm is
based on the distribution of data samples, and fidelity is more
outstanding.

The values of PSNR and MS-SSIM for all compression
methods are obtained by running the original author’s source
code and adjusting the parameters to the optimal value.
Table 2 shows PSNR values of 6 disaster images in the test set
compressed by various algorithms under BPP = 0.4. Table 3
shows MS-SSIM values of 6 disaster images in the test set
compressed by various algorithms under BPP = 0.4. It can
be seen that the proposed algorithm is the highest in terms
of PSNR, and the average value reaches 29.72. The average
value of JPEG2000 and Jiang’s [26] also exceeds 29. In terms
of theMS-SSIM, the proposed algorithm and GAN algorithm
are superior to other algorithms.

Finally, the four image datasets CIFAR-10, HKU-IS,
ECSSD and Cityscapes are used to evaluate the performance
of the algorithm, and the effectiveness of the proposed algo-
rithm is further verified. The classes used to provide semantic
labels in these four data sets are different from the dis-
aster image datasets, and the experiment has additionally
dealt with them. Considering the two indexes of PSNR and
MS-SSIM, it can be seen from Table 4 and 5 that compared
with other algorithms, the PSNR and MS-SSIM values of
the proposed algorithm remain the largest. It shows that the
proposed algorithm has certain universality.

In this paper, the algorithm can seamlessly merge the
content of regions of interest and regions of synthesis when
compressed. In addition, compared with the same network
structure without synthesis, the proposed network structure
greatly reduces BPP. When the object has repetitive struc-
ture, the visual quality is basically not damaged, which can
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TABLE 3. MS-SSIM results of 9 contrast algorithms for BPP = 0.4 for multiple different disaster images.

TABLE 4. Average PSNR results of JPEG2000, GAN and ours for BPP = 0.2,0.3,0.4 for CIFAR-10, HKU-IS, ECSSD and cityscapes.

TABLE 5. Average MS-SSIM results of JPEG2000, GAN and ours for BPP = 0.2,0.3,04 for CIFAR-10, HKU-IS, ECSSD and cityscapes.

generate images with high fidelity and save a lot of code
rate. At the same code rate, the visual quality of the proposed
algorithm is even better than some mature algorithms.

V. CONCLUSION
Firstly, this paper introduces the content of generative adver-
sarial networks algorithm and analyses how the algorithm
can be applied to image compression under complex disaster
conditions. The generator generates the decompressed image,
and the discriminator discriminates the difference between
the compressed image and the real image. They compete
with each other to produce images with better compression
effect. By semantic labels, additional information is added
to the model, which can preserve the data in important areas
and compress the redundant data in non-critical areas on a
large scale. Experimental results show that under the premise
of ensuring image quality, the algorithm in this paper can
indeed reduce the redundancy of data, and is significantly

superior to common compression algorithms in terms of
visual quality and image compression performance. It has
a high fidelity and can provide convenience for later target
detection. All regions of interest in disaster images are com-
pressed in a similar way, but each region in the actual scene
has different visual quality requirements. Therefore, it is the
main content of the next step to consider setting different
priorities for each region in the image and increasing the
compression weight.
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