
Received May 2, 2019, accepted June 7, 2019, date of publication July 9, 2019, date of current version August 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2927815

Parallel Accelerated Virtual Physarum Lab
Based on Cellular Automata Agents
NIKOLAOS I. DOURVAS , GEORGIOS CH. SIRAKOULIS , (Member, IEEE),
AND ANDREW I. ADAMATZKY
Department of Electrical & Computer Engineering, Democritus University of Thrace, 671 00 Xanthi, Greece
Department of Computer Science, University of the West of England, Bristol BS16 1QY, U.K.

Corresponding author: Nikolaos I. Dourvas (ndourvas@ee.duth.gr)

This work was supported in part by the General Secretariat for Research and Technology (GSRT), and in part by the Hellenic Foundation
for Research and Innovation (HFRI).

ABSTRACT Self-aware and self-expressive physical systems are inspiring new methodologies for engi-
neering solutions of complex computing problems. Among many other examples, the slime mold Physarum
Polycephalum exhibits self-awareness and self-expressiveness while adapting to changes in its dynamical
environment and solving resource-consuming problems like shortest path, proximity graphs or optimization
of transport networks. As such, the modeling of the slime mold’s behavior is essential when designing
bio-inspired algorithms and hardware prototypes. The goal of this paper is to combine one of the powerful
parallel computational tools, cellular automata (CA) with the adaptive potential of Physarum slime mold.
Namely, we propose a CA model and multi-agent approach to imitate the behavior of the plasmodium.
We then test the efficacy of the proposed model on graph problems such as the maze problem or the
traveling salesman problem (TSP). Finally, the virtual Physarum model is evaluated on a data set for
pattern recognition purposes and achieves to form very effectively the letters of the alphabet, especially
when compared with real experiments performed to prove the efficacy of the proposed model. Furthermore,
to exploit the CA’s inherent parallelism and make the model’s responses faster, both GPU and hardware
implementations are proposed and compared. As a result, an accelerated virtual lab is developed which uses a
multi-agent CAmodel to describe the behavior of plasmodium and can be used as an intelligent, autonomous,
self-adaptive system in various heterogeneous and unknown environments spanning from different types of
graph problems up to real life-time applications.

INDEX TERMS Cellular automata, GPGPU, multi-agent models, parallel computing, models, Physarum
Polycephalum, virtual lab.

I. INTRODUCTION
Physarum polycephalum is a slime mold forming a large sin-
gle cell that can be found in cool, moist areas such as decaying
leaves and logs. It has many phases in its life cycle, but the
most interesting one for computation-oriented research is its
vegetative stage called plasmodium. Plasmodium has no cen-
tral control or no brain to deliver instructions globally to every
part of its mass. It is comprised of many tube-like structures
that communicate locally and let electric signals move from
one place to another. Macroscopically, it looks like a den-
dritic network of connected tubes which expand in the given
space area, trying to reach food in order to survive. Those
expanding tubes are called pseudopodia. It is found that it has
the ability to connect two food sources (FSs) existing in two

The associate editor coordinating the review of this manuscript and
approving it for publication was Shubhajit Roy Chowdhury.

different points, in a minimum distance. This is rational in
the sense that the organism needs to create the minimum path
between the FSs to minimize energy spent on transporting
nutrients between two parts of its body. This Physarum’s
characteristic was an inspiration to many scientists for
solving complex mathematical problems. More specifically,
Nakagaki et al. [1] showed that this simple organism has the
ability to find minimum-length solution between two points
in a labyrinth. Adamatzky [2] proves that slime mold has
the ability to find the path between two sites in one pass,
assisted by the gradient of chemo-attractants. The research
on slime mold was not limited only in maze problems. Sub-
sequent research has enabled slime mold computational abil-
ities to apply in various problems like spatial representations
of various graph problems [3]–[8], robotic control [9], [10],
biological electronics [11]–[13], and more [14]. The exper-
iments of the living Physarum may last several hours or

98306 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-6202-4556
https://orcid.org/0000-0003-1073-2662
https://orcid.org/0000-0001-8240-484X


N. I. Dourvas et al.: Parallel Accelerated Virtual Physarum Lab Based on Cellular Automata Agents

days, which can be considered as a major drawback in
its computational abilities. The key to unlock and further
exploit those abilities is the modeling approximation of the
organism as precise and as fast as possible. Until now,
there is a variety of modeling approaches since no sin-
gle model that can still describe exactly the whole behav-
ior of Physarum, even considering only the plasmodium
stage. Current attempts at modeling Physarum’s behavior
try to simplify this huge task by compartmentalizing the
different behaviors of the organism in different situations.
For example, there are publications trying to model the
mechanisms of growth [15], the movement [16], the inter-
nal oscillations [17], [18] or the network adaptation [19]. So,
it is obvious that the choice of the right modeling tool is
a substantial step toward the reproduction of the biologi-
cal substrate’s behavior as close to reality and as fast as
possible.

Having in mind principles and characteristics prominent
to natural and physical phenomena, like randomness, hetero-
geneity and local interactions, CA sound a very promising
computational tool to deal with. In an abstract but adequate
definition of CA, these are models of physical systems,
where space and time are discrete and interactions are local.
CA combine the use of local memory (CA cell state) and
processing unit (CA local rule) in the same place, i.e. a CA
cell. They can capture the essential features of systems, where
global behavior comes out as the collective effect of simple
components, which interact locally. In addition, they can
adequately handle complex boundary and initial conditions,
inhomogeneities and anisotropies. These characteristics are
very convenient for modeling physical systems and particu-
larly to simulate the behavior and dynamics of a biological
organism such as Physarum Polycephalum. CA have been
successfully used in a vast range of research fields such as
traffic control [20]–[22], fire spreading [23], [24], molecu-
lar dynamics [25], [26], logic gates design [27], pedestrian
dynamics [28], [29], crowd evacuation [30]–[33], biological
systems [34], [35], or even Physarum modeling [36], [37].

On the other hand, Agent-Based Models (ABMs) are
focused on the behavior of its individuals in the system.
The base component of such a model is the ‘agent’ which
represents an entity and tries tomimic its characteristics when
interacting with other agents or with its environment. The
global behavior arises from the interaction between simple
components and in a sense it sounds similar to the CA cell
state and the rule that controls its behavior. The advantage
that an ABM offers is that it offers a real-time observation of
each entity in the system instead of just a general view of the
results at the end. In other words, the modeling goal is not
the high-level behavior but the exact individual’s behavior
over time. In this way, it is easier to capture the interac-
tions, the randomness and the heterogeneity of the system
mentioned before. Agent based models (ABMs) are used
very often in order to describe system flows [38], energy
systems [39], biological systems [40]–[42], and more specif-
ically Physarum behavior [43]–[46].

In this paper, we combine the Physarum computing abil-
ities, the CA modeling tool and the agent based modeling
approach to design a hybrid CA Agent Based Model, which
accurately approximates the vegetative behavior of Physarum
Polycephalum. Firstly, we apply our model to the problem
of the maze solving, i.e. the ability of the plasmodium to
find the minimum path between two sites as a proof of
model’s efficacy. The biological parts of slime mould are
described by CA agents which interact with each other under
certain CA rules. The results show that the proposed model
develops successfully the minimum-distance solutions by
creating solid tubes of sequential agents between two sites
in a maze. Furthermore, we stress further the proposed model
to deliver solutions to the well known Traveling Salesman
Problem (TSP). TSP is represented in the CA lattice with
many food spots (FSs) as the imaginary position of the nodes,
as well as many agents which represent the different parts of
plasmodium. Those CA agents are moving according to the
CA rules and they succeed to provide solutions to the TSP
problem very effectively by creating solid tubes between the
virtual cities. The results show once again model’s ability to
provide solutions to TSP in a small number of cities. Finally,
the CA agent model is tested in a different challenge, namely
is used to evaluate its ability to form other graph shapes such
as the 26 letters of the alphabet. ÎĲoreover, the CA and ABM
(agent based model) inherent parallelism is exploited to make
model’s responses faster. More specifically, both parallel
GPU and FPGA implementations of the CA agent model are
thoroughly presented and compared in details. As a result,
an accelerated virtual lab is proposed which facilitates a new
CA ABM model to describe the behavior of plasmodium
and can be used as an intelligent, autonomous, self-adaptive
system in heterogeneous and unknown environments such as
the different versions of TSP or maze-solving systems.

II. THE PROPOSED CA ABM FOR PHYSARUM’S
BEHAVIOR
In this section, the CA-ABM model for describing and mod-
eling the behavior of Physarum Polycephalum is presented.
In particular, each one of these particles is represented by a
CA agent. All these CA agents and their behavior in space
and time result to the general behavior of the plasmodium.
The area where the experiment takes place is also divided
into a matrix of squares with identical areas and each square
of the surface is represented by a CA cell. In case of the first
model’s test, namely the labyrinth, two virtual FSs are placed
in two different sites of the maze and plasmodium is placed
on top of both. In the biological experiment, the plasmodium
will start traveling in every direction inside the maze and
after some time steps it will potentially cover almost every
part of the maze. Then it will start to shrink and will create
the main protoplasmic tube between the two FSs. This is the
starting point of our algorithm, when the cells/agents of the
plasmodium stopped the expansion and are ready to shrink
and create the tube. Those agents are placed inside the area
in random sites of the CA lattice, where there is free space

VOLUME 7, 2019 98307



N. I. Dourvas et al.: Parallel Accelerated Virtual Physarum Lab Based on Cellular Automata Agents

and not a wall. In the case of proximity graphs, many FSs are
placed in different sites of the area given. The state of the i, j
cell at time t , defined as C t

i,j is equal to:

C t
i,j = {Flagi,j,Food

t
i,j,Ask

t
i,j,Rand

t
i,j,Agent

t
i,j} (1)

where Flagi,j is a variable that can acquire four (4) different
values and indicates the type of the area represented by the
corresponding i, j cell. The possible values of Flag are the
following ones:
• Flag=‘‘00’’ is considered as a free area.
• Flag=‘‘01’’ is considered as the area of initial placing a
FS.

• Flag=‘‘10’’ is considered as the area of initial placing
the agents which represent particles of the plasmodium.

• Flag=‘‘11’’ is considered as an area which represents
the walls of themaze (agents cannotmove to such a cell).

Moreover, Foodi,j represents the concentration of
chemo-attractants at time t in the area corresponding to the
i, j cell. The expansion of chemo-attractants are considered
uniform, so the diffusion equation translated to the CA
language is given by equation 2:

Food t+1i,j =

{
Food ti,j + fp1

[(
Food ti−1,j − fp3× Food

t
i,j

)
+

(
Food ti+1,j − fp3× Food

t
i,j

)
+

(
Food ti,j−1 − fp3× Food

t
i,j

)
+

(
Food ti,j+1 − fp3× Food

t
i,j

)]
+ fp2

[(
Food ti−1,j−1 − fp3× Food

t
i,j

)
+

(
Food ti+1,j−1 − fp3× Food

t
i,j

)
+

(
Food ti−1,j+1 − fp3× Food

t
i,j

)
+

(
Food ti+1,j+1 − fp3× Food

t
i,j

)]}
(2)

The numerical values of the fitting parameters of equa-
tion 2 indicating the influence of the adjacent neighboring
cells, are heuristically given as fp1 = 0.05, fp2 = 0 and
fp3 = 1, respectively.

Furthermore,Aski,j is a variable that can take eight different
values from 1 to 8 while checking if an agent exists in the
corresponding CA cell. If there is, it searches its adjacent
eight (8) neighbors (north-west, north, north-east, west, east,
south-west, south, south-east — forming a classical Moore
neighborhood, and finds which one of them has the greater
Food value. The value of Aski,j is depended on which of the
neighbors in this Moore neighborhood has the greater Food
value. For example, if the north-west neighbor has the greater
value, Aski,j takes the value 1. If the north neighbor has the
greater value, Aski,j will take value 2. If the north neighbor
has the greater value, Aski,j will take value 3 and so on.
This procedure for all possible cases is presented graphically
in Fig. 1.
Rand ti,j is a variable that delivers a new pseudo-random

number in each time step. This variable was chosen in order

FIGURE 1. Askt
i,j variable numerical interpretation and visualization.

to be able to decide which agent is going to occupy a specific
place when there is a conflict with other agents. So, every
CA cell of the lattice holds a pseudo-random number which
is updated and renewed in each time step.

Finally, Agent ti,j is a variable that declares the existence or
not of an agent. It is the variable that defines if an agent is
going to leave an occupied CA cell or not. It also defines if
an agent is going to take an empty cell or not. This procedure
is performed as follows: If a specific cell, with an agent inside
it (Agent ti,j=1), has a value of variable Ask t−1i,j =3, which
means that asks for moving to north-east cell, and there is
no other agent that requests to go in the same cell, then
Agent ti,j takes the value 0 while the north-east cell takes value
Agent ti−1,j+1=1 (Fig. 2 a). If there is a conflict with another
(Fig. 2b) or many other agents (Fig. 2c) who ask to move on
this specific cell, then it checks which one of them has the
maximum Rand ti,j value. If Agent

t
i,j has the maximum Rand ti,j

value then Agent t+1i,j takes value 0 and the Agent t+1i−1,j+1 takes
value 1. In last case, that it does not have the maximum value,
then it keeps the value Agent t+1i,j =1.

III. GPU DESIGN OF THE CA-ABMODEL
In this section the GPU implementation of the proposed
model are discussed analytically. The basic idea is to exploit
the inherent parallelism of CA asmodeling tool and CAABM
as a parallel modeling technique. GPU using CUDA is a
very powerful tool, that helps the programmer to design and
implement a parallel model very easily. It is well known that
GPUs have been widely used from researchers for acceler-
ated modeling techniques [47]–[51]. In this implementation,
the initial CA data are stored to the global memory of the
device. It would be probably more efficient to use the shared
memory, which is faster, but for simplicity purposes this
programming approach will be discussed in one of our future
works. The main steps of our algorithm are:
1) Split the CA sub-states into different blocks of threads.

First, a 2-dimensional block for the definition of
the modeling morphology and environment is created
while, a 2-dimensional block for the calculation of
the chemo-attractants’ diffusion, a 2-dimensional block

98308 VOLUME 7, 2019



N. I. Dourvas et al.: Parallel Accelerated Virtual Physarum Lab Based on Cellular Automata Agents

FIGURE 2. Graphical examples of Agent t
i,j procedure. (a) Only one (1)

agent seeks to move to north-east cell. (b) Two (2) agents compete for
the same cell. (c) Four (4) agents compete for the same cell.

which holds the Ask ti,j value for every agent at each
time step, a 2-dimensional block to update its cell with
the Rand ti,j values and, finally, a 2-dimensional block,
which calculates the movement of each agent, are also
created.

2) Then, assign a kernel to process andmake the necessary
calculations for every block mentioned before. More
specifically, a kernel to hold and update the Flagi, jt

of the CA cell, a kernel for the computation of the
discrete diffusion equation of the chemo-attractants,
a kernel for the calculation of the Ask ti,j variable, a ker-
nel responsible for the updating of the random values
of Rand ti,j variable and, finally, a kernel that calculates
the movement or not of each CA agent are assigned
respectively.

3) Initialize the current state for all the kernels through
a CPU-GPU memory copy operation, from host-CPU
memory to global memory of the GPU device.

4) Run the appropriate kernel and make the calculations
by using the information of the current block of the CA
variable.

5) At the end of each time step, assign other kernels to
make the device to devicememory copy operation. This
procedure updates the CAcurrent block with the CAnext
block.

6) Finally, complete the simulation, while the final block
of the CA is being retrieved from the global memory of
the device to present the results.

The processing procedure of the host and the device in
order to complete a full cycle of all CA variables is presented
in Fig. 3.

IV. FPGA DESIGN OF THE CA-ABMODEL
In contrast to the serial computers, themodel hardware imple-
mentation has the motive of parallel processing, which is a

FIGURE 3. In each time step every kernel receives a signal from the host
to start the procedure of its block. Every block handles a different CA
state. A whole cycle of the CA rule is finished when the fifth kernel
finishes the calculation of the Agent t

i,j block.

TABLE 1. The flow summary for the basic ca cell produced by Quartus
software.

TABLE 2. The max frequency of the implementation at 85 ◦C and 0 ◦C as
produced by Quartus software.

native characteristic of CA and agent based models as well
as the biological organism we test. This can obviously lead
to further acceleration of the proposed model. To this end we
propose the hardware implementation of the proposed model
to an FPGA device. More specifically, the VHDL hardware
description language was used, while the design and the pro-
cessing of the circuit have been made using Quartus software
and the simulations were done by using Modelsim of the
ALTERA company.

The signals used in this circuit as inputs or outputs are
the same as those in the GPU implementation. Each main
CA cell, or else an FPGA basic block uses approximately
1721 logic elements. The logic elements, the pins, and the
registers used for the basic CA block is presented in Table 1.
The frequencies achieved at 85 ◦C and 0 ◦C corresponding

temperatures, are presented in Table 2. As it is obvious,
the max frequency at 85 ◦C was 14.85 Mhz, while at 0 ◦C
was 16.21 Mhz. So, the frequency speed achieved is approx-
imately 15 Mhz or, in other words, every time step of our
model needs approximately 66 ns. The Power Analyzer tool
of Quartus showed 87.3mW power consumption.

The basic structure of this implementation is called ‘‘Phy-
sarumCell’’ block (Fig. 4). Every ‘‘PhysarumCell’’
block is connected with its 24 closest neighbors and is respon-

VOLUME 7, 2019 98309



N. I. Dourvas et al.: Parallel Accelerated Virtual Physarum Lab Based on Cellular Automata Agents

FIGURE 4. Physarum Cell is the basic CA cell in the CA lattice and the basic block in the FPGA. FoodComponent is the component
responsible for the calculation of the chemo-attractants’ diffusion. AskComponent is the component responsible for the calculation of Askt

i,j
variable, while AgentComponent is the component responsible for the calculation of the agents’ movement. LaCenter and RandCenter are
internal cell’s states which refer to the type of the cell’s topology and random number respectively.

sible for handling the signals that try to simulate the behav-
ior of the plasmodium. Figure 4 shows that this block has
97 inputs and 5 outputs. The inputs are:

• 2 circuit signals, 1 bit each, the clock and the reset signal.
• 9 signals, 2 bit each, which represent the morphology of
the neighbors’ and the central cell’s environment.

• 9 signals, which are integers ranging from −10,000 to
10,000 and represent the concentration of the chemo-
attractants of the neighbors and the previous concentra-
tion in the central cell.

• 2 signals which are integers ranging from 0 to 100 and
represent the parameters of the chemo-attractants’ diffu-
sion equation.

• 25 signals, which are integers ranging from 0 to 8 that
hold the neighbors’ values and the central value of the
Ask ti,j variable.

• 25 signals, which are 1 bit each and represent the exis-
tence or not of an agent in the 24 closest neighbors and
that one in the central cell.

• 25 signals, which are integers ranging from −100 to
100 that represent the random values of the neighbors.
These values are used in the case of a conflict during the
agents’ movement.

The output signals are:
• 1 signal, which is an integer ranging from −10,000 to
10,000 and represents the concentration of the
chemo-attractants in the current cell.

• 1 signal, which is an integer ranging from 0 to 8 and
holds the value of Ask ti,j of the current cell.

• 1 signal, which is 1 bit signal, and represents the exis-
tence or not of an agent in the CA cell.

• 1 signal, which is an integer ranging from −100 to
100 that represents the random value that the current cell
holds.

• 1 signal, which is a 2-bit signal and represents the type
of the current cell.

Every ‘‘PhysarumCell’’ block consists of three com-
ponents, the FoodComponent , the AskComponent, and

98310 VOLUME 7, 2019



N. I. Dourvas et al.: Parallel Accelerated Virtual Physarum Lab Based on Cellular Automata Agents

the AgentComponent, respectively as shown in Fig. 4.
Each one of the aforementioned component is responsi-
ble for a specific task, i.e to calculate the diffusion of
the chemo-attractants or the movement of the agents. More
specifically, the FoodComponent is a component respon-
sible for the calculation of the chemo-attractants diffusion.
As an input it takes the type of the CA cells of its 9 neighbors
with their type, the 9 chemo-attractants concentrations of its
neighbors with their concentration in the previous time step,
the 2 parameters of chemo-attractants diffusion equation, and
2 circuit signals, namely the clk and the rst. Afterwards
it calculates the result of the diffusion equation and updates
its current value with the new one. The AskComponent is
a component responsible for the calculation of the current
agents direction. In particular, it uses the chemo-attractants’
concentration of its 9 neighbors and two signals for synchro-
nization, i.e. the clk and the rst. It checks from which
direction comes the greater amount of chemo-attractants and
produces in the exit the appropriate integer which declares the
desired direction. Those possible numbers in the exit can be
summarized as follows:

• ‘‘0’’, if there are no chemo-attractants in its neighbors.
• ‘‘1’’, if the chemo-attractants of the north-west neighbor
have the greatest concentration.

• ‘‘2’’, if the chemo-attractants of the north neighbor have
the greatest concentration.

• ‘‘3’’, if the chemo-attractants of the north-east neighbor
have the greatest concentration.

• ‘‘4’’, if the chemo-attractants of the east neighbor have
the greatest concentration.

• ‘‘5’’, if the chemo-attractants of the south-east neighbor
have the greatest concentration.

• ‘‘6’’, if the chemo-attractants of the south neighbor have
the greatest concentration.

• ‘‘7’’, if the chemo-attractants of the south-west neighbor
have the greatest concentration.

• ‘‘8’’, if the chemo-attractants of the west neighbor have
the greatest concentration.

Finally, the AgentComponent is the component respon-
sible for the calculation of the agents’ movement. As an input
it takes the circuit signals (clk, rst), the Ask and the Agent
value of the 25 closest neighbors. This happens because the
central cell must have the information of the position and the
selection of direction of all the neighbors around it. Then it
considers all these as described in II and the output is a 1-
bit signal that takes value 1 if an agent comes or stays to
the cell and 0 if an agent is leaving the cell or the cell stays
empty.

V. MAZE IMPLEMENTATION RESULTS
As proposed in the introduction, firstly we applied our model
in order to solve the maze presented by Nakagaki et al. [1].
This is why we focus on the shrinking behavior of the
plasmodium’s body after its expansion. We have used prob-
ability rules to locate the agents in their initial positions

FIGURE 5. The initial values of the Agent t
i,j . (a) The agents have 70%

probability to take an initial position at a free space of the labyrinth.
(b) The agents have 50% probability to take an initial position. (c) The
agents have 30% probability to take an initial position.

FIGURE 6. The yellow arrows present the sites of the maze from where
the chemo-attractants start to expand.

to simulate the actual distribution of Physarum’s body in
the experiments and we have also used probability in their
movement, because in the case of conflict with many agents’,
the agent with the greater Randomti,j value will eventually
move. Usually, the vast majority of CA ABMs are stochas-
tic, which means that two simulations will not normally
reproduce exactly the same data. However, when repeating
many runs, the qualitative behavior should result with the
same qualitative characteristics in most of them. So, in order
to achieve the reproducibility of the model, we tested our
model for three different initial conditions. At the beginning
we tested a labyrinth, in which the initial agents had 30%
probability to exist or not in a specific cell with 0 as value
for Flagi,j. Then 10 experiments have been made in order
to ensure that reproducibility occurs. Afterwards, the same
10 tests have been made with 50% probability and finally
another 10 tests run with 70% probability.

In Fig. 5, the initial state of the Agent t=0i,j is presented
with probability 70% (5a), 50% (5b) and finally 30% (5c).
The initial food is placed in two sites of the maze as shown
in Fig. 6. These spots are also shown in Fig. 6, to the edges
of the yellow arrows. Then, the model begins to run until no
agents move from their position any longer.

The first 10 results with 70% probability for the ini-
tial agents are shown in Fig. 7. The model run approxi-
mately for 5, 000 steps for every one of the 10 tests. The
average finishing time of the experiment is approximately
4.503s.

The model finds the minimum distance between the
two FSs in 9 to 10 experiments. If we follow the only
closed path from the first source of nutrients, we are going
to reach other source of nutrients along a minimum dis-
tance path. This is achieved in the experiments illustrated

VOLUME 7, 2019 98311



N. I. Dourvas et al.: Parallel Accelerated Virtual Physarum Lab Based on Cellular Automata Agents

FIGURE 7. (a)-(j) The 10 different tests for 70% probability for the initial
state.

in Fig. 7(a− d and f − j). Only the experiment in Fig. 7(e)
fails to find the minimum distance, because the path is open
at a specific point.

The other 10 results with 50% probability for the ini-
tial agents are shown in Fig. 8. The model runs approxi-
mately for 4, 500 steps for every one of the 10 tests. The
average finishing time of the experiment is approximately
3.998s. The model finds the minimum distance solution in
the maze in 6 to 10 experiments, which can be considered
as a success having in mind the original distribution per-
centage. The experiments which succeeded are presented
in Fig. 8(d , e, f , h, i, j). Those who have failed because
there is an open path between the two FSs are presented
in Fig. 8(a, b, c, g), respectively.
The final 10 results with 30% probability for the initial

agents are shown in Fig. 9. The model run approximately for
4, 000 steps for every one of the 10 tests. The average fin-
ishing time of the experiment is approximately 3.613s. These
tests failed because just one succeeded to find the minimum
path between the two FSs. The experiments which failed
are presented in Fig. 9(a− f and h− j) and the successful
experiment is illustrated in Fig. 8(g).
As it was mentioned in Section IV, a CA cell in

our FPGA implementation uses approximately 1721 logic
elements. Therefore, in order to create a more practical
and applicable simulation in a real FPGA device, with
almost limited computational resources, we have created a
23 × 23 grid with a total of 910,409 logic elements for the

FIGURE 8. (a)-(j) The 10 different tests for 50% probability for the initial
state.

whole grid. For the time being, there are high-end FPGAs
in the market that come up with 952,000 logic elements, i.e.
28nm Stratix V.

The same initial conditions like the ones implemented in
the software tests, were used in the FPGA implementation.
The results produced by ModelSim were the same with those
produced byCUDA.More specifically, with 70% initial agent
probability the model, also, achieves to find theminimun path
in 9/10 experiments. With 50% initial agent probability it
achieves 6/10 successful experiments and with 30% initial
agent probability, achieves 1/10 successful experiments. But
as we mentioned in the previous sector, our hardware design
achieves 18.6 Mhz frequency. This means that the model
needs approximately 53.7 ns.

So, for 5,000 time steps FPGA needs approximately
268.5µs, for 4,500 needs 241.6µs and for 4,000 needs 214.8
µs. In this way, it achieves a speed-up of approximately six
orders of magnitude against the CUDA implementation.

VI. CREATING PROXIMITY GRAPHS
The next step is to test the above model of Physarum in
more classical graphs. Toussaint [52] used three types of
graphs, the Minimum Spanning Tree (MST), the Relative
Neighborhood Graph (RNG) and the Delaunay Triangula-
tion (DT) and proposed an hierarchy of them. The MST [53]
is a connected acyclic graph which has the minimum possible

98312 VOLUME 7, 2019



N. I. Dourvas et al.: Parallel Accelerated Virtual Physarum Lab Based on Cellular Automata Agents

FIGURE 9. (a)-(j) The 10 different tests for 30% probability for the initial
state.

sum of edges’ lengths. The RNG is a graph that uses relative
neighbors to form its edges. Given a set of points P =
{p1, p2, p3, ..., pn} a point pi is relatively close to another pj
if d(pi, pj) ≤ max[d(pi, pk ), d(pj, pk )] for all k = 1, 2..., n,
(k 6= i, j) where d(pi, pj) is the distance between points pi and
pj. DT [54] is a graph subdividing the space onto triangles
with vertices in V , edges in E , where the circumcircle of
any triangle contains no points of V other that its vertices.
Toussaint showed thatMST ⊆ RNG ⊆ DT . In this hierarchy,
the Gabriel Graph (GG) [55] was inserted between RNG and
DT, in which two points pi, pj of the graph form an edge if
the circle having this edge as diameter is empty from any
other points of the graph. In [56], Adamatzky showed that
the plasmodium of Physarum Polycephalum has the ability
to mimic the Toussaint hierarchy. He demonstrated that the
initial conditions of the experiment were crucial for the results
and depending on them plasmodium has the ability to form
different types of graphs. For example, if nodes (nutrients)
are placed in a petri dish and the plasmodium is placed in one
of them to start its foraging behavior then after some time
steps it will probably create an RNGgraph. If the plasmodium
is placed in every node at the start of the experiment, then
it is much more likely to form graphs closer to GGs. In our
model we make use of the second case. We assume that the
plasmodium is placed in every food source which represents
a vertex in the graph. At the first stage the plasmodium starts

FIGURE 10. Test of the proposed model in 6 cities. (a) The initial position
of the cities. (b) The ideal solution. (c) The results of the experiment.
(d) The closed route that determines the path between the cities.

to expand in every direction covering all the area around
a FS. At the next stage, which is the starting point of our
model, it is affected by the chemo-attractants of other FSs,
it shrinks and starts creating protoplasmic tubes between
them.

In this implementation, we stress our model to see how
well it would behave in a simple TSP problem with a few
and many nodes/cities that are placed accordingly to form
either relative neighborhood or Gabriel graphs. We decided
to use 70% probability for the agents’ initial state, because as
presented in Sect. V it produced better results. The following
experiments managed to display their results in the majority
(>60%) of the repeated tests.

First, we tested six nodes to check if a rectangle is
going to be created. The results are presented in Fig. 10.
In Fig. 10(a) the initial position of the cities is presented and
in Fig. 10(b) the ideal solution is presented. In Figs. 10(c, d)
the result of the experiment and the painted closed path
are depicted. It is obvious that in this simple problem,
the model manages to reproduce the same result as the ideal
one.

In order to compare the results of our model in similar
simple problems we created an experiment with 5 cities that
are supposed to form an easy shape as a solution. The exper-
iment is presented in Fig. 11. In Fig. 11(a) it is presented the
initial position of the cities, in Fig. 11(b) the ideal solution to
this problem, in Fig. 11(c) the result of the experiment and
in Fig. 11(d) the path that the agents form. The experimental
results seem to connect all the cities in one pass but the
distance is not the minimum. It has a small diversion from
the ideal path. This proves that the success of an experiment
depends heavily on the initial position of the cities, the initial
position of the agents and the randomness in their movement.

VOLUME 7, 2019 98313



N. I. Dourvas et al.: Parallel Accelerated Virtual Physarum Lab Based on Cellular Automata Agents

FIGURE 11. Test of the proposed model in 6 cities. (a) The initial position
of the cities. (b) The ideal solution. (c) The results of the experiment.
(d) The closed route that defines the path between the cities.

So, when we have to deal with more complicated, or different
problems, the results shall be also different.

The next more advanced experiment involved 12 cities that
will produce a circular shape route. For onemore time, we put
agents in an area that covers all the cities with 70% probabil-
ity as before. The experiment and the results are presented
in Fig. 12. In Fig. 12(a) the initial cities’ configuration is
shown. In Fig. 12(b) the ideal path produced by Concorde
software [57] is depicted. Then, in Fig. 12(c− d) the result
of the experiment and the closed path (in order to be more
understandable) are graphically given. Once again, we can
check that the execution of the proposed model manages to
find a path that connects all the cities at least once, but there
is also a small divergence between the experimental and the
ideal result in terms of distance.

A final example is the one given in Fig. 13. As before,
the initial cities’ position is presented in Fig. 13(a), while
the ideal path produced by Concorde software is shown
in Fig. 13(b). Then, in Fig. 13(c− d) the results of the exper-
iment and the closed path are presented. The model finds
the path that connects all the cities at least once, but there
is also a greater divergence between the experimental and the
ideal result in terms of distance, greater than before. The same
philosophy and results are presented in a more complicated,
in terms of shape, problem in Fig. 14.
Based on the provided results, we can say that the proposed

model can be applied on a travelling salesman problem if
the cities/nodes/FSs are placed in such positions that form
relative neighborhood or Gabriel graphs. However, in other
graphs that do not meet those criteria, our algorithm will

FIGURE 12. Test of the proposed model in 6 cities. (a) The initial position
of the cities. (b) The ideal path. (c) The experimental results. (d) The path
that the experiment produces.

FIGURE 13. Test of the proposed model in 12 cities. (a) The initial
position of the cities. (b) The ideal path. (c) The experimental results.
(d) The path that the experiment produces.

probably fail in most cases. Those simulations were tested
both in serial and parallel processing units. The processing
time ranges between 1− 2 seconds running on one core of
a 3rd generation Intel CPU while the FPGA needs approxi-
mately 80.5µs− 107.4µs.

98314 VOLUME 7, 2019



N. I. Dourvas et al.: Parallel Accelerated Virtual Physarum Lab Based on Cellular Automata Agents

FIGURE 14. Test of the proposed model in 15 cities. (a) The initial
position of the cities. (b) The ideal path. (c) The experimental results.
(d) The path that the experiment produces.

VII. PHYSARUM LEARNS THE ALPHABET
In the previous section, it was shown that the CA agent model
of Physarum has the ability to resemble proximity graphs by
constructing agent-veins to connect a number of stimuli. The
nodes of these networks are represented by food spots and
the edges are represented by the agent-chains forming virtual
tubes. In this section, our model’s behavior is tested, in the
case that the virtual plasmodium agents are inoculated in a
lattice to interact within a data-set, forming the letters of the
English alphabet.

At the beginning, the stimuli are placed properly in a lattice
of 10, 000 cells without any walls or repellents so as to form
each letter. The number of nutrients ranges between 20 and
40 and is proportional to the complexity of each letter. At the
next step the minimum and maximum (x, y) coordinates of
the stimuli’s covered area are calculated. Then, the initial
CA agents are placed within this area randomly. The initial
probability parameter was chosen to 30% for every cell of the
lattice. It should be noted that in this case, we didn’t want to
increase the population of the agents because an overcrowded
space results in removal of the internal space and transition
from an α-shape to a solid ConcaveHull as happens for exam-
ple during the formation of letter ‘A’. A smaller amount of
agents would lead to an increasing number of discontinuities
between the nutrients.

In Fig. 15 the whole procedure is shown while forming
the letter ‘S’. In Fig. 15(a) the nutrients are placed in the
lattice in order to create the letter ‘S’. In Fig. 15(b) the CA
agents are placed inside the area that the Food spots are
forming with 30% probability. Then, the model is running

FIGURE 15. An example of forming the letter ‘S’. (a) The initial position of
the nutrients. (b) The agents are placed with 30% probability within the
area that the nutrients are forming. (c) The final outcome; the agents
form the letter ‘S’.

for 1, 500 time steps and the final result is presented
in Fig. 15(c). However, there are some small defects and
the line is not purely clear. but it is obvious that the CA
agents managed to approximate very closely the desired
outcome.

In Fig. 16 all the produced letters from ‘A’ to ‘Z’ are
presented. At first sight, it is clear that the proposed model
achieves to form all the shapes of the letters, although,
as expected, some letters are formed better than others. For
example, the letters ‘Q’, ‘O’, ‘S’, or ‘U’ are very clear.
On the other hand, letters such as ‘I’, ‘J’, ‘Y’ or ‘T’ are
also formulated but with less clear way when compared with
the others. Those letters are closer to minimum spanning
trees and could be formed more precisely if the plasmod-
ium was placed in only one FS as suggested in [56]. So,
even if the CA agent model seems to be impressionable
to the initial conditions and the characteristics of each let-
ter, it manages to approximate very closely the desirable
result.

Furthermore, the results of this model were also tested by
implementing some in vitro experiments to prove that the
real plasmodium is also capable to form proximity graphs
such as letters of the alphabet. More specifically, various
cases were tested where the plasmodium tried to recreate
letters of the alphabet and here we present, for sake of
readability and space, the cases of ‘A’ and ‘O’. Twenty oat
flakes, the nodes of the graph, were used in the experiment
to create the ‘A’ letter. Eight oat flakes were placed in each
one of the side edges, three nodes for the horizontal one and
one node is placed at the top vertex (Fig. 17(a)). A small
portion of plasmodium (c. 60mg) is placed on the top of
each oat flake. Each plasmodium starts the expansion of
its mass in every direction searching for new sources of
nutrition (Fig. 17(b)). The plasmodium spreads out pseu-
dopodia detecting relative locations of the closest sources
of nutrients. Using chemotaxis, those pseudopodia sense the
chemo-attractants released by food sources. When another
FS is reached the relevant part of the plasmodium shrinks to
a protoplasmic strand. This strand, also called a tube, con-
nects the initial and newly acquired nutrients. In our model,
the time t = 0 starts when the pseudopodia are expanded
and have reached the food sources. Each plasmodium cell is
represented by one agent in the CA model. The cells interact

VOLUME 7, 2019 98315



N. I. Dourvas et al.: Parallel Accelerated Virtual Physarum Lab Based on Cellular Automata Agents

FIGURE 16. The letters from ‘A’ to ‘Z’ produced by the CA agent model.

with each other and they start creating a main protoplasmic
tube between sources of nutrients. The graph that is created
from this protoplasmic tube is the result of the experiment
that is compared with the CA model’s outcome. In Fig. 17(c)
the plasmodium starts to create the desirable tube between
sources of food forming the letter ‘A’. In Fig. 17(d) the
plasmodium has created strong tube connections between the
food sites that form the edges of letter ‘A’ and tries to reach
other food spots in Petri dish so to expand its mass in every
direction.

The same experimental process was repeated to form the
letter ‘O’ (Fig. 18. Sixteen oat flakes were placed in the petri
dish in a circle with plasmodium on top of them. The experi-
ment follows the same stages of evolution as the previous one.
Finally, the plasmodium creates strong connection via tubes
between food sources and the letter ‘O’ is formed. Both exper-
iments similar results and there is a noise in the petri dish from
other smaller tubes or centers of mass. However, these results
are very close to the model’s output which, as mentioned
before, also does not produce clear paths between nodes to
create the alphabet in every case as explained before. As a
conclusion, it can be deduced that the experiments produce
very close to the CA model results and can be used as a proof
of concept.

FIGURE 17. Approximation of letter ‘A’ by Physarum polycephalum.
(a) The experiments start when the FSs with plasmodium are placed
inside the petri dish. (b) Pseudopodia are spread using chemotaxis to
find new sources of nutrients. (c) The mass of connected plasmodia is
reshaped and shrank and it starts creating a main protoplasmic tube.
(d) The letter ‘A’ is formed by the stronger tubes. After creating strong
connections between FSs, Physarum expands almost in every site of petri
dish to find new FSs.

FIGURE 18. Approximation of letter ‘O’ by Physarum Polycephalum.
(a) The FSs with plasmodium on top of them are placed inside the petri
dish in a circle. (b) Pseudopodia search for new FSs. (c) When the
pseudopodia reach the new FSs by following the chemo-attractants, they
start forming a main protoplasmic strand. (d) The letter ‘O’ is formed.
After creating strong connections between FSs, Physarum expands again
in every site of petri dish to find new FSs.

VIII. CONCLUSIONS
The organism Physarum Polycephalum has recently attracted
a wide range of scientists and engineers, because of its ability
to find solution of spatially distributed computational prob-
lems. In the vegetative phase of its life, the plasmodium,
as is referred, the slime mould shows non-trivial patterns
of behavior when tries to create adaptive designs. This is
achieved, because the plasmodium is capable to sensing the
local concentrations of nutritional substances. Their presence
seems to change the structure of some external places in the
membrane and this causes changes to the internal substances
of the organism.

There is no central control or any specified tissue in the
organism. This feature is very convenient for the CA, a pow-
erful parallel modeling tool. From the CA definition we know
that the local rules can be considered as an alternative form

98316 VOLUME 7, 2019



N. I. Dourvas et al.: Parallel Accelerated Virtual Physarum Lab Based on Cellular Automata Agents

of the microscopic reality, which supports the whole macro-
scopic behavior. There is no need to handle the macroscopic
behavior of the system, since the local rules ensure that this
will be produced by the interaction in the microscopic world
without any central control. Furthermore, the simplicity of the
organism’s structure promotes the use of more simple models
and CA rules.

We designed and proposed a novel model based on CA
ABMs which has the ability to reproduce the biological
experiment and create solid tubes between FSs. This model
exploits the inherent parallelism of the CA and CA agents.
We defined the local rules of the CA and the initial conditions
which in this model are very important. A small change to
the initial conditions can lead to successful or less successful
experiments. This is enhanced if we consider that the model is
based on stochastic rules and initial conditions. So, in order
to test the efficacy of our model we tried to achieve repro-
ducibility in the well known maze solving problem and trav-
elling salesman problem. Furthermore, we tested the model’s
ability to form the shapes of the English alphabet’s letters and
combined its output with real organism experiments. In order
to exploit the model’s parallelismwe implemented the tests in
GPU and FPGA environment and repeated the tests multiple
times. The results showed that the model achieved to mimic
the experiments in vitro and accelerate them. As a result, a vir-
tual lab describing the behavior of Physarum Polycephalum
was created speeding up significantly the biological paradigm
and its expected functionality when applied to various
problems.

REFERENCES
[1] T. Nakagaki, H. Yamada, and Á. Tóth, ‘‘Intelligence: Maze-solving by an

amoeboid organism,’’ Nature, vol. 407, no. 6803, p. 470, 2000.
[2] A. Adamatzky, ‘‘Slime mold solves maze in one pass, assisted by gra-

dient of chemo-attractants,’’ IEEE Trans. Nanobiosci., vol. 11, no. 2,
pp. 131–134, Jun. 2012.

[3] J. Jones, R. Mayne, and A. Adamatzky, ‘‘Representation of shape medi-
ated by environmental stimuli in physarum polycephalum and a multi-
agent model,’’ Int. J. Parallel, Emergent Distrib. Syst., vol. 32, no. 2,
pp. 166–184, 2017.

[4] N. Dourvas, M.-A. Tsompanas, G. C. Sirakoulis, and P. Tsalides, ‘‘Hard-
ware acceleration of cellular automata Physarum polycephalum model,’’
Parallel Process. Lett., vol. 25, no. 1, 2015, Art. no. 1540006.

[5] J. Jones and A. Adamatzky, ‘‘Material approximation of data smoothing
and spline curves inspired by slime mould,’’ Bioinspiration Biomimetics,
vol. 9, no. 3, 2014, Art. no. 036016.

[6] M.-A. I. Tsompanas, G. C. Sirakoulis, and A. I. Adamatzky, ‘‘Physarum
in silicon: The Greek motorways study,’’ Natural Comput., vol. 15, no. 2,
pp. 279–295, 2016.

[7] A. Adamatzky and J. Jones, ‘‘Road planning with slime mould: If
Physarum built motorways it would route M6/M74 through newcastle,’’
Int. J. Bifurcation Chaos, vol. 20, no. 10, pp. 3065–3084, 2010.

[8] V. Evangelidis, M.-A. Tsompanas, G. C. Sirakoulis, and A. Adamatzky,
‘‘Slime mould imitates development of Roman roads in the Balkans,’’ J.
Archaeological Sci., Rep., vol. 2, pp. 264–281, Jun. 2015.

[9] B. Taylor, A. Adamatzky, J. Greenman, and I. Ieropoulos, ‘‘Physarum
polycephalum: Towards a biological controller,’’ Biosystems, vol. 127,
pp. 42–46, Jan. 2015.

[10] V. S. Kalogeiton, D. P. Papadopoulos, and G. C. Sirakoulis, ‘‘Hey
physarum! Can you perform SLAM?’’ Int. J. Unconventional Comput.,
vol. 10, no. 4, pp. 271–293, 2014.

[11] J. G. Whiting, B. P. de L. Costello, and A. Adamatzky, ‘‘Transfer function
of protoplasmic tubes of Physarum polycephalum,’’ Biosystems, vol. 128,
pp. 48–51, Feb. 2015.

[12] A. Adamatzky, ‘‘Slime mould electronic oscillators,’’Microelectron. Eng.,
vol. 124, pp. 58–65, Jul. 2014.

[13] R. Mayne, M.-A. Tsompanas, G. C. Sirakoulis, and A. Adamatzky,
‘‘Towards a slime mould-FPGA interface,’’ Biomed. Eng. Lett., vol. 5,
no. 1, pp. 51–57, 2015.

[14] A. Adamatzky, Advances in Physarum Machines: Sensing and Computing
With Slime Mould, 1st ed. New York, NY, USA: Springer, 2016.

[15] J. Lee, C. Oettmeier, and H.-G. Döbereiner, ‘‘A novel growth mode
of Physarum polycephalum during starvation,’’ J. Phys. D, Appl. Phys.,
vol. 51, no. 24, 2018, Art. no. 244002.

[16] G. Bretti and R. Natalini, ‘‘Numerical approximation of nonhomogeneous
boundary conditions on networks for a hyperbolic system of chemotaxis
modeling the Physarum dynamics,’’ J. Comput. Methods Sci. Eng., vol. 18,
no. 1, pp. 85–115, 2018.

[17] K. Alim, N. Andrew, A. Pringle, and M. P. Brenner, ‘‘Mechanism of
signal propagation in Physarum polycephalum,’’ Proc. Nat. Acad. Sci.
USA, vol. 114, no. 20, pp. 5136–5141, 2017.

[18] V. Ntinas, I. Vourkas, G. C. Sirakoulis, A. Adamatzky, andA. Rubio, ‘‘Cou-
pled physarum-inspired memristor oscillators for neuron-like operations,’’
in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2018, pp. 1–5.

[19] Y. Liu, C. Gao, and Z. Zhang, ‘‘Simulating transport networks with a
Physarum foragingmodel,’’ IEEE Access, v9ol. 7, pp. 23725–23739, 2019.

[20] Z. Sun, Z. Chen, H. Hu, and J. Zheng, ‘‘Ship interaction in narrow water
channels: A two-lane cellular automata approach,’’ Phys. A, Stat. Mech.
Appl., vol. 431, pp. 46–51, Aug. 2015.

[21] Q. Chen and Y. Wang, ‘‘Cellular automata (CA) simulation of the interac-
tion of vehicle flows and pedestrian crossings on urban low-grade uncon-
trolled roads,’’ Phys. A, Stat. Mech. Appl., vol. 432, pp. 43–57, Aug. 2015.

[22] M. Zamith, R. C. P. Leal-Toledo, E. Clua, E. M. Toledo, and
G. V. P. de Magalhães, ‘‘A new stochastic cellular automata model for
traffic flow simulation with drivers’ behavior prediction,’’ J. Comput. Sci.,
vol. 9, pp. 51–56, Jul. 2015.

[23] T. Ghisu, B. Arca, G. Pellizzaro, and P. Duce, ‘‘An optimal cellular
automata algorithm for simulating wildfire spread,’’ Environ. Model.
Softw., vol. 71, pp. 1–14, Sep. 2015.

[24] D. I. Iudin, Y. D. Sergeyev, and M. Hayakawa, ‘‘Infinity computations
in cellular automaton forest-fire model,’’ Commun. Nonlinear Sci. Numer.
Simul., vol. 20, no. 3, pp. 861–870, 2015.

[25] D. Scalise and R. Schulman, ‘‘Emulating cellular automata in chem-
ical reaction–diffusion networks,’’ Natural Comput., vol. 15, no. 2,
pp. 197–214, 2016.

[26] N. I. Dourvas, G. C. Sirakoulis, and A. Adamatzky, ‘‘Cellular automaton
Belousov–Zhabotinskymodel for binary full adder,’’ Int. J. Bifurcation and
Chaos, vol. 27, no. 6, 2017, Art. no. 1750089.

[27] N. I. Dourvas and G. C. Sirakoulis, ‘‘A inhibitor sensitive, collision
based switching like transistor element using periodic traveling waves and
cellular automata,’’ Int. J. Unconventional Comput., vol. 13, nos. 4–5,
pp. 377–397, 2018.

[28] Y. Chen, N. Chen, Y. Wang, Z. Wang, and G. Feng, ‘‘Modeling pedestrian
behaviors under attracting incidents using cellular automata,’’ Phys. A,
Stat. Mech. Appl., vol. 432, pp. 287–300, Aug. 2015.

[29] R. da Silva, A. Hentz, and A. Alves, ‘‘Stochastic model of self-driven two-
species objects inspired by particular aspects of a pedestrian dynamics,’’
Phys. A, Stat. Mech. Appl., vol. 437, pp. 139–148, Nov. 2015.

[30] E. Boukas, I. Kostavelis, A. Gasteratos, and G. C. Sirakoulis, ‘‘Robot
guided crowd evacuation,’’ IEEE Trans. Automat. Sci. Eng., vol. 12, no. 2,
pp. 739–751, Apr. 2015.

[31] A. Tsiftsis, I. G. Georgoudas, and G. C. Sirakoulis, ‘‘Real data evaluation
of a crowd supervising system for stadium evacuation and its hardware
implementation,’’ IEEE Syst. J., vol. 10, no. 2, pp. 649–660, Jun. 2016.

[32] V. S. Kalogeiton, D. P. Papadopoulos, I. P. Georgilas, G. C. Sirakoulis, and
A. I. Adamatzky, ‘‘Cellular automaton model of crowd evacuation inspired
by slime mould,’’ Int. J. Gen. Syst., vol. 44, no. 3, pp. 354–391, 2015.

[33] T. Giitsidis, N. I. Dourvas, and G. C. Sirakoulis, ‘‘Parallel implemen-
tation of aircraft disembarking and emergency evacuation based on cel-
lular automata,’’ Int. J. High Perform. Comput. Appl., vol. 31, no. 2,
pp. 134–151, 2017.

[34] P. Schmiedgen and S. Wiesenhütter, and J. R. Noennig, ‘‘Transferring
functions of biological immune systems to communication processes
in disasters using cellular automata,’’ Procedia Comput. Sci., vol. 35,
pp. 1333–1341, Jan. 2014.

[35] J.-X. Liu, X.-F. Li, G. Han, N. Sun, and K. Du, ‘‘Cellular automata model
for bacterial information sharing mechanism,’’ in Proc. 10th Int. Conf.
Natural Comput. (ICNC), Aug. 2014, pp. 354–359.

VOLUME 7, 2019 98317



N. I. Dourvas et al.: Parallel Accelerated Virtual Physarum Lab Based on Cellular Automata Agents

[36] T. Shirakawa, H. Sato, and S. Ishiguro, ‘‘Construction of living cellular
automata using the Physarum plasmodium,’’ Int. J. Gen. Syst., vol. 44,
no. 3, pp. 292–304, 2015.

[37] M.-A. I. Tsompanas and G. C. Sirakoulis, ‘‘Modeling and hardware
implementation of an amoeba-like cellular automaton,’’ Bioinspiration
Biomimetics, vol. 7, no. 3, 2012, Art. no. 036013.

[38] G. Fullstone, J. Wood, M. Holcombe, and G. Battaglia, ‘‘Modelling
the transport of nanoparticles under blood flow using an agent-based
approach,’’ Sci. Rep., vol. 5, p. 10649, Jun. 2015.

[39] J. M. G. de Durana, O. Barambones, E. Kremers, and L. Varga, ‘‘Agent-
based modeling of the energy network for hybrid cars,’’ Energy Convers.
Manage., vol. 98, pp. 376–386, Jul. 2015.

[40] I. Kucukkoc and D. Z. Zhang, ‘‘Integrating ant colony and genetic algo-
rithms in the balancing and scheduling of complex assembly lines,’’ Int. J.
Adv. Manuf. Technol., vol. 82, nos. 1–4, pp. 265–285, 2016.

[41] O. A. Filatova and P. J. Miller, ‘‘An agent-based model of dialect evolution
in killer whales,’’ J. Theor. Biol., vol. 373, pp. 82–91, May 2015.

[42] C. Tischer, J.-P. Zock, M. Valkonen, G. Doekes, S. Guerra, D. Heederik,
D. Jarvis, D. Norbäck, M. Olivieri, J. Sunyer, C. Svanes, M. Täubel,
E. Thiering, G. Verlato, A. Hyvärinen, and J. Heinrich, ‘‘Predictors of
microbial agents in dust and respiratory health in the Ecrhs,’’ BMC pul-
monary Med., vol. 15, no. 1, p. 48, 2015.

[43] J. Jones, ‘‘Characteristics of pattern formation and evolution in approx-
imations of Physarum transport networks,’’ Artif. Life, vol. 16, no. 2,
pp. 127–153, Mar. 2010.

[44] J. Jones and A. Adamatzky, ‘‘Emergence of self-organized amoeboid
movement in a multi-agent approximation of Physarum polycephalum,’’
Bioinspiration Biomimetics, vol. 7, no. 1, 2012, Art. no. 016009.

[45] J. Jones and A. Adamatzky, ‘‘Computation of the travelling salesman
problem by a shrinking blob,’’ Natural Comput., vol. 13, no. 1, pp. 1–16,
Mar. 2014.

[46] J. Jones, S. Tsuda, and A. Adamatzky, ‘‘Towards Physarum robots,’’ in
Bio-Inspired Self-Organizing Robotic Systems. Berlin, Germany: Springer,
2011, pp. 215–251.

[47] J. Sweet, D. H. Richter, and D. Thain, ‘‘GPU acceleration of
Eulerian–Lagrangian particle-laden turbulent flow simulations,’’ Int. J.
Multiphase Flow, vol. 99, pp. 437–445, Feb. 2018.

[48] A. G. Lewis and H. P. Pfeiffer, ‘‘GPU-accelerated simulations of iso-
lated black holes,’’ Classical Quantum Gravity, vol. 35, no. 9, 2018,
Art. no. 095017.

[49] Y. Song, S. Yang, and J. Lei, ‘‘ParaCells: A GPU architecture for cell-
centered models in computational biology,’’ IEEE/ACM Trans. Comput.
Biol. Bioinf., vol. 16, no. 3, pp. 994–1006, May/Jun. 2018.

[50] F. E. H. Pérez, N. Mukhadiyev, X. Xu, A. Sow, B. J. Lee, R. Sankaran, and
H. G. Im, ‘‘Direct numerical simulations of reacting flows with detailed
chemistry using many-core/GPU acceleration,’’ Comput. Fluids, vol. 175,
pp. 73–79, Sep. 2018.

[51] N. I. Dourvas, G. C. Sirakoulis, and P. Tsalides, ‘‘GPU implementation of
physarum cellular automata model,’’ in Proc. AIP Conf., 2015, vol. 1648,
no. 1, Art. no. 580019.

[52] G. T. Toussaint, ‘‘The relative neighbourhood graph of a finite planar set,’’
Pattern Recognit., vol. 12, no. 4, pp. 261–268, 1980.

[53] J. Nešetřil, E. Milková, and H. Nešetřilová, ‘‘Otakar Boråvka on minimum
spanning tree problem translation of both the 1926 papers, comments,
history,’’ Discrete Math., vol. 233, nos. 1–3, pp. 3–36, 2001.

[54] B. Delaunay, ‘‘Sur la sphere vide,’’ Izv. Akad. Nauk SSSR, Otdelenie
Matematicheskii i EstestvennykaNauk, vol. 7, nos. 793–800, pp. 1–2, 1934.

[55] K. R. Gabriel and R. R. Sokal, ‘‘A new statistical approach to geographic
variation analysis,’’ Syst. Biol., vol. 18, no. 3, pp. 259–278, 1969.

[56] A. Adamatzky, ‘‘Developing proximity graphs by physarum poly-
cephalum: Does the plasmodium follow the toussaint hierarchy?’’ Parallel
Process. Lett., vol. 19, no. 1, pp. 105–127, 2009.

[57] D. Applegate, R. Bixby, V. Chvátal, andW. J. Cook. (2006).Concorde TSP
Solver. [Online]. Available: http://www. tsp. gatech. edu/concorde

NIKOLAOS I. DOURVAS received the Diploma
degree in electrical and computer engineering
and the M.Sc. degree from the Democritus Uni-
versity of Thrace (DUTh), Greece, in 2013 and
2015, respectively, where he is currently pursu-
ing the Ph.D. degree. His current interests include
cellular automata, modeling large scale systems,
parallel programming, embedded systems, and
bio-inspired algorithms.

GEORGIOS CH. SIRAKOULIS received the
Diploma degree in electrical and computer engi-
neering from the Democritus University of Thrace
(DUTh), Greece, in 1996, and the Ph.D. degree
in electrical and computer engineering from the
Democritus University of Thrace, Greece, in 2001.
In Diploma Thesis, he received a prize of dis-
tinction from the Technical Chamber of Greece
(TEE). He has been a tenure Full Professor with
the Department of Electrical and Computer Engi-

neering, Democritus University of Thrace, since 2008. His courses lab
activities are sponsored by ARM, Freescale, Xilinx, and Altera. He was also
a Founding Member and the Vice President of the IEEE Student Branch
of Thrace, from 2000 to 2001. He has served as a member for the EU
IDEAS programme. He is a member of the IEEE Computer Society, of the
Institute of Electrical Engineering (IEE), of the Association of Computing
Machinery (ACM), of the International Society for Computational Biology
(ISCB), and of the TEE. He is an Associate Editor of Microelectronics
Journal, Integration, the VLSI Journal, the Journal of Cellular Automata,
the International Journal of Unconventional Computing, the International
Journal of Parallel, Emergent and Distributed Systems, Parellel Processing
Letters, the IEEE TRANSACTIONS ON COMPUTERS, the IEEE TRANSACTIONS ON

NANOTECHNOLOGY. He is EUROPRACTICE representative for DUTh.

ANDREW I. ADAMATZKY is currently a
Professor of unconventional computing and the
Director of the Unconventional Computing Lab-
oratory, Department of Computer Science, Uni-
versity of the West of England, Bristol, U.K.
He authored seven books, mostly notable are
Reaction-Diffusion Computing,Dynamics of Crow
Minds, Physarum Machines, and edited 22 books
in computing, most notable are Collision Based
Computing, Game of Life Cellular Automata,

Memristor Networks. He also produced a series of influential artworks
published in the atlas Silence of Slime Mould. His research interests include
molecular computing, reaction-diffusion computing, collision-based com-
puting, cellular automata, slime mould computing, massive parallel com-
putation, applied mathematics, complexity, nature-inspired optimisation,
collective intelligence and robotics, bionics, computational psychology,
non-linear science, novel hardware, and future and emergent computation.
He is Founding Editor-in-Chief of the Journal of Cellular Automata and the
Journal of Unconventional Computing and an Editor-in-Chief of the Journal
of Parallel, Emergent, Distributed Systems and Parallel Processing Letters.

98318 VOLUME 7, 2019


	INTRODUCTION
	THE PROPOSED CA ABM FOR PHYSARUM'S BEHAVIOR
	GPU DESIGN OF THE CA-ABMODEL
	FPGA DESIGN OF THE CA-ABMODEL
	MAZE IMPLEMENTATION RESULTS
	CREATING PROXIMITY GRAPHS
	PHYSARUM LEARNS THE ALPHABET
	CONCLUSIONS
	REFERENCES
	Biographies
	NIKOLAOS I. DOURVAS
	GEORGIOS CH. SIRAKOULIS
	ANDREW I. ADAMATZKY


