
SPECIAL SECTION ON URBAN COMPUTING & WELL-BEING IN SMART
CITIES: SERVICES, APPLICATIONS, POLICYMAKING CONSIDERATIONS

Received May 21, 2019, accepted June 14, 2019, date of publication July 9, 2019, date of current version August 5, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2927769

Enhancement of Ant Colony Optimization
for QoS-Aware Web Service Selection
HASHEM ALAYED1,2, FADL DAHAN 3, TAHA ALFAKIH4, HASSAN MATHKOUR1,
AND MOHAMMED ARAFAH5
1Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
2Vice Deanship of Chairs (VCH), King Saud University, Riyadh 11543, Saudi Arabia
3Department of Information System, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, AlKharj 11942, Saudi Arabia
4Department of Information System, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
5Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

Corresponding author: Fadl Dahan (f.naji@psau.edu.sa)

The authors are grateful to King Saud University for funding this research project through Vice Deanship of Scientific Research Chairs
(VCH).

ABSTRACT In service-oriented computing, web services composition is the process of translating user
requirements into a workflow. This workflow comprises many tasks, each of which includes an abstract
definition for some of the user requirements. Web services can be aggregated to handle the workflow. Many
of these services are available from various providers for each task; they are referred to, in aggregate, as the
candidate list. The web service selection (WSS) problem centers on selecting the best service from these
candidates based on the quality of service (QoS) features. In this paper, we propose an enhancement to the
ant colony optimization (ACO) algorithm based on a swap concept for the QoS-aware WSS problem. The
aim of the enhancement to the ACO is to avoid the trap of local optima and reduce the search duration.
We believe that the integration of many potent solutions will help the ACO algorithm yield a better solution
and avoid stagnation. Several experiments were conducted to compare the proposed algorithm with the ACO
and flying ACO (FACO) algorithms. Two different types of experiments using 22 datasets were done with
30 independent repetitions. The first type of experiment’s results shows that the proposed algorithm is better
than ACO by 12% and FACO by 11% in terms of quality of solutions. The results in the second type of
experiment show that the proposed algorithm continuously outperforms both algorithms in terms of quality
of solutions.

INDEX TERMS Service-oriented computing (SOC), web services composition (WSC), web service (WS),
web service selection (WSS), ant colony optimization (ACO).

I. INTRODUCTION
Service-oriented computing (SOC) introduces a new
paradigm for distributed applications. This paradigm changes
the way applications are integrated, designed and deliv-
ered. Web services provide autonomous, low-cost, reusable,
and platform independent applications with straightforward
maintenance for SOC [1]. These services use the web infras-
tructure to interact [2]–[4].

Providers design web services and store the description
into a registry for the end users. Meanwhile, users have
requirements, which translate into a workflow. This work-
flow in turn contains many tasks, each of which containing
an abstract definition for some of these requirements.

The associate editor coordinating the review of this manuscript and
approving it for publication was Miltiadis Lytras.

The workflow can be handled, and the requirements satisfied,
by a single or several web services (WS). If a web service is
not sufficient, others can be integrated [5].

The web service selection (WSS) aims to select the best
combination of web services to complete the tasks tied to
the workflow. This combination is ultimately the plan that
the user should consider. The WSS problem is presented in
various areas such as cloud service composition [6], smart
city services [7]–[9].

Researchers introduced several algorithms to solve the
WSS problem with a high-quality solution and a lower
execution time. Ant colony optimization (ACO) algorithms
have been used successfully to solve many problems
such as the travelling salesman person [10], the mul-
tidimensional Knapsack problem [11], and the semantic
web [12].

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 97041

https://orcid.org/0000-0002-5975-0696


H. AlAyed et al.: Enhancement of ACO for QoS-Aware WSS

FIGURE 1. Workflow patterns.

FIGURE 2. Workflow types and decomposition.

The aim of this paper is to contribute toACOby 1) avoiding
local minima traps using a swap process 2) searching for
high quality solutions by increasing diversity 3) reducing the
computational time to find these solutions. Section II intro-
duces the problem definition. Section III discusses related
work, involving the use of ACO in the context of the qual-
ity of service-aware (QoS-aware) WSS problem. Section IV
presents the concept behind ACO. In Section V, we introduce
the proposed algorithm. Section VI reports the results of the
experiments. Finally, section VII concludes this paper.

II. THE WSS PROBLEM
The process of processing user requirements into a workflow
and identifying web services to handle this workflow is called
web service composition (WSC). With the rapid growth in
providers, several web services with similar functionality can
be used for each task. The QoS constrains represent the non-
functional features associated with these web services [13].

User requirements comprise different patterns; hence
they may be executed sequentially, concurrently, condition-
ally, or repeatedly [14], [15]. Figure 1 [15] represents these
patterns.

These can be further categorized into two forms: sim-
ple or complex. The simple workflow merely consists of
sequentially ordered tasks while the complex workflow com-
prises one or more of these patterns. Figure 2 (a) shows
a complex workflow example. Complex workflow can be
decomposed into many simple ones as shown in Figure 2 (b).
Following [14], [15], each simple workflow represents an
individual problem, which indicates that these workflows
do not need to be recomposed. In addition, a fitness value
is assigned to each one and the best fitness represents the
optimal solution to be introduced to clients.

The workflow representation consists of a set of tasks (n)
containing the abstract definitions of the requirements in a
specific order. The retrieval process conducts a search in

97042 VOLUME 7, 2019



H. AlAyed et al.: Enhancement of ACO for QoS-Aware WSS

FIGURE 3. WSS problem representation.

a service repository for the web services that are con-
sistent with these definitions. As a result, several web
services (m) from various providers can be retrieved for
each task, and these services are referred to as the candi-
date list. Figure 3 shows the directed graph representation
of this problem where the number of available solutions
equals mn [16], [17]. In Figure 3, Ti refers to the task i and
i = {1, 2, 3, . . . , n} in the workflow , n is the number of tasks,
cwsi,j refers to the candidates web services (CWS) for task Ti,
j = {1, 2, 3, . . . ,m}, and m is the number of web services.

Figure 3 shows that the solution must contain a combina-
tion of web services for all tasks, which forms an executable
plan. The ultimate plan selection is output to the users to
meet their requirements. Any algorithm used should compare
the QoS values for each executable plan and select the best
one. There are many QoS for the WSS problem such as cost,
response time, availability, and reliability. The calculation of
these attributes is differentiated as shown in TABLE 1. In this
Table, n is the number of tasks and j is the WS selected for
task i.

In this work, we use four QoS attributes with different
objective values similarly to [18]. The objective for the cost
and response time is to find a minimum, conversely a maxi-
mum will be sought concerning availability and reliability.

The WSS problem must now consider the four QoS
attributes to select the best execution plan for users, formu-
lating the problem as a multi-objective multi-dimensional
combinatorial optimization. In addition, it is proven that it
is an NP-hard problem [19], [20].

III. RELATED WORK
QoS-aware WSS is a multi-objective multi-dimensional
problem which consists of selecting WS between a set of
candidates based on QoS attributes. The search space of the

TABLE 1. Some aggregation models for QoS values calculation.

problem increases exponentially because there are several
web services available from various providers for each task.
Many researchers proposed solutions to this problem using
various algorithms. In this section, we review these studies,
as directly related to this work.

A dynamic ant colony optimization algorithm (DACO) is
introduced in [21]. The problem is handled by creating a com-
position graph, and then DACO looks for the shortest path.
Qiqing et al. [22] generated a QoS model for the problem,
and then handled it as the optimization of a multi-objective by
using a multi-objective ant colony optimization (MOACO).

Chaos factor is used to solve the problem with the ant-
based algorithm introduced in [23]. The new algorithm
is called a multi-objective chaos ant colony optimization
(MOCACO). The justification for the use of ACO with such
problems was introduced in [24]. The impact of the param-
eters on the improvement in ACO performance for the web
services composition problem was introduced in [25]. The
Pareto optimality is used to address the problem in [26].
Zhang et al. [27] proposed a method to decompose complex

VOLUME 7, 2019 97043



H. AlAyed et al.: Enhancement of ACO for QoS-Aware WSS

composition workflows, and then used the ACO algorithm.
Zheng et al. [28] proposed a graph representation for web ser-
vices compositionwhere the ants search for parallel execution
paths. Dahan et al. [16] introduced an enhancement to ACO
where the best ant in each iteration becomes a flying ant. The
enhancement was called the flying ant colony optimization
(FACO). The flying ant shared its amount of pheromone with
its neighbors to increase the chance of being visited in feature
iterations. Qi et al. [29] proposed a new method that uses the
skyline to delete redundant web services, For the remaining
web services, the ACO is used to select the best web services
to meet user requirements.

A genetic algorithm with an ant-inspired algorithm is used
in [30]. Yang et al. [31] proposed a dynamic ant-colony
genetic hybrid algorithm (DAAGA) for cloud service com-
position optimization. Mobile agents used to enhance the
search mechanism of ACS are proposed in [32]. The trust
degree is used in [33], leading to an adaptive ant colony
optimization (AACO). A clustering ant colony selection
(CACS) is introduced in [34]. Le and Nguyen [35] proposed a
novel max-min ant system (MMAS) to search for a solution.
Shen and Yuan [36] proposed a gathering mechanism for
QoS information using peers from the candidate web ser-
vices, and then used ACS.

Many researchers addressed the semantic WS composition
problem, which centers on discovering and retrieving web
services using analogy and then ant-inspired algorithms to
find a satisfactory solution [37]–[43].

Most of the works reviewed above aim to solely enhance
the exploitation process of the ACO [44], except the
FACO algorithm, which focuses on enhancing exploration
and exploitation. In fact, exploration aims at helping ants
to reach the best local solutions while exploitation aims at
helping the algorithm to reach global optima [45]. In this
work we aim to improve both exploration and exploitation
strategies to help ACO to avoid premature stagnation using
swapping. The swapping consists of producing two new solu-
tions (exploration), but with these solutions being exploited
through the features of the two non-randomly generated best
solutions (exploitation)

IV. ACO ALGORITHM
It is a nature-inspired meta-heuristic algorithm similar to
bee colony optimization, particle swarm optimization. . . etc.
Meta-heuristic algorithms consist of finding the best pos-
sible solution within the lowest execution time for a given
problem. It simulates real ants’ behavior while foraging.
In practice, ants search for food in a manner that guarantees
finding the nearest food source. They leave from the nest
in a random manner, and they deposit a chemical called
pheromone in their paths. The pheromone represents the
communication mechanism between them as it incites other
ants to follow them. The nearest food source would logi-
cally be tied to more pheromones compared with the farthest
one. The ACO algorithm flowchart [10], [46], [47] is shown
in Figure 4 [48].

FIGURE 4. Flowchart of ACO algorithm.

In ACO algorithms, all ants are initialized randomly and
then search for a potential solution. In addition, the amount
of pheromone is initialized to a constant amount. In each iter-
ation, each ant constructs its solution by moving on unvisited
nodes until reaching the goal based on nodes distance τ and
last experience η (pheromone). To simulate this process in the
ACO algorithm, ants use the following equation.

Pkij (t) =

[
τij
]α [

ηij
]β∑

l∈N k
i
[τil]α [ηil]β

if j ∈ N k
i (1)

where α and β are the coefficient parameters used to deter-
mine the pheromone and local heuristic importance. N k

i is
the list of unvisited nodes from node i for ant k .

Equation 1 uses α and β to balance last experience
(exploitation) based on pheromone and random search
(exploration) based on distance, respectively. The amount of
pheromone is updated using the evaporation rate ρ while ants
move from one node to another using equation 2. This update
is called the local pheromone update.

τij (t+ 1)= (1− ρ)τij (t)+ρτ0 (2)

where τ0 is the initial pheromone value. ρ is the evaporation
rate.

At the end of each iteration, the ants assess the quality
of the solution they just constructed. Thus, the ACO uses a
greedy selection method to retain only the best ant, the one
that obtained the best solution. This ant then has the ability to
update the pheromone trails on its path. This process is called
a global pheromone update and is described in equation 3.

τij (t + 1)= (1−ρ)τij (t)+ ρ1τ ij (t) (3)

97044 VOLUME 7, 2019



H. AlAyed et al.: Enhancement of ACO for QoS-Aware WSS

In which:

1τ ij (t) =

{
1/Lgb (t) if arc (i, j) ∈ the best tour

τij otherwise
(4)

where Lgb(t) is the tour length for the globally best tour.
The ACO algorithm suffers from the stagnation prob-

lem [49] because pheromones accumulate on the most visited
paths and the probability of unvisited paths forming decreases
constantly.

In this work, we improve the ACO algorithm to enhance
diversity and avoid stagnation using the swap concept for the
solutions selected.

V. PROPOSED ALGORITHM
ACO is an ant-inspired algorithm introduced for combina-
torial problems. The ants in a QoS-aware selection problem
must start from any WS in the first task and then move on
to the next task, until they get any WS in the last task. The
selection is based on the QoS attributes and the amount of
pheromone.

In this work, we introduce two different enhancements
to the ACO algorithm focusing on performance and on
overcoming the stagnation problem. First, we introduce a
swapping process that lets ACO remember two solutions
temporarily and then, in a final step, return the best one only.
This process aims to swap a specific number of web services
in the two best solutions found so far to generate two new
solutions. The selection of the web services to be swapped is
performed randomly. Then, the fitness values of these new
solutions are calculated and compared to the best solution
remembered by the algorithm. The incorporation of the two
best solutions will help the ACO algorithm to get a better
solution and avoid the stagnation problem as each one of
these solutions can contribute parts that can produce excellent
solutions if they are merged.

As a second enhancement, we adopted a multi-pheromone
version of the ACO algorithm where each QoS constraint
(cost, response time, availability, and reliability) is tied to
a pheromone value of its own. This improves the chances
for ants to consider more options in the solution space
(i.e., increases the chance for exploration).

In standard ACO, the pheromone is represented by a
single value. In this work, we represent pheromones using
multiple values, according to the number of QoS attributes
as [τ c(i,x)(i+1,x,), τ

RT
(i,x)(i+1,x,), τ

A
(i,x)(i+1,x,), τ

R
(i,x)(i+1,x,)] where

τ c(i,x)(i+1,x,) is the amount of pheromone to move from WS
x at task i to WS x ′ at task i+1 for the cost (C) feature,
and RT is for response time, A is for availability and R for
reliability. The idea here is to consider the importance of each
QoS feature and to become an effective guide while searching
for a better solution.

The transition process is the process of selecting the next
node to move on while building the tour. For basic ACO this
process is shown in equation 1. In the proposed algorithm, this
equation changes based on the new pheromone representation

for ant k at time t, as follows:

Pk(i,x)(i+1,x,) (t) =

[
τ(i,x)(i+1,x,)

]α [
η(i,x)(i+1,x,)

]β∑
l∈m

[
τ(i,x)(i+1,l)

]α [
η(i,x)(i+1,l)

]β (5)

where

τ(i,x)(i+1,x,) = τ
A
(i,x)(i+1,x,) + τ

R
(i,x)(i+1,x,)∓τ

c
(i,x)(i+1,x,)

+ τRT(i,x)(i+1,x,)

η(i,x)(i+1,x,) = (ηA(i,x)(i+1,x,) + η
R
(i,x)(i+1,x,))− (ηc(i,x)(i+1,x,)

+ ηRT(i,x)(i+1,x,)).

The new formula helps ants to consider the value of the
QoS features individually. This technique allows ants to
explore the search space efficiently compared to the single-
pheromone aggregation of these features.

When an ant k moves from each task to the next it
updates the pheromone locally on its path. In the pro-
posed algorithm, the updating changes to consider the new
pheromone distribution based on the QoS features using
equations 6, 7, 8 and 9.

Equation 6 shows the local pheromone update for the cost
feature.

τC(i,x)(i+1,x,) (t + 1) = (1− ρ)τC(i,x)(i+1,x,) (t)+ ρτ
C
0 (6)

The local pheromone update for the response time feature
is shown in Equation 7.

τRT(i,x)(i+1,x,) (t + 1) = (1− ρ)τRT(i,x)(i+1,x,) (t)+ ρτ
RT
0 (7)

Equation 8 shows the local pheromone update for the avail-
ability feature.

τA(i,x)(i+1,x,) (t + 1) = (1− ρ)τA(i,x)(i+1,x,) (t)+ ρτ
A
0 (8)

Equation 9 shows the local pheromone update for the
reliability feature.

τR(i,x)(i+1,x,) (t + 1) = (1− ρ)τR(i,x)(i+1,x,) (t)+ ρτ
R
0 (9)

At the end of each iteration, all ants complete the con-
struction of the possible solutions and then calculate the
fitness of their solutions. Each possible solution contains n
concrete web services adhering to the abstract definition of
the workflow. The calculation formula [16] for the fitness of
the ants’ solution is:

F = (
n∏

i=1

Ak
(i,x)(i+1,x,) +

n∏
i=1

Rk(i,x)(i+1,x,)

−

n∑
i=1

Ck(i,x)(i+1,x,) −
∑n

i=1
RTk(i,x)(i+1,x,)) (10)

where n is the number of tasks. K refers to the ants’ number
with 1≤ k ≤ S and S is the swarm size.
The ACO memorizes the best solution at each iteration

and allows the best ant to update the amount of pheromone
on its path. Therefore, the global pheromone update for-
mula also changes to consider QoS features, as does the
local pheromone update. Equations 11, 12, 13 and 14 are

VOLUME 7, 2019 97045



H. AlAyed et al.: Enhancement of ACO for QoS-Aware WSS

FIGURE 5. Swapping process.

used to update the amount of pheromone globally for each
QoS feature.

Equation 11 shows the global pheromone update for the
cost feature.

τC(i,x)(i+1,x,) (t + 1) = (1− ρ)τC(i,x)(i+1,x,) (t)

+ ρ1τC(i,x)(i+1,x,) (t) (11)

where:

1τC(i,x)(i+1,x,)

=


1

n∑
i=1

Cbest(i,x)(i+1,x,)

if WSx and WSx,∈ best path

0 otherwise

Equation 12 shows the global pheromone update for the
response time feature.

τRT(i,x)(i+1,x,) (t + 1)=(1−ρ)τRT(i,x)(i+1,x,) (t)+ρ1τ
RT
(i,x)(i+1,x,) (t)

(12)

where:

1τRT(i,x)(i+1,x,)

=


1∑n

i=1 RT
best
(i,x)(i+1,x,)

if WSx and WSx, ∈ best path

0 otherwise

Equation 13 shows the global pheromone update for the
availability feature.

τA(i,x)(i+1,x,) (t+1)= (1−ρ)τ
A
(i,x)(i+1,x,) (t)+ρ1τ

A
(i,x)(i+1,x,) (t)

(13)

where:

1τA(i,x)(i+1,x,)

=


n∏

i=1

Abest
(i,x)(i+1,x,) if WSx and WSx, ∈ best path

0 otherwise

Equation 14 shows the global pheromone update for the
reliability feature.

τR(i,x)(i+1,x,) (t+1)= (1−ρ)τ
R
(i,x)(i+1,x,) (t)+ρ1τ

R
(i,x)(i+1,x,) (t)

(14)

where:

1τR(i,x)(i+1,x,)

=


n∏

i=1

Rbest(i,x)(i+1,x,) if WSx and WSx, ∈ best path

0 otherwise

In the proposed algorithm, we postpone the global
pheromone update to the end of the swapping process and
select the two best ants for the swapping process; this process
aims to merge the current two solutions to produce two new
solutions. Figure 5 presents the swapping process used in
the proposed algorithm. In Figure 5, the proposed algorithm
remembers the two best solutions for swapping. These two
solutions are the two best solutions discovered globally. The
number R of web services to be swapped is generated ran-
domly within [1,n]where n is the number of tasks. The selec-
tion of web services to be swapped is performed randomly.
The swapping involves the web services in the first solution
and the web services in the second solution.
The fitness of the solutions is calculated and compared

with that of the prevailing best solution. The best of the
two is kept and then the related global pheromone update is
started. The algorithm is described in detail in Figure 6. The
proposed algorithm only needs one pass for a selected task in
the swapping process.

A. COMPLEXITY ANALYSIS
This sub-section presents the complexity analysis of the pro-
posed algorithm. There are five processes in the proposed
algorithm that should be considered for the time complex-
ity analysis. These processes are the initialization, the ants
search, the local pheromone update, the fitness calculation,
and the swapping process.

97046 VOLUME 7, 2019



H. AlAyed et al.: Enhancement of ACO for QoS-Aware WSS

FIGURE 6. Proposed method.

The initialization time is O(S∗n) where S is the number
of ants and n is the number of tasks. The ants’ searching
time complexity is O(Z∗S∗n∗D) where Z is the number of
iterations and D is the number of QoS attributes. The local
pheromone update time complexity is O(n∗D). The fitness
calculation time complexity is O(n∗D). The time complexity
of the swapping process is O(R) where R is the number
of neighbors. The overall time complexity of the proposed
algorithm is O(S∗n) + O(Z∗S∗n∗D) (O(n∗D) + O(n∗D) +
O(R)) = O(Z∗S∗n∗D).O(n∗D).

VI. EXPERIMENTAL RESULTS
We conducted an experiment to compare the proposed
algorithm with ACO and FACO. We proceeded to the
implementation using MATLAB 8.4 on an Intel R©i7 and
Windows 7 with two different datasets as in FACO. As far
as we know, there are no datasets for the QoS-aware WSC
problem that have the four QoS attributes that were used in
these experiments. These datasets were generated artificially

TABLE 2. Number of tasks and CWS of each dataset.

with different tasks number. For each task, a set of random
QoS values were assigned to its candidates. The ranges of
these values were chosen as similar to the ranges used in [16]
as follows: C and RT were between 1 and 50 while A and R
were between 0 and 1. TABLE 2 shows the number of tasks
for each dataset with the number of candidates.

We conducted additional experiments using various artifi-
cial datasets. These were generated similarly to the datasets
in [16]. The total number of new datasets was 20, with 10 of
them having a fixed number of tasks and different num-
bers of candidate web services for each dataset in the range
[100–1000]. The remaining 10 datasets had a fixed number

VOLUME 7, 2019 97047



H. AlAyed et al.: Enhancement of ACO for QoS-Aware WSS

TABLE 3. Number of tasks and WSs for the new artificial datasets.

TABLE 4. Experiments’ parameter set.

of candidate web services and variable numbers of tasks for
each dataset in the range [10–100]. TABLE 3 shows the name
of each dataset and the distribution of the tasks and candidates
web services among them.

For clarity, we used the same control parameters as
in FACO. These values are selected experimentally for the
best performance of FACO [16]. There are two methods
for parameters selection: first, based on the experiments,
and second, based on automatic parameters tuning. In this
work, we used the same parameters as in FACO, which were
selected based on experiments. TABLE 4 shows the values
of common control parameters used in standard ACO, FACO
and proposed method such as α,β,ρ,τ0, the population size S,
and the iteration number Z .

For both algorithms, we conducted 30 independent repeti-
tions on each dataset. Then, the performance of the algorithm
was evaluated in terms of average of best solution quality
(AVG), standard deviation (StD), and average of running time
(Time). Solution quality means the quality of the best solution
in each execution while running time is the time taken to find
the best solution in seconds.

The values of AVG and StD are normalized and shown in
percentage. The normalized formula is [50]

norm
(
algg

)
=

Results(algg)∑
Results_all_algorithms

× 100% (15)

where g is ACO, FACO, MACO, MFACO, or the pro-
posed algorithm. The formula works as follows: numera-
tor Results(algg) contains the results of specific algorithm
(i.e. ACO, FACO, MACO, MFACO, or the proposed algo-
rithm) in terms of AVG or StD divided by the denomina-
tor

∑
Results_all_algorithms which contains the sum of all

results in terms of AVG or StD getting by all algorithms. The
division result is multiplied by 100% to get the percentage of
results.

FIGURE 7. Experimental results for the proposed algorithm compared to
ACO and FACO in terms of solutions quality and standard deviation on
dataset1 and dataset2.

FIGURE 8. Results of the execution time for the proposed algorithm
compared to ACO and FACO on dataset1 and dataset2.

Figure 7 presents the results of ACO, FACO and the pro-
posed algorithm on dataset1 and dataset2. The results were
normalized to be presented using percentages. The results
reveal that the proposed algorithm outperforms ACO in terms
of solutions quality by 12%. In addition, the proposed algo-
rithm outperforms FACO in terms of quality of solutions
by 11%. The figure also shows that the proposed algorithm
has a lower standard deviation than ACO and FACO.

Figure 8 shows the average execution time for dataset1 and
dataset2; the results indicate that the proposed algorithm is
slightly slower than ACO by 0.02 seconds, but faster than
FACO by 0.22 seconds.

The results reveal that the proposed algorithm increases
diversity so that it reaches a better solution within a short time
compared with ACO and FACO.

The proposed algorithm usesmulti-pheromone distribution
to support the searching process whereas ACO and FACO
use a single pheromone value. Thus, we conducted other
experiments where we added a multi-pheromone distribution
for both ACO and FACO, yielding MACO and MFACO
respectively. TheMACO algorithm is the proposed algorithm

97048 VOLUME 7, 2019



H. AlAyed et al.: Enhancement of ACO for QoS-Aware WSS

FIGURE 9. Experimental results for proposed algorithm compared to
MACO and MFACO in terms of solutions quality and standard deviation
on dataset1 and dataset2.

FIGURE 10. Results of execution time for the proposed algorithm
compared to MACO and MFACO on dataset1 and dataset2.

with independent pheromone updates and without a swap
operation.

Figure 9 shows the results for ACO, FACO with a
multi-pheromone distribution and the proposed algorithm
on dataset1, dataset2. The results reveal that the proposed
algorithm outperforms both MACO and MFACO in terms of
solutions quality by 14% and 12%, and in terms of standard
deviation by 11% and 2% respectively.

Figure 10 shows the average of execution time for the same
experiments in Figure 9. The results indicate that the pro-
posed algorithm is finding better results faster than MACO
by 0.59 seconds and is faster than MFACO by 0.88 seconds.

The results indicate that the multi-pheromone approach
increases the proposed algorithm performance, leading to a
better solution and decreases the execution time as well while
it decreases the MFACO execution and increases the time
for MACO.

For the additional 20 datasets, the proposed algorithm
was compared with MACO and MFACO. Figure 11 and
Figure 12 present the results for the datasets where the num-
ber of tasks is fixed in terms of solutions quality and execution
time respectively.Figure 9 Figure 13 andFigure 14 show the

FIGURE 11. The performance of all algorithms when the number of tasks
is fixed.

FIGURE 12. The execution time of all algorithms where the number of
tasks are fixed.

FIGURE 13. The performance of all algorithms where the number of WSs
is fixed.

results for the datasets where the number of candidates web
services are fixed in terms of solution quality and execution
time respectively.

The results in Figure 11 indicates that the proposed algo-
rithm outperforms the MACO and MFACO algorithms con-
sistently in terms of performance quality.

VOLUME 7, 2019 97049



H. AlAyed et al.: Enhancement of ACO for QoS-Aware WSS

FIGURE 14. The execution time of all algorithms where the number of
WSs is fixed.

TABLE 5. Friedman Test results on 22 datasets.

The results in Figure 12 shows that the proposed algorithm
and MFACO are quite similar and both better than MACO.
This can be credited to the multi-pheromone distribution,
which enhances the MFACO to reduce execution time.

The results in Figure 13 shows that the proposed algorithm
outperforms MACO and MFACO consistently in terms of
performance quality as well except when the number of tasks
equals 80, in which case the MFACO is better.

The results in Figure 14 shows that the proposed algorithm
and MFACO are close in terms of execution time and both
are better than MACO. These experiments also show that
the multi-pheromone approach for ACO and FACO is more
effective than using a single pheromone value.

The experiments all prove the applicability, robustness, and
stability of the new enhancement on various types of datasets.

The Friedman test was used to test whether the results
were statistically significant for the 30 independent runs in
each one of the 22 datasets between the proposed algo-
rithm and MACO and MFACO. TABLE 5 shows the Fried-
man test results, which indicate that the proposed algorithm
results are statistically significant for the 30 independent runs
in 19 datasets out of 22 (Dataset 3, Dataset 4, Dataset 6,
Dataset 7, Dataset 8, Dataset 9, Dataset 10, Dataset 11,
Dataset 12, Dataset 13, Dataset 14, Dataset 15, Dataset 16,
Dataset 17, Dataset 18, Dataset19, Dataset 20, Dataset 21,
Dataset 22).

VII. CONCLUSION
In this paper, we propose a new ant-inspired algorithm to
improve the performance of ants based on the swap concept
for a QoS-aware WSS problem. The stack in local minima is
themain problem of a basicACO. The proposed enhancement
aims to leverage the best solutions found in each iteration
under the assumption that each one of these solutions has a
valuable part. We believe that merging these best solutions
helps the ACO algorithm to find a better solution and avoid
the stagnation problem.

Several experiments were conducted, demonstrating that
the proposed algorithm outperforms standard ACO and
FACO in terms of average solution quality and execution time
on 22 different datasets.

REFERENCES
[1] T. Erl, SOA Principles of Service Design, vol. 1. Upper Saddle River, NJ,

USA: Prentice-Hall, 2008.
[2] M. Papazoglou, Web Services: Principles and Technology. London, U.K.:

Pearson, 2008.
[3] G. Alonso, F. Casati, H. Kuno, and V. Machiraju,Web Services: Concepts,

Architectures and Applications. Berlin, Germany: Springer, 2004.
[4] G. Kang, J. Liu, M. Tang, and Y. Xu, ‘‘An effective dynamic Web ser-

vice selection strategy with global optimal QoS based on particle swarm
optimization algorithm,’’ in Proc. IEEE 26th Int. Parallel Distrib. Process.
Symp. Workshops PhD Forum, May 2012, pp. 2280–2285.

[5] P. Rodriguez-Mier, M. Mucientes, J. C. Vidal, and M. Lama, ‘‘An optimal
and complete algorithm for automatic Web service composition,’’ Int.
J. Web Services Res., vol. 9, no. 2, pp. 1–20, 2012.

[6] S. K. Gavvala, C. Jatoth, G. R. Gangadharan, and R. Buyya, ‘‘QoS-aware
cloud service composition using eagle strategy,’’ Future Gener. Comput.
Syst., vol. 90, pp. 273–290, Jan. 2019.

[7] A. Visvizi, M. D. Lytras, E. Damiani, and H. Mathkour, ‘‘Policy making
for smart cities: Innovation and social inclusive economic growth for
sustainability,’’ J. Sci. Technol. Policy Manage., vol. 9, no. 2, pp. 126–133,
2018.

[8] A. Visvizi and M. D. Lytras, ‘‘Rescaling and refocusing smart cities
research: From mega cities to smart villages,’’ J. Sci. Technol. Policy
Manage., vol. 9, no. 2, pp. 134–145, 2018.

[9] M. D. Lytras and A. Visvizi, ‘‘Who uses smart city services and what to
make of it: Toward interdisciplinary smart cities research,’’ Sustainability,
vol. 10, no. 6, p. 1998, 2018.

[10] M. Dorigo and L. M. Gambardella, ‘‘Ant colony system: A cooperative
learning approach to the traveling salesman problem,’’ IEEE Trans. Evol.
Comput., vol. 1, no. 1, pp. 53–66, Apr. 1997.

[11] M. Kong, P. Tian, and Y. Kao, ‘‘A new ant colony optimization algorithm
for the multidimensional knapsack problem,’’ Comput. Oper. Res., vol. 35,
no. 8, pp. 2672–2683, 2008.

[12] V. Viswanathan and I. Krishnamurthi, ‘‘Finding relevant semantic asso-
ciation paths through user-specific intermediate entities,’’ Hum.-Centric
Comput. Inf. Sci., vol. 2, p. 9, Mar. 2012.

[13] D. A. Menascé, ‘‘Composing Web services: A QoS view,’’ IEEE Trans.
Internet Comput., vol. 8, no. 6, pp. 88–90, Nov./Dec. 2004.

[14] T. Yu and K.-J. Lin, ‘‘Service selection algorithms for Web services with
end-to-end QoS constraints,’’ Inf. Syst. E-Bus. Manage., vol. 3, no. 2,
pp. 103–126, 2005.

[15] T. Yu, Y. Zhang, and K. J. Lin, ‘‘Efficient algorithms for Web services
selection with end-to-end QoS constraints,’’ ACM Trans. Web, vol. 1, no. 1,
p. 6, May 2007.

[16] F. Dahan, K. E. Hindi, and A. Ghoneim, ‘‘An adapted ant-inspired algo-
rithm for enhancing Web service composition,’’ Int. J. Semantic Web Inf.
Syst., vol. 13, no. 4, pp. 181–197, 2017.

[17] F. Dahan, K. E. Hindi, and A. Ghoneim, ‘‘Enhanced artificial bee colony
algorithm for QoS-aware Web service selection problem,’’ Computing,
vol. 99, no. 5, pp. 507–517, 2017.

[18] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, ‘‘QoS-aware middleware for Web services composition,’’ IEEE
Trans. Softw. Eng., vol. 30, no. 5, pp. 311–327, May 2004.

97050 VOLUME 7, 2019



H. AlAyed et al.: Enhancement of ACO for QoS-Aware WSS

[19] N. Ben Mabrouk, S. Beauche, E. Kuznetsova, N. Georgantas, and
V. Issarny, ‘‘QoS-aware service composition in dynamic service oriented
environments,’’ in Proc. Int. Middleware Conf., Springfield, IL, USA,
vol. 5896, Dec. 2009, pp. 123–142.

[20] S. Liu, Y. Liu, N. Jing, G. Tang, and Y. Tang, ‘‘A dynamic Web service
selection strategy with QoS global optimization based on multi-objective
genetic algorithm,’’ in Proc. Int. Conf. Grid Cooperat. Comput., 2005,
pp. 84–89.

[21] Y.-M. Xia, J.-L. Chen, and X.-W.Meng, ‘‘On the dynamic ant colony algo-
rithm optimization based on multi-pheromones,’’ in Proc. 7th IEEE/ACIS
Int. Conf. Comput. Inf. Sci. (ICIS), May 2008, pp. 630–635.

[22] F. Qiqing, P. Xiaoming, L. Qinghua, and H. Yahui, ‘‘A global QoS opti-
mizing Web services selection algorithm based on MOACO for dynamic
Web service composition,’’ in Proc. Int. Forum Inf. Technol. Appl. (IFITA),
May 2009, pp. 37–42.

[23] W. Li and H. Yan-Xiang, ‘‘A Web service composition algorithm based on
global QoS optimizing with MOCACO,’’ in Algorithms and Architectures
for Parallel Processing. Berlin, Germany: Springer, 2010, pp. 218–224.

[24] R. Wang, L. Ma, and Y. Chen, ‘‘The research of Web service selection
based on the ant colony algorithm,’’ inProc. Int. Conf. Artif. Intell. Comput.
Intell. (AICI), Oct. 2010, pp. 551–555.

[25] R. Wang, L. Ma, and Y. Chen, ‘‘The application of ant colony algorithm
in Web service selection,’’ in Proc. Int. Conf. Comput. Intell. Softw. Eng.,
Dec. 2010, pp. 1–4.

[26] Z. Shanshan, W. Lei, M. Lin, and W. Zepeng, ‘‘An improved ant colony
optimization algorithm for QoS-aware dynamic Web service composi-
tion,’’ in Proc. Int. Conf. Ind. Control Electron. Eng. (ICICEE), Aug. 2012,
pp. 1998–2001.

[27] W. Zhang, C. K. Chang, T. Feng, and H.-Y. Jiang, ‘‘QoS-based dynamic
Web service composition with ant colony optimization,’’ in Proc. COMP-
SAC, Jul. 2010, pp. 493–502.

[28] X. Zheng, J.-Z. Luo, and A.-B. Song, ‘‘Ant colony system based algorithm
for QoS-aware Web service selection,’’ in Proc. GSEM, 2007, pp. 39–50.

[29] L. Qi, W. Yao, and J. Chang, ‘‘A large scale transactional service selection
approach based on skyline and ant colony optimization algorithm,’’ in
Proc. IEEE/IFIP Netw. Oper. Manage. Symp. (NOMS), Apr. 2018, pp. 1–7.

[30] Z. Yang, C. Shang, Q. Liu, and C. Zhao, ‘‘A dynamic Web services
composition algorithm based on the combination of ant colony algorithm
and genetic algorithm,’’ J. Comput. Inf. Syst., vol. 6, no. 8, pp. 2617–2622,
2010.

[31] Y. Yang, B. Yang, S. Wang, F. Liu, Y. Wang, and X. Shu, ‘‘A dynamic ant-
colony genetic algorithm for cloud service composition optimization,’’ Int.
J. Adv. Manuf. Technol., vol. 102, nos. 1–4, pp. 355–368, 2019.

[32] S. R. Dhore and M. U. Kharat, ‘‘QoS based Web services composition
using ant colony optimization: Mobile agent approach,’’ Int. J. Adv. Res.
Comput. Commun. Eng., vol. 1, no. 7, pp. 519–527, 2012.

[33] D. Wang, H. Huang, and C. Xie, ‘‘A novel adaptive Web service selection
algorithm based on ant colony optimization for dynamic Web service
composition,’’ in Algorithms and Architectures for Parallel Processing.
Cham, Switzerland: Springer, 2014, pp. 391–399.

[34] C. Zhang, H. Yin, and B. Zhang, ‘‘A novel ant colony optimization algo-
rithm for large scale QoS-based service selection problem,’’ Discrete Dyn.
Nature Soc., vol. 2013, Jun. 2013, Art. no. 815193.

[35] D.-N. Le and G. N. Nguyen, ‘‘A new ant-based approach for optimal
service selection with E2E QoS constraints,’’ in Intelligence in the Era of
Big Data. Berlin, Germany: Springer, 2015, pp. 98–109.

[36] J. Shen and S. Yuan, ‘‘QoS-aware peer services selection using ant colony
optimisation,’’ in Proc. Bus. Inf. Syst. Workshops (BIS) (Lecture Notes in
Business Information Processing), vol. 37, W. Abramowicz and D. Flejter,
Eds. Berlin, Germany: Springer, 2009, pp. 362–374.

[37] T. Ghafarian and M. Kahani, ‘‘Semantic Web service composition based
on ant colony optimization method,’’ J. Math., to be published.

[38] V. R. Chifu, C. B. Pop, I. Salomie, M. Dinsoreanu, T. David, and
V. Acretoaie, ‘‘Ant-based methods for semanticWeb service discovery and
composition,’’Ubiquitous Comput. Commun. J., vol. 6, no. 1, pp. 631–641,
2011.

[39] V. R. Chifu, C. B. Pop, I. Salomie, M. Dinsoreanu, V. Acretoaie, and
T. David, ‘‘An ant-inspired approach for semanticWeb service clustering,’’
in Proc. 9th RoEduNet IEEE Int. Conf., Jun. 2010, pp. 145–150.

[40] C. B. Pop, V. R. Chifu, I. Salomie, M. Dinsoreanu, T. David, and
V. Acretoaie, ‘‘Ant-inspired technique for automatic Web service compo-
sition and selection,’’ in Proc. SYNASC, Sep. 2010, pp. 449–455.

[41] C. B. Pop, V. R. Chifu, I. Salomie, M. Dinsoreanu, T. David, and
V. Acretoaie, ‘‘Ant-inspired framework for automatic Web service com-
position,’’ Scalable Comput., Pract. Exper., vol. 12, no. 1, pp. 137–152,
2011.

[42] K. Yan, G. Xue, and S.-W. Yao, ‘‘An optimization ant colony algorithm
for composition of semantic Web services,’’ in Proc. Asia–Pacific Conf.
Comput. Intell. Ind. Appl. (PACIIA), Nov. 2009, pp. 262–265.

[43] Y. Xia, C. Liu, Z. Yang, and J. Xiu, ‘‘The ant colony optimization algorithm
for Web services composition on preference ontology,’’ in Proc. Int. Conf.
Adv. Intell. Awareness Internet (AIAI), Oct. 2011, pp. 193–198.

[44] T. Stützle and H. H. Hoos, ‘‘MAX-MIN ant system,’’ Future Generat.
Comput. Syst., vol. 16, no. 8, pp. 889–914, Jun. 2000.

[45] P. Civicioglu and E. Besdok, ‘‘A conceptual comparison of the
Cuckoo-search, particle swarm optimization, differential evolution and
artificial bee colony algorithms,’’ Artif. Intell. Rev., vol. 39, no. 4,
pp. 315–346, Apr. 2013.

[46] M. Dorigo and L. M. Gambardella, ‘‘Ant colonies for the travelling sales-
man problem,’’ Biosystems, vol. 43, no. 2, pp. 73–81, 1997.

[47] L. M. Gambardella and M. Dorigo, ‘‘Solving symmetric and asymmetric
TSPs by ant colonies,’’ in Proc. IEEE Int. Conf. Evol. Comput., May 1996,
pp. 622–627.

[48] O. Deepa and A. Senthilkumar, ‘‘Swarm intelligence from natural to arti-
ficial systems: Ant colony optimization,’’ in Proc. Netw. (GRAPH-HOC),
vol. 8, 2016, pp. 9–17.

[49] A. Aljanaby, ‘‘An experimental study of the search stagnation in ants
algorithms,’’ Int. J. Comput. Appl., vol. 148, 2016, pp. 1–4.

[50] F. Dahan, H. Mathkour, and M. Arafah, ‘‘Two-step artificial bee colony
algorithm enhancement for QoS-aware Web service selection problem,’’
IEEE Access, vol. 7, pp. 21787–21794, 2019.

HASHEM ALAYED received the Ph.D. degree in computer science from
the Department of Computer Science, University of Southern California. He
is currently a Faculty Member with the Department of Computer Science,
College of Computer Science and Information, King Saud University. His
research interests include artificial intelligence, machine learning applica-
tions, and behavioral analysis.

FADL DAHAN received the B.Sc. degree from Thamar University, Yemen,
and the M.Sc. degree from King Saud University, and the Ph.D. degree from
the Department of Computer Science, King Saud University. He is currently
an Assistant Professor with the Department of Information System, Col-
lege of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz
University, Al-Kharj, Saudi Arabia. He is also a Faculty Member with the
Department of Computer Science, Faculty of Computer Science in Torba,
University of Taiz, Yemen. His research interests include optimization and
swarm intelligence.

TAHA ALFAKIH received the M.S degree from the College of Computer and
Information Sciences, King Saud University (KSU), where he is currently
pursuing the Ph.D. degree. His research interest focuses on mobile edge
computing.

HASSAN MATHKOUR received the Ph.D. degree from the University of
Iowa, USA. He held several administration posts including the Dean, asso-
ciate dean, department chair, a director of the research center, and the head
of a joint Ph.D. program. He is currently a Professor with the Department
of Computer Science, College of Computer and Information Sciences, King
Saud University, Riyadh, Saudi Arabia. He also serves as an IT consultant.
He has over 100 research articles in journals and conferences. His research
interests include intelligent systems, peer-to-peer systems, modeling and
analysis, database management systems, data mining, knowledge manage-
ment, e-learning, and bioinformatics.

MOHAMMED ARAFAH received the Ph.D. degree in computer engineering
from the University of Southern California, Los Angeles, USA. He is cur-
rently an Associate Professor with the Department of Computer Engineering,
King Saud University, Riyadh, Saudi Arabia. He has published in the areas
of multistage interconnection networks, MPLS networks, and LTE networks.
His current research interests include cooperative communication, 5Gmobile
communications, software defined radios, and multiple antenna systems.

VOLUME 7, 2019 97051


	INTRODUCTION
	THE WSS PROBLEM
	RELATED WORK
	ACO ALGORITHM
	PROPOSED ALGORITHM
	COMPLEXITY ANALYSIS

	EXPERIMENTAL RESULTS
	CONCLUSION
	REFERENCES
	Biographies
	HASHEM ALAYED
	FADL DAHAN
	TAHA ALFAKIH
	HASSAN MATHKOUR
	MOHAMMED ARAFAH


