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ABSTRACT M/N sliding window detection is the most commonly used method in secondary decision
systems, of which the method seems simple, yet evaluating the probability of the existence of the target after
several scans is rather complex. As the minimal-order Markov set is needed in the process of computation,
through the analysis of equivalence of states, several conclusions of the minimal-order Markov set forM/N
sliding window can be derived, and then the methods for judging whether a state is a smallest equivalent state
and hence, converting a state to the smallest equivalent state can be determined. Based on these conclusions,
a new method that can directly create the minimal-order Markov set has been proposed, which, compared
with the existing method, can greatly improve the computational efficiency of the creation. In this paper,
a new method which is easier to implement and has low time complexity for calculating transition states
within the minimal-order Markov set is also proposed.

INDEX TERMS M/N sliding window, minimal-order Markov set, decision system.

I. INTRODUCTION
For various reasons, due to the electronic components used
in the sensor application field, the result of one single scan is
not always 100% accurate when detecting a target. Therefore,
it is often necessary to perform multiple consecutive scans
before declaring the existence of a target. So, the whole
process can be divided into two processes: scan process
and acquisition process. We call the ‘‘multiple consecutive
scans’’ a scan process. In the case where the target exists,
each scan has a probability of α detecting the target. α can
be a constant, or it can be different each time. We call the
subsequent ‘‘declaring the existence of a target’’ an acqui-
sition process. Finally, the probability of declaring the exis-
tence of a target is taken as the probability of acquisition.
The M/N sliding window detection is the most commonly
used method in decision systems. Unlike consecutive-k-out-
of-n (F system) [1]–[6], M/N sliding window detection is
devoted to studying whether a target exists. According to
the principle of the M/N sliding window detection, if M
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or more successful results occur within N scans, the target
is considered to ‘‘exist’’, and then the system enters the
accepting state (sometimes also called ‘‘absorption state’’ in
some literatures). After entering accepting state (hereafter A
state for short), we believe that the system will remain in this
state regardless of what kind of scan results that may fol-
low. This method, which belongs to a continuous inspection
scheme [7], is simple and practical, and has been widely used
in the military field [8], for example, to determine whether a
target exists in the secondary decision system for radars and
sonars. In general, we are interested in evaluating the acqui-
sition probability of the existence of the target after a certain
number of scans. And if we ignore or do not take ‘‘the sliding
of window’’ into consideration, this would be a very simple
binomial distribution [9]. Actually, the process of calculat-
ing acquisition probability is a Markov problem [10], [11].
Worsham [12] presents a sequence structure to analyze the
problem, which, however, in our opinion, is still essentially
a Markov process. Usually, we represent each Markov state
with a binary sequence [8], [13]. Each time the new probe
value moves in from the right side, ‘1’ for a success result,
and ‘0’ for a fail result, and the oldest result exceeding the
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window is removed from the left side of the window. We will
take the decimal h for the Markov state, which corresponds
to the binary sequence. Castella [14] conducted a theoretical
analysis of the calculation of the acquisition probability of
M/N sliding window, but only gives the probability formula
under the condition of 1≤ N ≤ 4, M ≤ N . Paper in [15]
only solved the problem in some cases with N less than 5.
There were no algorithms for the minimal-order Markov
set creation, state transition and probability on other com-
mon situations in [14], [15]. Todd [16] proposed a general
algorithm for acquisition probability based on the minimal-
order Markov model, but the details haven’t been given in
the paper. Williams [17] presented a recursive algorithm for
the creation of minimal-order Markov set of M/N sliding
windows. An iterative method for calculating the acquisition
probability was also proposed in [17]. Besides, the author
analyzed the equivalence of states and the transition states
on the basis of observation only, without detailed theoretical
explanation. Abraham [18] used the transition matrix and
matrix factorization to derive the formula for calculating
the acquisition probability, however the author still followed
the Williams’s method in the creation of the minimal-
order Markov set and the calculation of the transition
states.

In general, the evaluation process of the acquisition proba-
bility of both [17] and [18] can be divided into the following
two steps:

1) Create the minimal-order Markov set; We call this step
CMMSprocess for short; [17], [18] used the exact same
CMMS method. Here, we call it the Williams CMMS
algorithm.

2) Calculate the acquisition probability. We call this step
CAP process for short. The method proposed in the
paper [17] is called the Williams CAP algorithm, and
themethod in the paper [18] is called theAbrahamCAP
algorithm. We will discuss this in Section III.

Therefore, the prelude to calculating the acquisition prob-
ability is to create the minimal-order Markov set.

Williams provided algorithms 5 thru 7 in [17] to complete
the entire CMMS step. Here is a brief description of the
Williams CMMS algorithm:

1) Add state A to the minimal-order Markov set;
2) Generate state h = 0, then calculate the transition states

h1, h2 of h, and calculate the smallest equivalent states
h′1, h

′

2 of these transition states; Add h to the minimal-
order Markov set;

3) Determine whether the newly generated h′1 and h
′

2 have
already been included in theminimal-orderMarkov set.
Regardless of which transition state, as long as it is not
included in the set, step 2) is executed again, and just
replace ‘‘h = 0’’ in step 2) with ‘‘h = h′1’’ or ‘‘h = h′2’’.

The algorithm for calculating the smallest equivalent state
in [17] is a complex recursive algorithm. For more details,
please refer to section 5 of the literature [17].

The main reason why Williams CMMS algorithm is not
efficient is that the algorithm inevitably needs to calculate

the transition states h1, h2, and these transition states cover
almost the entire original Markov states.

The remainder of this article first introduces the terminolo-
gies used in the paper. Two CAP algorithms are reviewed
in Section III. Then, based on equivalence analysis of the
Markov states, we infer the features of the states in the
minimal-order Markov set of M/N sliding window. Thus,
the problem of creating the minimal-order Markov set is
transformed into a problem of combinatorics, hence a new
method arises, which does not need to calculate the interme-
diate transition states. Therefore, it is more efficient. In addi-
tion, new methods for the calculation of transition states
have been proposed, which are more concise and efficient.
In Section V, we discuss the performance of the algorithm and
give a comparison of the run time of the proposed CMMS
method and Williams CMMS algorithm. At the end of the
paper, we present the acquisition probability distributions of
different situations in the form of an attachment.

II. TERMINOLOGY
It is well known that any integer has a corresponding decimal
representation and binary representation. The figure below is
an example of a state in 4/6 sliding window:

FIGURE 1. Examples of decimal and binary representation.

As shown in the Figure (1), the leftmost (i.e. highest) bit of
the binary sequence within the sliding window (N indicates
its size) is called ‘‘the highest bit’’. The rightmost (i.e. lowest)
bit within the window is ‘‘the lowest bit’’. The ‘1’ closest to
the leftmost bit of the binary sequence within the window is
‘‘the highest bit ‘1’’’. Among all ‘0’s to the right of the highest
bit ‘1’, the highest one is called ‘‘the highest meaningful
bit ‘0’’’ of this binary sequence.

Next, we introduce a few symbols used in this paper:
N

>>>,
N ,0
<<<,

N ,1
<<<, Ø, #, �, H+, H−, T+, T−.

N
>>> stands for logical right shift within thewindow,N for

the size of the sliding window.
N

>>> indicates that after
logical right shift, the highest bit within the window is always
padded by ‘0’. E.g.:

21
6

>>> 2 = 5
N ,0
<<< stands for negative left shift within the window,

N for the size of the sliding window. ‘0’ indicates that after
left shift, the lowest bit within the window is always padded
by ‘0’. E.g.:

21
6,0
<<< 3 = 40
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N ,1
<<< stands for positive left shift within the window,N for

the size of the slidingwindow. ‘1’ indicates that after left shift,
the lowest bit within the window is always padded by ‘1’.
E.g.:

21
6,1
<<< 3 = 47

∅(h) represents the number of bits of the state h excluding
leading ‘0’s. E.g.:

∅(21) = 5

#(h) means the total number of ‘1’s contained by the binary
sequence of h, also known as the weight of h; E.g.:

#(21) = 3

�(h) is defined as the number of ‘1’s which overflow on
the left of the sliding window during an unbroken sequence
of successful scans which transform a non-A state h into an A
state for the first time; E.g., for 4/6 sliding window:

�(21) = 0

h.H+ is the next state from state h after a success result;
i.e.:

h.H+ = h
N ,1
<<< 1

E.g., for 4/6 sliding window state h = 21:

21.H+ = A

h.H− is the next state from state h after a fail result; i.e.:

h.H− = h
N ,0
<<< 1

E.g., for 4/6 sliding window state h = 21:

21.H− = 42

h.T+ is the smallest equivalent state of h.H+. We will
discuss it later in Part D, Section IV; E.g., for 4/6 sliding
window state h = 21:

21.T+ = A

h.T− is the smallest equivalent state of h.H−. We will
discuss it later in Part D, Section IV. E.g., for 4/6 sliding
window state h = 21:

21.T−= 10

III. PROBABILITY
According to the principle of the M/N sliding window,
if # (h) ≥ M after several scans, the target is taken as ‘‘exist’’.
Its detection model can be represented by the following
figure.

In the M/N sliding window detection system, the current
state completely determines its next or future state, i.e. the
state at time k is determined by its previous state at time k−1.
Therefore, the process of state transition is a Markov process.
Generally speaking, we are more concerned about the proba-
bility of the system in a certain state at a certain moment.

FIGURE 2. Principle of M/N sliding window detection.

A. WILLIAMS CAP ALGORITHM
The probability (indicated by the symbol phi [k]) that the
system will be in state hi at time k can be expressed by

phi [k] = α[k]p
+

hi [k − 1]+ (1− α[k]) p−hi [k − 1] (1)

Here, α[k] denotes the probability of successful scan at
time k . It can be the same each time, or it can be different
each time. Symbol p+hi [k − 1] indicates the probability of a
system in certain states at time ‘‘k-1’’, and these states need
to meet such condition: the system happens to change to state
hi when the result of the next scan is ‘1’; p

−

hi [k − 1] indicates
the probability of a system in certain states at time ‘‘k-1’’,
and these states need to meet such condition: the system
happens to change to state hi when the result of the next scan
is ‘0’. Arrange all states in ascending order into h0 h1 · · · hns ,
among which h0 = 0, hns = A, and ns stands for the size
of the Markov set. p+hi [k − 1] and p−hi [k − 1] are defined as
polynomial

p+hi [k − 1] =
ns∑
j=0

δ+hjhiphj [k − 1] (2)

p−hi [k − 1] =
ns∑
j=0

δ−hjhiphj [k − 1] (3)

δ+hjhi , δ
−

hjhi are indication functions of state transition

δ+hjhi =

{
1, hj.H+ = hi

0, hj.H+ 6= hi
(4)

δ−hjhi =

{
1, hj.H− = hi

0, hj.H− 6= hi
(5)

From Equations (4) and (5) we can easily draw

δ+Ahi = δ
−

Ahi= 0, hi 6= A (6)

δ+AA = δ
−

AA = 1 (7)

Since none of the non-A states can transit to state A after
‘0’ is detected, Equation (8) holds true all the time.

δ−hj,A = 0, hj 6= A (8)
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In addition, the initial values are given by equations (9)
and (10).

p+hj [−1] =

{
1, hj = ho
0, hj 6= ho

(9)

α [0] = 1 (10)

where ho refers to the initial state value of the system. Under
normal circumstances, when the sliding window system is
just started, ho = 0 and p+0 [−1] =1.

Therefore, acquisition probability pA[k] is

pA[k] = α[k]p
+

A [k − 1]+ (1− α[k]) p−A [k − 1] (11)

fK [k] is defined as the probability of entering the A state
for the first time at time k , which is defined as the stop time,
and K represents the stop time random variable.

fK [k] = α[k]

ns−1∑
j=0

δ+hjAphj [k − 1]


+ (1− α[k])

ns−1∑
j=0

δ−hjAphj [k − 1]

 (12)

What’s interesting is that, if you modify Equation (7) to
δ+AA = δ

−

AA = 0, then Equation (11) is converted to the Equa-
tion (12). Keeping Equation (7) unchanged, it is actually easy
to prove Equation (13), which also meets the ‘‘absorption’’
characteristics of entering the A state.

pA[k]= f K [k]+ pA[k − 1] (13)

We can see that fK [k] is a probability mass function (PMF) of
the stopping time K .

So, there is (Use the new symbol FK [k] to denote pA[k])

FK [k] = pA[k] =
k∑
l=0

fK (l) (14)

It can be seen that FK [k] (i.e., pA[k]) is a cumulative
distribution function(CDF) ofK , whichmeans the probability
of acquisition within k scans.
To make it easier to discuss the problem later, we use the

symbol ρA[k] to represent fK [k].

ρA[k]= f K [k] = α[k]ρ
+

A [k − 1]+ (1− α[k]) ρ−A [k − 1]

(15)

Symbol ρ+hi [k − 1] and ρ−hi [k − 1] are defined as

ρ+hi [k − 1] =
ns−1∑
j=0

δ+hjhiρhj [k − 1] (16)

ρ−hi [k − 1] =
ns−1∑
j=0

δ−hjhiρhj [k − 1] (17)

Formally speaking, Equation (15) and Equation (11) are
similar, but Equation (11) represents CDF and Equation (15)
represents PMF. Interestingly, if you modify Equation (7) to

δ+AA = δ−AA = 0, then Equation (11) is transformed into
Equation (15).

Because of the nature of Equation (8), Equation (15) can
be further simplified to

ρA[k] = α[k]ρ
+

A [k − 1] (18)

The initial values definition are similar

ρ+hj [−1] =

{
1, hj = ho
0, hj 6= ho

(19)

α [0] = 1 (20)

Now we discuss the impact of the state transition table on
probability calculations. It is easy to see from Equations (2)
and (3) or Equations (16) and (17) that the process of these
cycle accumulation are affected by the ns, and the larger the
value of ns, the larger the amount of calculation.
The entire states and their transition states of the 4/6 sliding

window are given in Table (1).
Obviously, the shaded states in Table (1) are actually the

same state, and can be merged into state A. In addition,
from the observation we can find that the highest bit (either
‘0’ or ‘1’) of any non-A state has no effect on the state
transition, as the highest bit will be moved out of the window
when moving to the next state. Thus, state 32 can be merged
with state 0, state 33 can be merged with state 1, and so on.
Finally, the right half of Table (1) can be completely omitted.

It should be noted that the state merging has no effect on
the calculation of probability. Assume that the calculation of
ρhi [k] contains the item ρha [k − 1], and if it is known that hb
is equivalent to ha, then it is reasonable to replace ρha [k − 1]
with ρhb [k − 1].
Table (1) can be further simplified to Table (2) by state

merging.
As will be explained in this paper, the states in Table (2)

can be further merged to make ns smaller. Therefore, CMMS
is necessary for improving computational efficiency.

B. ABRAHAM CAP ALGORITHM
Abraham [18] uses the state transition matrix to calculate
probability.We use the vector p[k] to represent the probability
that the system is in various states at time k . H[k] represents
the state transition matrix from time k-1 to time k .

pT [k] = pT [k − 1]H[k] (21)

Among which,

H[k] =


βh0h0 [k] βh0h1 [k] . . . βh0hns [k]
βh1h0 [k] βh1h1 [k] . . . βh1hns [k]

...
...

...
...

βhnsh0 [k] βhnsh1 [k] . . . βhnshns [k]

 (22)

pT [k] =
[
ph0 [k] ph1 [k] . . . phns [k]

]
(23)

Similarly, ns stands for the size of the Markov set.
The superscript T represents the transpose operation.
phi [k] denotes the probability that the system will be in state
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TABLE 1. 4/6 entire states and transition states.

hi at time k . βhjhi [k] represents the probability that the state
transitions from hj to hi from time k-1 to time k .

βhjhi [k] = α[k]δ
+

hjhi + (1− α[k])δ−hjhi (24)

α[k] denotes the probability of successful scan at time k. The
definitions of δ+hjhi and δ

−

hjhi are the same as Equations (4)
and (5).

Arrange all states in ascending order into h0 h1 · · · hns ,
among which h0 = 0, hns = A. So, it is clear that βhnsh0 [k] =
βhnsh1 [k] · · · = βhnshns−1 [k] = 0, βhnshns [k] = 1.
Divide pT [k] and H[k]:

pTk =
[
ph0 [k] ph1 [k] . . .

∣∣phns [k] ]
=
[
pc[k] pA[k]

]
(25)

H[k] =
[
Hcc[k] pcs[k]
OT 1

]
(26)

TABLE 2. 4/6 merged table.

where Hcc[k] is the transition matrix for the non-A states,
and pcs[k] is a vector of the transition probabilities from the
non-A states to the A state, and O is a vector of zeros. The
probability (pc[k]) of being in one of the non-A states at
the kth scan can then be described by the recursion

pTc [k] = pTc [k − 1]Hcc[k] (27)

pc[0] is defined as a vector of the initial probabilities of being
in non-A state. Therefore, the probability (ρA [k]) of entering
the A state for the first time just at time k is

ρA [k] = pTc [k − 1]pcs[k] (28)

Similarly, if let βhnshns [k] = 0, then according to Equa-
tion (21) the last item of p[k] (i.e. pA[k]) happens to
be ρA [k], which is a PMF of the stopping time. Otherwise,
if βhnshns [k] = 1, then pA[k] is a CDF of the stopping time.
Suppose the α[k] value does not change with k , then

Hcc[k] also does not changewith k . Thus, the following result
can be further obtained by the Equation (28).

ρA[k] = pTc [0]H
k−1
cc pcs

= pTc [0]V3
k−1V−1pcs (29)
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While v and3 represent eigenvector and eigenvalue matri-
ces of Hcc, respectively.
When the α[k] value changes with k , Equation (28) can be

used to calculate the probability. Obviously, the size of matrix
Hcc[k] will significantly affect the efficiency of calculation.
Otherwise, when the α[k] value does not change with k ,
the result can be obtained quickly using Equation (29) when
the Hcc scale is small. However, as the Hcc size becomes
larger, the calculation of v and3will become more and more
difficult. In short, minimizing the size ofHcc can improve the
efficiency.

IV. ALGORITHM
Since the size of sliding window is N , the entire Markov set
has a total of 2N states. Obviously, as N increases, the set will
increase in size exponentially. As mentioned in Section III,
in order to improve computational efficiency, it is necessary
to create the minimal-order Markov set. After construct the
minimal-order Markov set and all transition states, the acqui-
sition probability can be solved.

FIGURE 3. All original states of 4/6 sliding window.

A. CHARACTERISTICS OF THE MINIMAL-ORDER
MARKOV SET
Taking 4/6 sliding window as an example, as shown in
Figure (3), we can easily enumerate the entire states. And,
by counting the number of bit ‘1’, we can easily distinguish
which states indicate that the target is acquired (i.e., A state,
which is shaded in Figure (3)), and which are not (i.e., non-A
state). The non-A state set and the A state set make up the
entire original Markov set.

It is also easy to enumerate such binary sequences (prefixed
by decimals) as shown below, when the system is in one of
the following states, if another success result ‘1’ is scanned
later, it enters A state immediately:

7(000111)2
11(001011)2
19(010011)2
13(001101)2
21(010101)2
25(011001)2
14(001110)2
22(010110)2
26(011010)2
28(011100)2

Definition 1 (Adjacent state set): If a non-A state changes
to A state immediately after a subsequent result of ‘1’, we call

this non-A state an adjacent state (hereafterAd state for short).
The set of all these adjacent states is called adjacent state set,
represented by JM ,N .

Obviously, according to Definition (1), each adjacent state
hJ must satisfy

#(hJ ) = M − 1, hJ ∈ JM ,N (30)

Because the adjacent state will transfer to A state immedi-
ately after a subsequent scan of ‘1’, the highest bit of adjacent
state hJ is definitely ‘0’, that is,

∅(hJ ) < N (31)

In addition, evidently, any non-A state that changes to A
state through state transitions must first become an Ad state
before it could become an A state.
Definition 2 (Primary accepting state set): When ‘1’ is

scanned, an adjacent state will immediately turn into an A
state, which we call primary accepting state (hereafter PA
state for short). The set of all primary accepting states is called
primary accepting state set, represented by PM ,N .

It should be noted that once in a PA state, regardless of
the subsequent result of ‘1’ or ‘0’, the system is permanently
locked, i.e. the system stays in the same very state. According
to the Definition (2), a one-to-one relationship exists between
Ad state and PA state, and it is easy to list the PA states of 4/6
sliding window:

FIGURE 4. A one-to-one relationship exists between an Ad state and a PA
state.

Obviously, the lowest bit of the PA state hP is always ‘1’,
and # (hP) = M . Therefore, it is easy to conclude that a PA
state must be an A state, but an A state is not necessarily a PA
state. For example, in the 4/6 sliding window 30(011110)2
must be an A state, but not a PA state.
Definition 3 (Equivalent state of M/N sliding window):

If h1.H+ = h2.H+, and h1.H− = h2.H−, then these two
states h1 and h2 can be considered equivalent, i.e. h1 ∼= h2.
Here, h1, h2 are all non-A states. The symbol ∼= is used to
represent equivalence.

Definition (3) is self-evident. For example, as depicted
in Figure (5), by definition, in the 4/6 sliding window state
set, 4 and 36 are equivalent, and 9 and 41 are equivalent,
and 8 and 40 are equivalent. According to Definition (3),
it is easy to find that all those two states which contain the
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FIGURE 5. Examples of equivalent state in 4/6 sliding window according
to definition (3).

FIGURE 6. Example of equivalent states in 4/6 sliding window.

same bits except the highest bit, are equivalent to each other.
This means that for the state with the highest bit being ‘1’,
an equivalent state smaller than it is sure to be found. Thus,
when determining the smallest equivalent state, those states
with the highest bit being ‘1’ can be discarded directly.

Further analysis shows that if two states have the same
value H+ after scanning ‘1’, it is easy to deduce that the
transition state H− after scanning ‘0’ is also have the same
value, because it is nothing more than replacing the lowest
bit of H+ with 0. Therefore, when determining whether the
two states are equivalent, we only need to considerH+ orH−.
Thus, we get the following inference:
Conclusion (1): If two non-A states h1, h1, have the

same transition state H+ after scanning ‘1’, that is,
h1.H+ = h2.H+, then the two states are equivalent, that is,
h1 ∼= h2. Similarly, if two non-A states, h2, h2 have
the same transition state H− after scanning ‘0’, that is,
h1.H− = h2.H−, then the two states are equivalent, that is,
h1 ∼= h2. Note that when judging equivalence, determine
whether values of h1.H+ and h2.H+ are equal, rather than
seeing if h1.H+ and h2.H+ can all be abstracted as A.
According to the equivalent transitivity, it can be known

that, if h1 ∼= h2 and h2 ∼= h3, then h1 ∼= h3. Now, let’s
have a look at a more complicated situation below, i.e. the
equivalence of 4 and 20 in 4/6 sliding window Markov set as
shown in the Figure (6).

As can be seen from Figure (5), since 9 and 41 are equiv-
alent, 8 and 40 are equivalent, according to the replaceabil-
ity of equivalence and Definition (3), observing Figure (6),
so 4 and 20 are equivalent too. We can also analyze this by
observing Figure (6). According to Conclusion (1), 9 and 41
are equivalent, and 8 and 40 are equivalent, so 4 and 20 are
also equivalent. Thus, according to the equivalence transi-
tivity, 4, 20 and 36 are equivalent. Similarly, in the case
of Figure (6), for equivalence judgment, we only need to
consider the half side of the diagram of the state transition.
From the example in Figure (6), we can get such a general
conclusion:

Conclusion (2):Given h1 ·H+ = h3, h2 ·H+ = h4, if h3 ∼=
h4 or h3 = h4, then h1 ∼= h2. Here h1, h2 are all non-A states.
Note that when h3 or h4 is A state, using h3 = h4 to judge the
equivalence of h1 and h2, rather than seeing if h3 and h4 can
all be abstracted as A.

FIGURE 7. The equivalent transition.

For more general cases, as shown in Figure (7),

if
(
h1

N ,1
<<< x

)
=

(
h′1

N ,1
<<< x

)
= h, according to Con-

clusion (1), we can infer that hx ∼= h′x , here h1, h
′

1 are non-A
states. Then, according to Conclusion (2), likewise, we can
infer that hx−1 ∼= h′x−1 and so on and so forth, and finally we
can infer that h1 ∼= h′1. Since all non-A states will ultimately
transfer to one of anAd states (also PA states) after several
times of successful scans, hence a conclusion can be drawn:
Conclusion (3): If two or more non-A states of the M/N

slidingwindow transferred to the sameAd state (alsoPA state)
after successive identical scan of ‘1’, then these states are
equivalent.

According to Conclusion (3), consider the specific values r
and hJ , where 0 ≤ r ≤ M -1, hJ ∈ JM ,N , all non-A states that
satisfy the following equation are equivalent to each other:(

h
N ,1
<<< r

)
= hJ , here 0 ≤ r ≤ M − 1, hJ ∈ JM ,N

We call this collection the r − J (hJ ) equivalent state set,
represented by SM/N ,r−J(hJ ).

Similarly, Conclusion (3) can also be explained by the
following equation, where R(R indicates the number of left
shifts required for h to change to the A state for the first time)
and hP both refer to specific values:(

h
N ,1
<<<R

)
= hP, here 1 ≤ R ≤ M , hP ∈ PM ,N

Likewise, all non-A states that satisfy the above equation
are equivalent to each other. We call such collection the
R− P(hP) equivalent state set, represented by SM/N ,R−P(hP).
Combining the one-to-one relationship between Ad state

and PA state, it is easy to know that if R = r+1, and hp =(
hJ

N ,1
<<< 1

)
, then the set SM/N ,r−J(hJ ) is the same as the set

SM/N ,R−P(hP), i.e. SM/N ,r−J(hJ ) = SM/N ,R−P(hP).
Taking the example described earlier, all three equiva-

lent states 4, 20, and 36 in 4/6 sliding window belong to
S4/6,2−J(19), and S4/6,2−J(19) = S4/6,3−P(39).
There is a special case that for each Ad state no other equiv-

alent states can be found, which means that SM/N ,0−J(hJ )
(i.e. SM/N ,1−P(hP)) contains only one member, i.e. hJ . For
example, 13 is an Ad state in the 4/6 sliding window Markov
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set, i.e. it belongs to S4/6,0−J(13)(i.e. S4/6,1−P(27)), and it is
the unique member of S4/6,0−J(13).

As all states in SM/N ,R−P(hP) are equivalent to each other,
we can choose the smallest one as the representative. As ∀h ∈

SM/N ,R−P(hP),
(
h

N ,1
<<<R

)
= hP(R, hP are certain values,

hP ∈ PM ,N ) must be satisfied. Let hm =
(
hP

N
>>>R

)
, then

the only difference between hm and h is the highest R bit(s).
As all of the highest R bits of hm must be ‘0’, the following
holds: hm ≤ h. In addition, obviously hm ∈ SM/N ,R−P(hP).
Thus, hm must be the smallest one in SM/N ,R−P(hP). This can
also be easily illustrated by Figure (8).

FIGURE 8. The smallest equivalent state.

Hence, this also leads to a method for calculating the
smallest equivalent state of a specific SM/N ,R−P(hP). Thus, all
those smallest equivalent states from different SM/N ,R−P(hP)
make up the smallest equivalent state set, which is represented
by a symbol SeM ,N .

For example, in 4/6 slidingwindow system, 23(010111)2 ∈
P4,6, let hP = 23(010111)2. Since 2, 18, 34, 50 satisfy the
following equations, respectively:

2(000010)2
6,1
<<< 3 = 23(010111)2

18(010010)2
6,1
<<< 3 = 23(010111)2

34(100010)2
6,1
<<< 3 = 23(010111)2

50(110010)2
6,1
<<< 3 = 23(010111)2

So, 2, 18, 34 and 50 are equivalent to each other, and they
all belong to S4/6,3−P(23). And, the smallest equivalent state
hm in S4/6,3−P(23) can be described as

hm = (hp
6

>>>R) = 23(010111)2
6

>>> 3 = 2(000010)2

Thus, the smallest equivalent state in S4/6,3−P(23) is 2.
So far, the definition of �(h) can also be described as fol-

lows: the number of ‘1’s which overflow on the left during the

operation
(
h

N ,1
<<<R

)
= hP. According to Definition (2),

it is easy to deduce the following relationship among #(h),
�(h) and R

R = �(h)+M − #(h) (32)

By continuously performing
N ,1
<<< operation R times,

a non-A state h will definitely become a PA state hP, and
this is also the first time when the system enters A state.
As we can imagine, for those equivalent states larger than

hm(hm =
(
hP

N
>>>R

)
), one or more ‘1’s will definitely be

overflowing from the left side of the window, which means
�(h) > 0. But such is not the case for hm itself, which satisfies

�(hm) = 0. Therefore, all of the smallest equivalent states
must satisfy the following two conditions at the same time.

TABLE 3. The conditions that a smallest equivalent state must satisfy.

Table (3) tells us the fact that a smallest equivalent state h
must satisfy �(h) = 0.

Instead, we can also prove the following fact:
If a non-A state satisfies �(h) = 0, then it must be a

smallest equivalent state. Proof is as follows:
According to Equation (32), �(h) = 0 leads to R =

M − #(h). It also means that by performing an
(
h

N ,1
<<<R

)
operation without losing any ‘1’s, h will transfer to PA state,

i.e.
(
h

N ,1
<<<R

)
= hp. Thus, we can also infer that R ≤

N − Ø(h). Since the leftmost N − Ø(h) bits of h are all ‘0’,
naturally its highest R bits are all ‘0’. Therefore, h must be
exactly the smallest equivalent state in SM/N ,R−P(hP). The
proof is done.

We can also easily prove the fact that �(h) = 0 and
N −M ≥ Ø(h)− #(h) are completely equivalent. The proof
is as follows:

If�(h) = 0, then R = M −#(h), and R ≤ N −Ø(h). Thus,
N −M ≥ Ø(h)− #(h).
Instead, ifN−M ≥ Ø(h)−#(h), i.e.N−Ø(h) ≥ M−#(h),

which means that the number of leftmost ‘0’s is greater than
or equal to the number of new ‘1’s required for h to transit to
A state, i.e. �(h) = 0. The proof is done.
So far, we can get the following conclusion:
Conclusion (4): The necessary and sufficient condition for

the non-A state h to be a smallest equivalent state is

N −M ≥ Ø(h)− #(h) (33)

Equation (33) can also be equivalently described as

�(h) = 0 (34)

whichmeans that the non-A state h can transfer to A state after
M − #(h) successive scans of ‘1’ without losing any ‘1’s.
Note that the right-hand side of Equation (33) can be

interpreted as:

Ø(h)− #(h)

= Number of bits excluding leading ‘0’s – Number of 1’s
= Number of ‘0’s to the right of the highest bit ‘1’.
Therefore, Equation (33) can be expounded more straight-

forwardly like this: if the number of ‘0’s to the right of the
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highest bit ‘1’ is less than or equal to (N -M ), then the state
is a smallest equivalent state, otherwise, it can be represented
by a smallest equivalent state. Therefore, we can draw the
following conclusion:
Conclusion (5): The way to calculate the smallest equiv-

alent state of a non-A state h is to count the number of ‘0’s
from the rightmost. When (N -M+1) ‘0’s are counted, zero
all the remaining uncounted bits. The newly generated binary
sequence is the smallest equivalent state for the original
state h.
Below, we illustrate Conclusion (5) with an example using

a big state value h, i.e., calculating the smallest equivalent
state of h = 47876 of 15/20 sliding window.

FIGURE 9. Equivalent states for h = 47876 in sliding window 15/20.

So, the smallest equivalent state of h =

47867 (1011101100000100)2 in the 15/20 sliding window is
h = 4 (100)2.

B. SIZE OF THE MINIMAL-ORDER MARKOV SET
It is easy to get the size of the space SeM ,N according to
Table (3)

Sizeof (SeM ,N ) =
M∑
i=1

(
N − i
M − i

)
(35)

Let e = M − i, Equation (35) is converted to

Sizeof (SeM ,N ) =
M−1∑
e=0

(
N −M + e

e

)
=

(
N

M − 1

)
(36)

All the smallest equivalent states plus the A state
(i.e. abstracted into one state) constitute the minimal Markov
set. Let S∗M ,N be the minimal-order Markov set.

So, the size of S∗M ,N is

Sizeof (S∗M ,N ) =
(

N
M − 1

)
+ 1 (37)

When M and N are determined, the (R, hp) value pair can
uniquely determine a SM/N ,R−P(hP), which means that the
(R, hp) value pair can uniquely determine a smallest equiv-

alent state hm, in which hm =
(
hP

N
>>>R

)
, hp ∈ PM ,N .

Therefore, the total number of smallest equivalent states,
i.e. the size of SeM ,N , is equal to the total number of (R, hp)

value pairs. Since hp =
(
hm

N ,1
<<<R

)
, this means that there

will always be one or more consecutive ‘1’s on the rightmost

FIGURE 10. A diagram of the relationship between different sets.
JM,N represents Ad state set. PM,N represents PA state set.
Se

M,N represents the smallest equivalent state set. S∗M,N represents the
minimal-order Markov set.

side of hp. Suppose that the number of consecutive ‘1’s on the
rightmost side of hp is λ. We will prove that(
hP

N
>>> 1

)
,

(
hP

N
>>> 2

)
, . . . ,

(
hP

N
>>>R

)
,

. . . ,

(
hP

N
>>>λ

)
,

i.e., (
hP

N
>>> 1

)
,

(
hP

N
>>> 2

)
, . . . , hm,

. . . ,

(
hP

N
>>>λ

)
are definitely smallest equivalent states too. We use the sym-

bol
(
hP

N
>>> i

)
to represent each value in the sequence.

Here we discuss in two situations. The first case is i < R,
i.e., items on the left side of hm in the sequence. In this
case. ‘1’ is continuously moved into the right side of hm

(i.e.
(
hP

N
>>>R

)
). We can find that after each insertion

of ‘1’, Ø(h) increases by one, and #(h) increases by one too.
Thus, the quantity Ø(h)− #(h) is remains the same like hm’s.
The other case is i > R, i.e., items on the right side of hm
in the sequence. In this case, ‘1’ continuously moves out of
the window from the right side of hm. Thus, we can find that
after each overflow of ‘1’, Ø(h) decreases by one, and #(h)
decreases by one too. Thus, the quantity Ø(h) − #(h) is also
remains the same like hm’s. As we have mentioned that hm
is a smallest equivalent state, according to Conclusion (4),(
hP

N
>>> 1

)
,
(
hP

N
>>> 2

)
,. . . ,

(
hP

N
>>>λ

)
are smallest

equivalent states. Thus, when PM ,N is known, as depicted
in Figure (11), we can get the size of SeM ,N by summing all
the number of consecutive ‘1’ to the right of the lowest bit ‘0’
in each PA state.

C. CREATING THE MINIMAL-ORDER MARKOV SET
In fact, Table (3) has offered an approach to listing all the
smallest equivalent states: List all binary sequences that sat-
isfy (N -i) bits containing (M -i) ‘1’s, here 1≤ i ≤ M , and
the (N -i) bits must be the rightmost bits, and the remaining
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FIGURE 11. The size of the minimal-order markov set (except A state)
of 4/6 sliding window. The ‘0’ in bold type represents the lowest bit ‘0’.

leftmost bits must be ‘0’. Let j = M -i, thus this description is
completely equivalent to the following:

List all binary sequences that satisfy (N -M + j) bits con-
taining j ‘1’s, here 0 ≤ j ≤ M -1. Here, the (N -M + j) bits
must be the rightmost bits, and the remaining leftmost bits
must be ‘0’.

Thus, its process can be simplified as Table (4).

TABLE 4. Creating the minimal-order markov set.

Thus, Table (4) is essentially a combinatorics problem.
There are various algorithms [19]–[21]. Basically, the time
complexity of these algorithms is related to the binomial

coefficient O
((

N
M − 1

))
.

Taking the 4/6 sliding window as an example, according to
Table (4), the minimal-order Markov set can be listed at as
follows:

FIGURE 12. Creation of 4/6 minimal-order markov set.

D. TRANSMISSION STATES T+ AND T−

Now, we will discuss methods for calculating the transition
states H+ and H− within the minimal-order Markov set.
It can also be expressed as calculating the smallest equiv-
alent states of h.H+ and h.H− when h ∈ S∗M ,N is known.
We use symbol h.T+ to represent the smallest equivalent

state of h.H+, and use symbol h.T− to represent the smallest
equivalent state of h.H−. Obviously, if h is the A state, then
h.H+ and h.H− are always A.
As mentioned in Table (3), the highest i bits of the smallest

equivalent state must be ‘0’, where i ≥ 1. We can get the
following conclusion:
Conclusion (6): In the minimal-order Markov set of the

M/N sliding window, for any state except A state, the highest
bit of them is ‘0’.

Thus, H+h.H+ is easy to deduce, that if the weight of
h (h ∈ SeM ,N ) is M -1, when another ‘1’ is inserted into
the right side of the window, the system will enter A state,
that is, h.H+ = A; if h contains less than M − 1 ‘1’s,
due to Conclusion (6), h.H+ = 2h+1. Meanwhile, because
satisfying Equation (33), 2h+1 also belongs S∗M ,N . Therefore,
the calculation of h.T+ can be represented by

h.T+ =

{
A , #(h) = M − 1
2h+ 1 , #(h) < M − 1

(38)

Since h.H−
(
h ∈ SeM ,N

)
is obtained by 1-bit left shift with

a new rightmost ‘0’, then according to Conclusion (6), we can
get the followings

Ø(h.H−) = Ø(h)+ 1 (39)

#(h.H−) = #(h) (40)

There are two situations:
In the first case, if N −M > Ø(h)− #(h), then N −M ≥

(Ø(h) + 1) − #(h), which leads to N − M ≥ Ø(h.H−) −
#(h.H−)N− Ø

(
h.H−

)
+#(h.H−) ≥ M. Thus, according to

Equation (33), h.H− = 2 h is also a member of S∗M ,N .
In the second case, if N −M = Ø(h)−#(h), then N −M+

1 = (Ø(h)+1)−#(h), which leads toN−M+1 = Ø
(
h.H−

)
−

#
(
h.H−

)
. So, h.H− = 2 h is not member of S∗M ,N . In such

rare situations, 2h happens to contain (N -M+1) ‘0’s to the
right of the highest bit ‘1’, and this means that the high-
est meaningful bit ‘0’ (see Figure (1)) happens to be the
(N -M+1)th counted ‘0’. By observation, it is easy to know
that there must be one or more consecutive ‘1’s to the left
side of the highest meaningful bit ‘0’. Following the steps
in Conclusion (5), so long as we zero all ‘1’s to the left of
the highest meaningful bit ‘0’ in 2h, the newly-established
sequence is the smallest equivalent state of h.H−. Equally,
we can also zero all ‘1’s to the left of the highest meaningful
bit ‘0’ in h, then multiply the modified h by 2, the newly-
established sequence is the smallest equivalent state of h.H−.

h.T− =

{
2h ,N −M > Ø(h)− #(h)
2ω(h) ,N −M = Ø(h)− #(h)

(41)

The ω(h) function is defined as follows:
ω(h) := Zero all ‘1’s to the left of the highest meaningful

bit ‘0’ in h.
An example of calculation of ω(h) is given as follows.
For example, suppose state h = 26 (26∈ S∗4,6) and its

corresponding binary sequence is (011010)2. As N − M =
6− 4 = 2,Ø(h)− #(h) = 5− 3 = 2, when calculating h.T−,
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TABLE 5. Calculate ω(h).

TABLE 6. Transition states within minimal-order markov set of 4/6.

zero all ‘1’s to the left of the highest meaningful bit ‘0’ in h,
leaving behind (000010)2, which is then multiplied by 2, thus
we get 26.T− = 4.
Table (6) gives an example of T+ and T− for 4/6 sliding

window.
As we have seen formula (38) and (41) are easier to imple-

ment than Williams’s method.
Now let’s list classification and transition state for all states

under the 4/6 sliding window.

V. DISCUSSION
According to Table (4) and formulas (38) and (41), we can
get a new CMMS algorithm, as shown in Table (8) below:

The biggest difference between the proposed CMMS algo-
rithm and theWilliams CMMS algorithm is that the proposed

TABLE 7. All states in 4/6 sliding window.
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TABLE 7. (Continued.) All states in 4/6 sliding window.

TABLE 8. New CMMS algorithm.

method does not need to calculate H+ and H−, but to
directly calculate T+ and T−. While the Williams CMMS
algorithm always calculatesH+ andH− first, then calculates
the T+ and T− of them.
In the time complexity analysis, we consider the calcula-

tion of T+ (H+) and T− (H−) as a calculation unit, and we
call this calculation unit an Tc unit. The Williams CMMS
algorithm needs to calculate theH+ andH− of each smallest
equivalent state first, and the number ofH+ andH− is almost
proportional to the size of the original Markov state set,
i.e. 2N . Therefore, the calculation number of Tc unit is also
proportional to the size of the original Markov state set. Thus,
the time complexity of Williams CMMS algorithm is O(2N ).
It is easy to know that the calculation number of Tc unit of
the proposed CMMS algorithm is proportional to the size of
minimal-order Markov set. Therefore, the time complexity

of the proposed CMMS algorithm is O
((

N
M − 1

))
. The

following diagram is a comparison of the time complexity
between the two.

FIGURE 13. A comparison of time complexity of CMMS algorithm.

TABLE 9. Run time of CMMS.

Figure (13) is a theoretical comparison. Table (9) gives the
run time in the experimental environment. The experimental
environment is as follows:

Computer: DELL PRECISION TOWER 5810
System: Windows 10 Enterprise Edition
CPU: Intel Xeon CPU E5-1620
RAM: 32G
Language: MATLAB script
Figure (14) is a graphical representation of the data in

Table (9). It gives a comparison of time consumption under
two different methods. Figure (14) and Figure (13) are very
similar, indicating that the actual conclusions are consistent
with the theoretical analysis. Obviously, the method proposed
in this paper has less time consumption. When M /N = 5/20,
the new method only takes 1/48 of that of the Williams
CMMS algorithm. It is obvious to see that the proposed
CMMS algorithm is more efficient than Williams CMMS
algorithm.

From equations (38) and (41), the time complexity of cal-
culating h.T+ isO(1), and the time complexity of calculating
h.T− isO(1) orO(N ). In [17], the recursive method is used to
calculate the smallest equivalent transition states, and its time
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FIGURE 14. A comparison of time consumption of CMMS algorithm.

FIGURE 15. Comparisons of time consumption of CAP algorithm. α = 0.8.

complexity is O(N ). Therefore, from the perspective of time
complexity, the proposed method for calculating the smallest
equivalent states in this paper is more efficient.

Two pictures in Figure (15) give the time consumption
comparison between Williams CAP algorithm and Abraham
CAP algorithm. Here, we do not consider the use of historical

FIGURE 16. Comparisons of time consumption of the whole algorithm.
α = 0.8.

data, which means that Williams CAP algorithm calculates
the probability each time from the first scan, and also means
that the eigenvalues and eigenvectors of the transition matrix
in Abraham CAP algorithm are calculated each time, regard-
less of whether the scan number (i.e. x-axis value in the
figure) change or not. The first figure in Figure (15) is a
comparison of the two methods applied to a test when the
size of the minimal-order Markov set is small, which also
means that the transition matrix is a small matrix. The second
figure in Figure (15) is a comparison of the two methods
applied to a test when the size of the minimal-order Markov
set is large, which also means that the transition matrix
is a large matrix. Since the acquisition probability in the
Abraham CAP algorithm is directly solved by the formula,
the running time under different scan number is the same
when the N andM values are determined, which can be seen
from both figures in Figure (15). As can be seen from the
first figure in Figure (15), the run time of Williams CAP
algorithm increases as the number of scans increases. This
is because calculating acquisition probability at time k needs
to first calculate the acquisition probability at time k−1. The
Abraham CAP algorithm needs to calculate the eigenvalues
and eigenvectors of the transition matrix (please refer to
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FIGURE 17. The acquisition probability distributions. The value of
N and α are fixed and the value of M changes.

Equation (29)) in the process of CAP. The calculation of the
eigenvalues and eigenvectors is time consuming in the case
of a large matrix. Therefore, it can be seen from the second
figure in Figure (15) that the Abraham CAP algorithm runs
significantly less efficiently than theWilliams CAP algorithm
when the transition matrix becomes larger (i.e. the size of the
minimal-order Markov set becomes larger).

Figure (16) shows that the time consumed by CMMS algo-
rithm takes a larger proportion that of the whole algorithm
(i.e. CMMS+ CAP). The graph of CMMS line in the second
figure of Figure (16) almost overlaps that of the correspond-
ing CMMS + CAP. These two graphs can well illustrate that
the proposed CMMS algorithm can obviously improve the
performance of the whole acquisition probability algorithm.
Of course, when M and N remain unchanged, the CMMS
algorithm needs to be executed only once.

The relevant MATLAB script, including the proposed
CMMS algorithm and transition states calculation, can be
downloaded from https://github.com/zk47/mofn.git.

VI. CONCLUSION
In this paper, through theoretical analysis, we have drawn
some conclusions on the minimal-order Markov set forM/N

FIGURE 18. The acquisition probability distributions. The value of
M and α are fixed and the value of N changes.

FIGURE 19. The acquisition probability distributions. The value of
M and N are fixed and the value of α changes.

sliding window. Using Conclusion (4), one can quickly deter-
mine whether a state is a smallest equivalent state. Using
Conclusion (5), a non-A state can be quickly converted to
its smallest equivalent state. In light of these conclusions,
we propose a new algorithm for CMMS, i.e., Table (8).
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Comparing this algorithm with Williams approach, we can
see that the proposed algorithm greatly reduces the time com-
plexity, which sharply improves the computational efficiency
of CMMS process. We also propose formulas (38) and (41)
for calculating the transition states T+ and T−, which are
easier to implement and more efficient.

APPENDIX
The results of some acquisition probabilities are given in
Figures (17), (18), and (19). We assume that each time the
probability of successful scan is a constant α.
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