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ABSTRACT Sky-wave time-difference-of-arrival (TDOA) localization is a promising technique, which
may enable surveillance over large-scale areas via passive radar systems. In a recently published paper,
we have proposed a novel sky-wave TDOA localization method by introducing an assumption, i.e., the
ionosphere-layer virtual heights (IVHs) for transmitting paths from a target to different closely spaced
sensors are identical. In this paper, we further verify the assumption by testing the identity of the IVHs
based on TDOA measurements of a known-position target. To realize this goal, the identity-test problem
is converted into a coefficient retrieval problem. The current state-of-the-art method has to make an
approximation to select the nearest grid-point (NGP) of coefficient vector, which induces a larger recovery
error with the increase of dimension. To alleviate this, an improved grid-search method is proposed by
training weights, which can build the proportional relationship between the weighed norm-2 cost functions
and the norm-2 distances of grid-points and coefficients. Thus, the NGP can be selected freely from
the aforementioned approximation error; and the coefficient recovery accuracy is improved. Additionally,
the training phase of the proposed method is guaranteed to be feasible while that of the conventional method
is not. The simulation results verify the superiority of the proposed method over the current state-of-the-art
in terms of recovery accuracy and computational complexity.

INDEX TERMS Nonlinear optimization, time-difference-of-arrival, sky-wave passive radar,
ionosphere-layer virtual height.

I. INTRODUCTION
Time-difference-of-arrival (TDOA) localization is a passive
localization technique which is widely applied in many
applications [1]. Although line-of-sight (LOS) TDOA local-
ization has been well-documented in the literature [2]–[6],
non-line-of-sight (NLOS) TDOA localization is still an inter-
esting topic that needs more research [7]–[9].

In this paper, our focus is a NLOS scenario where sig-
nals are reflected by the ionosphere-layer before arriving at
sensors [10], [11]. The time delay of the transmitting path
from a target to a sensor is equivalent to that of a spherical
reflection path, with the height of the equivalent reflection
point being the ionosphere-layer virtual height (IVH).

The associate editor coordinating the review of this manuscript and
approving it for publication was Mehmet Alper Uslu.

Because an IVH is mainly determined by factors including
signal frequency, ionosphere-layer status and the positions of
source and sensor, it varies with time and is usually inac-
curately known [10], [12]. Consequently, the inaccurately
known IVHs can severely degrade TDOA localization perfor-
mance. To alleviate this, we have introduced an assumption
in [11] to propose a robust grid-search (RGS)method, i.e., the
IVHs from a source to different sensors are identical when
the maximum distance between these sensors is less than a
threshold. In this paper, we further test the identity of IVHs,
which is realized by solving a coefficient retrieval problem.

The inputs of the coefficient retrieval problem are TDOA
measurements from an uncooperative target with its position
known a priori. The outputs are coefficients which deter-
mine whether or not the IVHs are identical. The retrieval
of coefficients from TDOA measurements is a nonlinear
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optimization problem. As discussed in [11], due to the
highly nonlinear relationship between TDOA measurements
and coefficients, grid-search methods [13]–[17] are gener-
ally superior to parametric methods [18], [19]. Note that the
grid-search methods for TDOA localization can be easily
extended to solve the coefficient retrieval problem.

Conventional grid-search methods mainly consist of the
compressed sensing (CS) methods and the norm-based meth-
ods. The former type includes bounded joint sparse (BJS)
method [14], off-grid sparse Bayesian inference (OG-SBI)
method [15] and single-target framework-based (SF) met-
hod [16]; and the latter type includes norm-2 method [17]
and RGS method [11]. Besides, by converting the TDOA
measurements into complex measurements [20], the multiple
signal classification (MUSIC) method [21] is also applicable.

Despite RGS, the aforementioned methods do not guar-
antee that the nearest grid-point (NGP) of the coefficient
vector can be found [11], which makes RGS a novel method
in the current state-of-the-art. RGS works by: (a) dividing
the scene-of-interest (SOI) into overlapping hyperspheres;
(b) training a weight matrix to alleviate off-grid errors in an
off-line process and (c) searching for the index of hypersphere
where the coefficient vector is located. Then RGS estimates
the NGP by making the approximation that selecting the
right hypersphere (where the coefficient vector is located)
is equivalent to selecting the NGP. A drawback of RGS is
that this approximation induces a larger recovery error with
the increase of dimension, which will be detailed afterwards.
Another drawback of RGS is that its training phase is both
time-consuming and not guaranteed to be feasible. These
drawbacks imply that there is still room for improvements.

For this reason, as the main contribution of this paper,
an improved grid-search method is proposed. On one hand,
similar to RGS, the proposed method consists of an off-line
weight training phase and an on-line searching phase. On the
other hand, RGS requires that the low-order approximation
is reasonable within a grid cell while the proposed method
relies on a stronger assumption that the first-order approxima-
tion is reasonable in the whole SOI. Thus, by exploiting the
structures of known first-order derivatives, a series of weights
can be trained to build the proportional relationship between
weighted norm-2 cost functions and the norm-2 distances of
unknowns and grid-points. Therefore, the proposed method
is named as the approximately proportional (AP) method,
which does not need to divide the SOI into overlapping
hyperspheres. AP avoids the approximation that selecting the
right hypersphere is equal to selecting the NGP, which leads
to coefficient recovery accuracy improvements.What’s more,
different from RGS, the training phase of AP is not only fast
but also guaranteed to be feasible. In this way, the drawbacks
of RGS are successfully alleviated.

The outline of this paper is as follows. In Section II,
the measurement model, the coefficient retrieval problem
and the conventional grid-search method are described.
In Section III, the improved grid-search method is proposed.
In Section IV and Section V, performance analyzes and

simulation results are given, respectively. Conclusions are
drawn in Section VI.
Notation: in this paper, bold symbols are reserved for

vectors and matrices. AT, A† and A−1 are the transpose,
the pseudo-inverse and the inverse of matrix A, respectively.
vec{·} and tr{·} denote the vectorize and the trace notation,
respectively. ||x||2 represents the norm-2 of x, 1 denotes a
vector of all ones and I represents the identity matrix.

II. BASIC FUNDAMENTALS
A. MEASUREMENT MODEL
Consider the single-layer spherical reflectionmodel as shown
in Fig. 1, which is a widely used transmitting model in
sky-wave localization [22], [23]. Then the time delay of the
transmitting path from signal source (B) to sensor (A) is
ĀC + B̄C , where C is the equivalent reflection point. The
nearest distance between C and the earth surface is the IVH
of transmitting path from B to A; and R0 is the earth radius.
By using the cosine theorem, we have

ĀC = B̄C = (ŌA2 + ŌC2
− 2ŌAŌCcos(6 AOC))1/2 (1)

FIGURE 1. Illustration of spherical reflection paths from signal source to
different sensors in sky-wave TDOA localization.

Suppose s1, · · · , sM are the known 3-D position vectors of
M sensors and u is the known 3-D position vector of signal
source. With m = 1, · · · ,M , define Hm the IVH for the path
from u to sm, then the transmitting distance from u to sm is

dm = 2

√√√√R20 + (R0 + Hm)2 − 2R0(R0 + Hm)

√
1−

L2m
4R20

(2)

where Lm = ||u − sm||2. The range difference measured by
sm (m 6= 1) and s1 is

d̃m,1 = dm − d1 + c1τm,1 (3)

where 1τm,1 is the measurement noise and c is the light
speed. In this paper, it is assumed that 1τ2,1, · · · ,1τM ,1
are independent identically distributed (i.i.d.) zero-mean
Guassian noises, with σ 2

τ being the identical variance.
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Finally, stacking d̃m,1 for m = 2, · · · ,M , we obtain the
range difference measurement vector d̃ ∈ R(M−1)×1.

B. COEFFICIENT RETRIEVAL PROBLEM
In [11], we have introduced an assumption that H1, · · · ,HM
are identical when the maximum distance between
s1, · · · , sM is less than a threshold (30-100 km), which is
termed as A1. A1 can be supported by [24], where Bourgeois
claimed that the IVH from a moving target to a static sensor
barely changes within 20 minutes, with the target speed being
around 100 m/s. Therefore the IVHs from a static sensor to
different positions in the trajectory are approximately identi-
cal and A1 is supported. Similarly, the IVH from a moving
target to a static sensor is assumed to change intermittently
in [10], which also supports A1.

The aim of this paper is to test the identity of IVHs via the
TDOA measurements of a known-position target. To achieve
this, it is straightforward to retrieve H1, · · · ,HM from d̃ .
However, this problem is under-determined. For this rea-
son, we next introduce ionosphere-layer status coefficients to
transform the identity-test problem into a coefficient retrieval
problem. The appropriateness of the constructed coefficient
retrieval problem will also be discussed.

To start with, assume that the ionosphere-layer stays con-
stant during the observation time and that Hm is the elemen-
tary function of u and sm (expressed as f (u, sm)). Applying
Taylor expansions, then Hm and H1 satisfy

Hm = H1 +

3∑
i=1

∞∑
j=0

cm,i,j(sm(i, 1)− s1(i, 1))j (4)

where cm,i,j represents an ionosphere-layer status coefficient.
Because the sensors are on the earth surface, sm(3, 1) is the

function of sm(1, 1) and sm(2, 1). Then (4) changes into

Hm = H1 +

2∑
i=1

∞∑
j=0

c̄m,i,j(sm(i, 1)− s1(i, 1))j (5)

Further assume that, when the maximum distance between
sensors is less than a threshold (30-100 km), the coefficients
are identical for different m (ci,j = c̄1,i,j = · · · = c̄M ,i,j).
Then

Hm = H1 +

2∑
i=1

∞∑
j=0

ci,j(sm(i, 1)− s1(i, 1))j (6)

If the analytical expression of f (u, sm) is known, then (6)
can be approximated by several Taylor expansion terms.
However, the derivation of the analytical expression is
very complicated and requires future research. Alternatively,
we can retain the former 2N Taylor expansion terms in (6)
as long as the retrieval problem is over-determined (2N ≤
M − 1). When M is large enough, N could be large enough
to make the approximation appropriate.

For simplicity, we only retain the first-order terms in this
paper, leading to a weaker assumption of A1, i.e.,

Hm − H1 ≈ c1(sm(1, 1)− s1(1, 1))

+ c2(sm(2, 1)− s1(2, 1)) (7)

Because H1 is generally inaccurately known or unknown,
the retrieval problem is to estimate H1, c1 and c2 via d̃ .
The appropriateness of the constructed coefficient retrieval

problem can be observed by noting that c1 = c2 = 0 is the
sufficient and necessary condition of H1 = · · · = HM when
the matrix below is full rank in column, i.e.,

P =
[
−1M−1×1, I (M−1)×(M−1)

]

s1(1, 1) s1(2, 1)
s2(1, 1) s2(2, 1)
...

...

sM (1, 1) sM (2, 1)


(8)

which satisfies [H2 − H1, · · · ,HM − H1]T = P[c1, c2]T.
This means the XY coordinates of sensors should not be in
the same line. Due to this, we will use the typical scenario
in Fig. 2 for coefficient retrieval.

FIGURE 2. Deployment of sensor geometry for coefficient retrieval.

C. CONVENTIONAL GRID-SEARCH METHODS
In [11], it has been shown that using parametric methods is
generally inefficient to retrieve information from d̃ because
of the highly nonlinear relationship between d̃ and unknowns.
Hence, grid-search methods are preferred in [11]. Following
this, we retrieve c1 and c2 from d̃ via grid-search methods.
Next we briefly review the RGS method proposed in [11],
which is a grid-search method that can approximately select
the NGP of unknowns.

Recall that the unknowns include c1, c2 and H1. When the
rough ranges of unknowns are given, grid-points can be gen-
erated by dividing the 3D space into G grid-points. Without
loss of generality, we suppose there are Gsub grid-points in
each axis. Then we obtain G = G3

sub grid-points r1, · · · , rG.
Define SOI as the bounded 3D search space, then RGS

works by dividing the SOI into overlapping hyperspheres.
To achieve this, it needs to divide the SOI into cubes [11].
However, the ranges ofH1 and c1 (c2) are generally different,
which makes it hard to obtain the required cubes.

Section III-A will propose a trick to generate the required
cubes, which transforms r1, · · · , rG into r̄1, · · · , r̄G; and r̄g is
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used hereafter. Then r̄ is the unknown vector to be retrieved
and 9̄g = {r̄|||r̄ − r̄g||2 ≤

√
Dρ/2} for all g are the

overlapping hyperspheres, withD the dimension of SOI and ρ
the side length of cube. The TDOA measurements generated
by r̄1, · · · , r̄G are d1, · · · , dG.
Then RGS builds the sufficient condition for the selection

of hypersphere where r̄ is located, which is related with the
training of a weight matrixW . The training process relies on
a convex optimization process, i.e.,

max
W

η

s.t.



8max
g
{ρ2Dtr{(δ8̄

g
)TWδ8̄g

}

+ρ4Dtr{(δ2̄
g
)TWδ2̄

g
}} ≤ η

η < min
g,g′
∣∣g6=g′ tr{(dg − dg′ )(dg − dg′ )TW }

W � 0

tr{W } ≤ 1

(9)

where ρD =
√
Dρ/2, 1r̄g = r̄ − r̄g, δ8̄

g
and δ2̄

g
are the

first and second derivative matrices which satisfy

d − dg ≈ δ8̄g
1r̄g + δ2̄

g
vec{1r̄g1r̄Tg } (10)

It is worth noting that RGS makes the low-order approx-
imation only between r̄ and the NGP of r̄; and the training
phase of RGS is off-line because it is not dependent on d̃ .

The searching phase of RGS is

argmin
g

∣∣∣∣(d̃ − dg)TW (d̃ − dg)
∣∣∣∣2
2 (11)

which can generally lead to the right hypersphere 9̄g when
measurement noises are small enough.

However, RGS has to make the approximation that select-
ing the right 9̄g1 leads to ||r̄− r̄g1||2 = min

g
||r̄− r̄g||2. If the

3D grid-search problem reduces to a 2-D one, the approxima-
tion is reasonable because ρD =

√
2ρ/2 makes r̄ located in

at most two hyperspheres. Thus r̄g1 is the NGP or the second
NGP of r̄; and using the approximation ||r̄−r̄g1||2 ≈ min

g
||r̄−

r̄g||2 will induce a small error. But in 3D grid-search, r̄ can
be located in more hyperspheres, which may lead to a larger
approximation error. With the increase of D, r̄g1 can be the
kth NGP, where k � 1. This can make the approximation
error very large, which is the first drawback of RGS.

Another drawback of RGS is that it has a training phase
which is not only quite time-consuming (due to the second
inequality in (9)) but also not guaranteed to be feasible.

III. THE PROPOSED METHOD
A. APPROXIMATELY PROPORTIONAL METHOD
Similar to RGS, the proposed method also requires the rough
ranges of unknowns. More importantly, because the ranges
of c1, c2 and H1 are different, a simple trick is used to divide
the 3D search space into the required cubes by transforming
rg into r̄g. Suppose the range of H1 is [H1,L ,H1,U ] and the
identical range of c1 and c2 is [cL , cU ]. The unknown vector

can be defined by r̄ = [Qc1,Qc2,H1], with Q = (H1,U −

H1,L)/(cU − cL). Then the required uniform grid-points can
be generated by

r̄g =

 QcL + k1ρ
QcL + k2ρ
H1,L + k3ρ

 (12)

where k1, k2, k3 = 0, 1, · · · ,Gsub − 1, with Gsub = (H1,U −

H1,L)/ρ = G1/3.
Next, we consider the noise-free measurement vector d .

We propose to train the weight for d−dg to build the approx-
imately proportional relationship between (d − dg)TW̄g(d −
dg) and ||1r̄g||2, with the weight being W̄g. To achieve this,
we make the approximation that d − dg ≈ δ8̄

g
1r̄g in the

whole SOI. Further define W̄g = ((δ8̄
g
)†)T(δ8̄

g
)†, then∣∣∣∣d − dg∣∣∣∣2W̄g

def
= (d − dg)TW̄g(d − dg)

≈ r̄Tg (δ8̄
g
)T((δ8̄

g
)†)T(δ8̄

g
)†δ8̄

gr̄g (13)

Assume δ8̄
g
is full rank in column for all g, then∣∣∣∣d − dg∣∣∣∣2W̄g

≈ ||1r̄g||22 (14)

Finally, after generating W̄1, · · · , W̄G by δ8̄
1
, · · · , δ8̄

G
,

the searching process is

argmin
g

∣∣∣∣d − dg∣∣∣∣2W̄g
(15)

Obviously, when the NGP of r̄ is r̄g1, ||r̄g1||2 < ||r̄g2||2
holds for all g2 6= g1, with g2 = 1, · · · ,G. This leads to
g1 = argmin

g

∣∣∣∣d − dg∣∣∣∣2W̄g
.

B. IMPACT OF MEASUREMENT NOISE
When dealing with the noisy measurement vector d̃ , we pro-
pose to solve the optimization problem below

argmin
g

∣∣∣∣d̃ − dg∣∣∣∣2W̄g
(16)

Next we will show that (16) can lead to neighborhood
grid-points around r̄ or the NGP when σd = cστ � ρ. The
concept of neighborhood grid-point is explained in Fig. 3.

Firstly, with d̃ = d +1d , we have∣∣∣∣d̃ − dg∣∣∣∣2W̄g
≈ ||1r̄g||22

+1dTW̄g1d + 21dTW̄g1r̄g (17)

Let r̄g1 be the NGP (of r̄) and r̄g2 be a grid-point which is
neither the NGP nor a neighborhood grid-point. Now the task
is to prove that∣∣∣∣d̃ − dg1∣∣∣∣2W̄g1

<
∣∣∣∣d̃ − dg2∣∣∣∣2W̄g2

(18)

Eq. (18) is the sufficient and necessary condition of

21dT(W̄g11r̄g1 − W̄g21r̄g2) < ||1r̄g2||22 − ||1r̄g1||
2
2

+1dTW̄g11d −1dTW̄g21d (19)
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Secondly, following the 3σ principle, with the probabil-
ity close to 1, ||1d||22 ≤ 9(M − 1)σ 2

d . Recall that W̄g is
semi-definite positive, then the sufficient condition of (19) is

6
√
M − 1σdλ12(||1r̄g1||2 + ||1r̄g2||2)

+ 9(M − 1)σ 2
d λmax{W̄g2} < ||1r̄g2||22 − ||1r̄g1||

2
2 (20)

where λ12 = max{λmax{W̄g1}, λmax{W̄g2}} and λmax{W̄ }
denotes the largest eigenvalue of W̄ .
We set στ ≤ 100 ns in this paper, which is a common

parameter range of στ in sky-wave TDOA localization [11].
Hence σd � 1 km and the second term on the left hand side
of (20) is ignorable compared with the first term thereof. The
sufficient condition of (20) changes into

6
√
M − 1σdλ12 < ||1r̄g2||2 − ||1r̄g1||2 (21)

FIGURE 3. Illustration of uniform grids in (c1, c2, H1) space and (c1, c2)
plane.

Finally, it can be observed from Fig. 3 that ||r̄g2||2 −
||r̄g1||2 ≥ ρ approximately holds when r̄g1 is the NGP and r̄g2
is neither a neighborhood grid-point nor the NGP. Hence, (18)
holds when ρ � σd . In other words, g = argmin

g

∣∣∣∣d̃−dg∣∣∣∣2W̄g

should be the index of NGP or a neighborhood grid-point.
Additionally, if we deem r̄ as a random variable which is

uniformly distributed within the grid cell around NGP, then
the lower-bound of the probability of success to select r̄g1
(when r̄g1 is the NGP) can be calculated by

Ps,r̄g1 =
∏
i 6=g1

P(6
√
M − 1σdλ1i < ||1r̄gi||2 − ||1r̄g1||2)

(22)

Although the analytical calculation of Ps,r̄g1 is very compli-
cated, Ps,r̄g1 can be calculated via a numerical process. This
is achieved by dividing the grid cell around r̄g1 into Ḡ dense
points (r̄g1,1, · · · , r̄g1,Ḡ). If there are N̄ points which satisfy
the G− 1 inequalities in (22), then Ps,r̄g1 ≈ N̄/Ḡ.

As an example, we calculate Ps,r̄g1 for the 3D grid cell
around r̄g1 = [−155.55,−155.55, 144.44], with [cL , cU ] =
[−1, 1]; and other simulation conditions are the same with
those of Section V-B. The results are depicted in Table 1 and
it is shown that the values of Ps,r̄g1 obtained by numerical
calculation are close to those obtained by simulation tests in
the interested range of στ (στ ≤ 100 ns).

TABLE 1. The percentages of success to select the NGP obtained by
derivation and simulation.

What’s more, it can be observed from (22) that Ps,r̄g1 is a
monotonically decreasing function of λ1i. This means using
the weighed norm-2 functions to alleviate off-grid errors
makes the proposed method more sensitive to measurement
noises than using norm-2 functions, with λ1i ≥ 1.

Algorithm 1 The Proposed Method

Require: The TDOA measurement vector d̃ , the grid-points
r1, · · · , rG.

1: Training phase
Calculate uniform grid-points r̄1, · · · , r̄G and the corre-
sponding first-order derivatives δ8̄

1
, · · · , δ8̄

G
via (12).

Calculate W̄1, · · · , W̄G which are defined above (13).
2: Searching phase

Calculate g1 = argmin
g
||d̃ − dg||2

W̄g
, output rg1.

IV. DISCUSSION AND PERFORMANCE ANALYSIS
A. ADVANTAGES AND LIMITATIONS
The advantages of the proposed method are two-fold. Firstly,
it does not need to divide the SOI into hyperspheres, which
fixes the first drawback of RGS. Secondly, its training pro-
cess consists of G pseudo-inverse procedures which are
always feasible, thus alleviating the second drawback of
RGS. Section IV-Bwill further verify that the training process
of AP is much faster than that of RGS.

The limitation of the proposed method is that it makes
first-order approximations within the whole SOI, while RGS
approximates d − dg with its first and second-order Taylor
expansions only when rg is the NGP. Hence, the proposed
method should suffer frommore Taylor approximation errors.
Fortunately, the ranges of c1 and c2 should be small by recall-
ing the maximum distance between sensors and the limited
range of IVH. Section IV-C will show that the first-order

VOLUME 7, 2019 92865



T.-N. Zhang et al.: Improved Grid-Search Method for the Identity-Test of IVHs via TDOA Measurements

approximation is appropriate when the ranges of c1 and c2 are
smaller than [−5, 5], which should be the maximum scales of
c1 and c2 in most cases.

B. ANALYSIS OF COMPUTATIONAL COMPLEXITY
The training phase of RGS relies on a convex optimization
process which deals with a G(G − 1)/2 dimension matrix
according to (9). For this reason, the training process of RGS
is quite time-consuming. Alternatively, the training process
of the proposed method is much faster. It consists of G
pseudo-inverse procedures, corresponding to δ8̄

1
, · · · , δ8̄

G
,

respectively. The dimension of δ8̄
g
is (M−1)×D, leading to

the computational complexity of O((M − 1)3G). For verifi-
cation, the CPU run-time test results are depicted in Table 2.
Expect G, the simulation conditions of Section V-B are used
in this subsection.

TABLE 2. CPU run-time tests of the training processes of RGS and the
proposed method.

FIGURE 4. CPU run-time versus the grid number per axis.

Additionally, in [11], we have shown that the searching
phase of RGS is very computationally cheap, with the com-
putational complexity being O((M − 1)2G). The searching
phase of the proposed method also needs the computational
complexity of O((M − 1)2G) according to (16). Hence, the
proposed method is also a fast grid-search method. To verify
this, Fig. 4 is used to compare the proposedmethodwith other
grid-search methods. It is shown that the CPU run-time cost
of AP is close to that of RGS.

C. RELATIONSHIP BETWEEN THE PROPOSED
METHOD AND TAYLOR SERIES
Taylor series [25], [26] (TS) is a classical iterative method
which is well-known to be locally optimal. Similar to the
proposed method, it utilizes the first-order approximation

within the whole SOI. The contents to follow will show
that: (a) TS equivalently minimizes a norm-2 cost function
which is different from the proposed method and (b) the pro-
posed method is less affected by local minimums compared
with TS.

(a) Note that TS does not need to transform r into r̄. Let
rk |k=0 be the initial guess of r and rk |k=1,··· be the interme-
diate results of TS. Define δ8(rk ) and d(rk ) the first-order
derivative matrix and the data vector calculated by rk , respec-
tively. Then the first-order approximation made in the kth
iteration of TS is

d̃ ≈ d(rk )+ δ8(rk )(r− rk )+1d (23)

Then TS calculates r by solving

min
r
||d̃ − d(rk )− δ8(rk )(r− rk )||22 (24)

By solving (24), the updating rule for the kth (k = 1, · · · )
iteration is given by

rk+1 = rk − λδ8†(rk )(d̃ − d(rk )) (25)

where λ is the updating step which is usually empirically
determined. The iteration process stops when a given thresh-
old ζ satisfies

ζ ≥ ||rk+1 − rk ||2/||rk ||2 (26)

The optimization problem in (24) can be converted into

min
r
||1d||22 (27)

Further convert (15) into min
g
||1r̄g||22, then the difference

between cost functions can be observed: TS is based on
the maximum likelihood criterion and AP is based on the
minimum off-grid error criterion.

(b) TS works by iteratively updating r and is likely to
convey when an intermediate result is near a local minimum.
Alternatively, AP works by minimizing ||1r̄g||22, which is
actually a convex problem. Although the first order approx-
imation made in AP may make

∣∣∣∣d − dg
∣∣∣∣2
W̄g

smaller than

||1r̄g||22 and thus causes local minimums, AP is still less
sensitive to local minimums than TS. The reason is as follows.
When the grid-points are dense enough so that r̄ coincides
with its NGP (r̄g1), ||d − d(r̄g1)||2W̄g1

= 0. This implies that
the cost function generated by NGP is at least no larger than
the cost functions generated by the grid-points around local
minimums. Thus, the grid-points near the local minimums are
not necessarily selected, which means the proposed method
is less affected by the local optimums than TS.

What’s more, another difference between TS and AP is
that AP avoids the selection of updating step and convey-
ing threshold, making the usage of AP more convenient in
practice.

To verify the superiority of AP over TS, we utilize
the simulation conditions in Section V-B to obtain the
results in Fig. 5. In this figure, T1, T2, T3 and T4 corre-
spond to four test conditions, i.e., (λ, ζ ) = (10−4, 10−3),

92866 VOLUME 7, 2019



T.-N. Zhang et al.: Improved Grid-Search Method for the Identity-Test of IVHs via TDOA Measurements

FIGURE 5. RMSE versus coefficient range in terms of the proposed
method and TS under different test conditions.

(λ, ζ ) = (10−3, 10−3), (λ, ζ ) = (10−4, 10−4) and (λ, ζ ) =
(10−3, 10−4), respectively. The definition of root mean
square error (RMSE) is given in Section V; and RMSE(r) is
the lower bound of RMSE generated by the NGP.

It is observed from Fig. 5 that the proposed method keeps
behaving better than TS under four test conditions, which ver-
ifies the superiority of AP. A by-product is that the first-order
approximation error barely affects the proposedmethodwhen
the identical range of c1 and c2 is smaller than [−5, 5], which
should be the maximum scale of c1 and c2 in most cases.

V. SIMULATION RESULTS
As parameter settings of this section, R0 = 6378 km and
the identical range of c1 and c2 is [−0.1, 0.1]. The XY
coordinates of sensors and target are depicted in Fig. 2.
In Section V-A, H1 is assumed to be known (H1 = 200 km),
leading to a 2D grid-search problem. In Section V-B, H1 is
unknown, leading to a 3D grid-search problem; and the rough
range of H1 is set to [100, 500] km according to the property
of ionosphere-layer.

Besides, according to [27], the calculation of στ based on
signal-to-noise ratio (SNR) is

σ 2
τ =

3T 2
s (1+ 2SNR)

Ntπ2SNR2 (28)

with the sampling interval being Ts = 10 ns and the sampling
number Nt being τ/Ts, where τ = 1ms. The RMSE of
estimated coefficients is defined by

RMSE =
1
V

√√√√ V∑
v=1

((c1,v − ĉ1,v)2 + (c2,v − ĉ2,v)2) (29)

where V is the Monte Carlo time, ci,v is the true value of ci
in the vth Monte Carlo experiment (i = 1, 2) and ĉi,v is the
estimate of ci,v. We set V = 100 in this paper.

As comparisons, the simulated methods include the
norm-2 method, the SF method in [16], the RGS method
in [11] and the MUSIC method in [21], where
MUSIC utilizes the converted TDOA measurements

exp(
√
−1×2π d̃/(2max

g,m
|dgm,1|)) (Readers are referred to [20]

for more details on the conversion of TDOA measurements).
Additionally, the hyperparameter in SF is set to 0.1.

A. RMSE PERFORMANCE TESTS IN 2D GRID-SEARCH
In this subsection,G is set to 81. Thus the grid-points in the c1
and c2 axis are [−0.1 : 0.025 : 0.1] and [−0.1 : 0.025 : 0.1],
respectively. In each Monte Carlo experiment, c1 and c2 are
generated uniformly between −0.1 and 0.1.

FIGURE 6. Absolute estimation error of coefficient c1 with known H1.

FIGURE 7. Absolute estimation error of coefficient c2 with known H1.

The absolute estimation errors of c1 and c2 versus differ-
ent Monte Carlo experiment indexes are depicted in Fig. 6
and Fig. 7, respectively, with SNR fixed to 5 dB. It can be
observed that SF behaves badly compared with other meth-
ods. The reason for this may be the poor restricted isotropy
property (RIP) of the grid map. Other methods provide the
similar coefficient recovery accuracies.

The SNR performances of the considered methods are
given in Fig. 8. The results coincide with those of Fig. 6 and
Fig. 7. Additionally, the RMSEs of the simulated methods
other than SF are very close to RMSE(r). Hence, most meth-
ods are sufficient to select the NGP of r in 2D grid-search.
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FIGURE 8. RMSE of coefficients versus SNR with known H1.

B. RMSE PERFORMANCE TESTS IN 3D GRID-SEARCH
As the simulation conditions of this subsection, H1 is
unknown. Hence the range of H1 is [100, 500] km. There are
10 grid-points in the c1, c2 andH1 axis, respectively. Thus the
grid-points in the c1, c2 and H1 axes are [−0.1 : 0.2/9 : 0.1],
[−0.1 : 0.2/9 : 0.1] and [100:400/9:500], respectively.
Notably, the trick to build uniform grids has been given in
Section III-A. In each Monte Carlo experiment, c1 and c2
are generated uniformly between −0.1 and 0.1; and H1 is
generated uniformly between 100 km and 500 km.

FIGURE 9. Absolute estimation error of coefficient c1 with unknown H1.

The absolute estimation errors of c1 and c2 versus different
Monte Carlo indexes are depicted in Fig. 9 and Fig. 10,
respectively, with SNR fixed to 5 dB. Different from the 2D
grid-search scenario, the proposed method behaves much
better than other methods for most Monte Carlo indexes.
The performance of RGS degrades badly with the increase
of dimension, which verifies the claim in Section II-C; and
SF still behaves worse than other methods.

The SNR performances of the considered methods in 3D
grid-search are given in Fig. 11. The results coincide with
those of Fig. 9 and Fig. 10. Hence, the proposed method is
superior to the current state-of-the-art in 3D grid-search.

FIGURE 10. Absolute estimation error of coefficient c2 with unknown H1.

FIGURE 11. RMSE of coefficients versus SNR with unknown H1.

C. IDENTITY-TEST PERFORMANCE IN 3D GRID-SEARCH
To evaluate the identity-test performance of the proposed
method, false rejection rate PR and false acceptance rate PA
are introduced in this subsection. PR represents the percent-
age of wrongly judging the identical IVHs to be different; and
PA represents the percentage of wrongly judging the different
IVHs to be identical.

As the simulation conditions, we setG = 113 (i.e., the grid
number per axis is 11), leading to c1 = [−0.1 : 0.02 : 0.1],
c2 = [−0.1 : 0.02 : 0.1] and H1 = [100:40:500] km.
To test the false rejection rate, we suppose that

H1, · · · ,HM are identical when |c1| ≤ 0.01 and |c2| ≤
0.01 hold. Then we generate c1 and c2 uniformly within
[−0.01, 0.01] for 100 Monte Carlo experiments and suppose
that a false rejection happens when |ĉ1| > 0.02 or |ĉ2| >
0.02, with ĉi the estimate of ci (i = 1, 2). The false rejection
rates are depicted in Fig. 12. Obviously, the proposed method
leads to the least false rejection rate.

On the other hand, by uniformly generating c1 and c2
within [−0.02,−0.01] and [0.01, 0.02] for 100 Monte Carlo
experiments, we suppose that a false acceptance happens
when ĉ1 = ĉ2 = 0. The results are shown in Fig. 13. It is
observed that the false acceptance rate is very small when
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FIGURE 12. False rejection rate versus SNR with unknown H1.

FIGURE 13. False acceptance rate versus SNR with unknown H1.

methods other than SF are used; and the proposed method
along with RGS provides the smallest false acceptance rate.

VI. CONCLUSION
In this paper, the identity-test problem of IVHs is studied.
The inputs of this problem are TDOA measurements from
a known-position target; and the identity-test of IVHs is
realized by solving a coefficient retrieval problem. As the
main contribution, an improved grid-search method is pro-
posed. Compared with an existing novel grid-search method,
the proposed method avoids the approximation that selecting
the right hypersphere (where the unknown vector is located)
is equivalent to selecting the NGP. This merit makes the pro-
posed method superior to the current state-of-the-art in terms
of recovery accuracy. Besides, the training phase and the
searching phase of the proposed method are computationally
cheap. Simulation results demonstrate the superiority of the
proposed method when solving a 3D grid-search problem.
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