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ABSTRACT Recently, the container-based virtualization has gained increasing attention and been widely
used in cloud computing. In container products such as Docker, there are a number of parameters that
can control container resource usages, to avoid the resource contention occurred when running too many
containers concurrently. However, it is difficult to set parameter values accurately only based on experience
while tuning the parameters manually is too time-consuming to be impractical. Therefore, it becomes a
challenge to set appropriate resource parameter values automatically and quickly to optimize the resource
usages of container. In this paper, we present an adaptive tuning framework, conTuner, to optimize the
resource configuration of container online for a new application. conTuner contains two components:
an optimized configuration pool that offers candidate resource configurations, as well as a configuration
optimizer that gets the appropriate optimized configuration from the pool. We have deployed conTuner
in a Docker cluster. The experimental results demonstrated that, for a new application, compared to the
pre-set upper limit of container resource usages, the container performance is equal or better when using
conTuner, and the set resource usage constraint is more accurate. Besides, conTuner can also forecast whether
resource contention among multiple containers occurs before running them concurrently. The evaluation
results indicate that the prediction accuracy is 87%.

INDEX TERMS Cloud computing, Docker, online configuration optimization, parameter tuning, resource
usage improving.

I. INTRODUCTION
With the continuous development and increasingly popularity
of cloud computing, users can use the shared hardware and
software resources provided by cloud services (e.g. IaaS,
PaaS, SaaS) on demand, and pay only for the resources actu-
ally used. The academia has carried out extensive researches
on various fields, such as performance optimization [1], [2],
energy consumption [3], [4], and security [5], [6]. One of the
core technologies in cloud computing is virtualization, which
provides isolation on performance and resources. Traditional
virtualization is implemented on the basis of hypervisors
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such as Xen [7] and KVM [8]. Recently, container technol-
ogy, also known as operating system level virtualization,
has attracted much attention due to its lightweight nature.
It allows multiple isolated processes running in system to
share a single operating system kernel, and leverage Linux
cgroups to control the consumption of resources in the host.
Currently, there are several commercial container implemen-
tations on the market, such as LXC (Linux Container) [9],
Docker [10], rkt [11], and OpenVZ [12].

Fig. 1 represents the difference between the two virtu-
alization technologies mentioned above. Hypervisor-based
virtualization requires installing guest operating system for
each virtual machine, while in container-based virtualization,
all the virtualized instances (i.e. containers) run on the same
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FIGURE 1. Comparison of hypervisor-based and container-based
virtualization.

operating system kernel shared by the host. Therefore, com-
pared with hypervisor-based virtualization, container-based
virtualization has several advantages. Firstly, the performance
of container is better. In hypervisor-based virtualization,
the hypervisor layer used for virtualizing hardware incurs sig-
nificant performance overhead. Container-based virtualiza-
tion eliminates this layer and thus can achieve near-native per-
formance. Secondly, container-based virtualization does not
need guest operating system, and is thusmore lightweight and
resource efficient. The startup speed of container is therefore
an order of magnitude faster than virtual machine [13], which
enables launching container on demand at runtime. Finally,
due to the small resource requirement of a single container,
the deployment density of containers on the same physical
node is much higher as compared with virtual machines. For
instance, [14] claims that, in the same hardware environment,
the number of deployable containers can be four-to-six times
more than that of virtual machines. With the above ben-
efits, container-based virtualization, as a lightweight alter-
native to hypervisor-based virtualization, is being increas-
ingly widely adopted in both development and production
environments [15], [16].

On the other hand, unlike virtual machines that strictly
isolate and pre-allocate resources, containers share resources
such as CPU and memory on the host and compete for
these shared resources at runtime. With the rising number
of concurrently running containers, the increasing resource
contention among containers could negatively affect applica-
tions running in the containers. Especially for containers run-
ning important and resource sensitive applications, resource
contention from relatively less important containers would
lead to a significant degradation in application performance
or quality of service. To avoid such situation, commercial
container-based virtualization products such as Docker pro-
vide some parameters [17] to limit the amount of resources
that a single container can use. Optimizing the values of these
resource parameters can help increase the overall resource
utilization of system.

Figure 2 shows a case of contending resources among
multiple containers in a Docker cluster. The dotted line in the
figure indicates the cluster overall memory utilization when
hosting 15 containers running application MySQL. In this

FIGURE 2. Resource contention among MySQL containers and
Memcached containers.

case, the overall memory utilization is low at the beginning
(the first 80 seconds), but then rises to a relatively high level.
The solid line in the figure represents the cluster overall mem-
ory utilization when launching 10 new containers running
application Memcached at 50 seconds after the MySQL con-
tainers startup. It can be seen that, when thememory usages of
MySQL containers increase, the sum of the memory require-
ments of each container exceeds the amount of the host’s
physical memory, resulting in memory contention among
containers, which eventually extends the running time taken
by these containers. If one can predict the maximum mem-
ory requirements of applications MySQL and Memcached
in advance and set the upper limits of memory usage for
containers accordingly, the above situation can be avoided by,
for example, migrating theMemcached containers to another
host. Hence, through properly limiting the resource usages of
containers, the amount of resources that need to be reserved
for these containers can be calculated, which is helpful in
arranging the type and number of containers running on the
host reasonably.

However, since changing the parameter configuration of
a running container is difficult, it is usually required to set
the above container resource parameters empirically, that
is, to pre-estimate the resource requirements of the appli-
cation in the container according to certain characteristics
(e.g. the size of dataset to process, the required calculation
accuracy) of the application, and set the related parameters
when launching containers. Unfortunately, such estimates
are usually inaccurate, which would make a negative impact
on application executions: overestimation would reduce the
number of containers that can run concurrently, resulting
in low utilization of host resources, while underestimation
could lead to application performance degradation or even
application failure. Due to the diversity of the resource usage
patterns of applications, it is also difficult to establish a
unified resource demandmodel to predict the resource usages
of the application in container. On the other hand, since the
number of container resource parameters is not a few (e.g.
in Docker, there are more than 10 parameters for constrain-
ing container resource usages), manually tuning parameters
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through trial-and-error is too time consuming that cannot
be used in practice. Therefore, how to automatically and
efficiently optimize the resource parameter configuration for
a container has become an important issue in improving the
resource utilization of the containerized cluster.

In this paper, we propose conTuner, a novel auto-tuning
framework for container resource parameters, to address the
aforementioned problem. conTuner is developed based on
Docker and exploits a common observation that for appli-
cations with similar resource usage pattern, the influence
of resource configuration change on their performance or
resource utilization would also be similar. conTuner com-
prises two components: an optimized configuration pool,
including a number of container resource configurations,
each of which is optimized for a set of historical applications
with a specific resource usage pattern, and a configuration
optimizer, which chooses an appropriate optimized configu-
ration from the optimized configuration pool to set resource
parameters for container(s) running the new application.
Since the configuration pool only needs to be constructed
once offline, the time cost for tuning the container parameters
online is small, which allows conTuner to optimize resource
parameters for the container of the new application in a short
time. We have deployed conTuner on an experimental cluster
for evaluation. The experimental results demonstrate that,
conTuner can improve the resource usages of a container
without influencing the performance of application in the
container, and predict the resource contention among contain-
ers in advance.

The main contributions of this paper are as follows:

• We propose an automatic tuning framework for resource
parameters of container. This framework utilizes the
historical applications grouped by the resource usage
patterns to provide the new application with a number
of optimized container resource configurations for selec-
tion. Experiment results show that, this framework can
improve the container resource usages without impact-
ing the container performance.

• We design a mechanism of building the optimized con-
figuration pool from the historical applications. This
mechanism can explore the resource usage patterns of an
application from the multi-dimensional time series for
classification, and use a two-phase random algorithm to
accelerate searching for the optimized configuration.

The remainder of this paper is organized as follows:
In section II we detail the architecture and design of conTuner.
The implementation and evaluation results for conTuner are
discussed in Section IV. Section V summarizes the related
works and Section VI concludes this paper.

II. ARCHITECTURE AND DESIGN
The overall architecture of conTuner is shown in Figure 3.
conTuner consists of two components: the optimized con-
figuration pool and the configuration optimizer. The con-
figurations in the optimized configuration pool are obtained

FIGURE 3. The architecture of conTuner.

through tuning parameters for the historical applications
grouped by resource usage patterns respectively. This con-
figuration pool is only constructed once in offline phase,
and serves for optimizing the resource configuration of the
new application in online phase. The configuration optimizer
classifies the new application into one historical application
group according to the resource usage patterns, and sets con-
tainer resource parameters based on the corresponding con-
figuration in the optimized configuration pool when launch-
ing containers of the new application.

In the rest of this section, we first outline the container
parameters related to resource usages, and subsequently
describe conTuner in detail.

III. CONTAINER RESOURCE PARAMETERS
In this subsection, we take Docker, one of the most popular
commercial implementation of container, as an example to
illustrate the container resource parameters. Docker exploits
the cgroups in Linux kernel to manage the resources (e.g.
CPU, memory and IO devices) used by containers, and pro-
vides a number of parameters to adjust the resource usages of
container. Table 1 lists the parameters that have an obvious
influence on the resource usages of containers.

However, determining the exact limits on container
resource usages is not an easy task, it is thus necessary
to pre-process these parameters to relieve the workload on
parameter tuning. As shown in Table 1, according to different
resources (CPU, memory and IO device), parameters in this
table can be divided into three groups. The original tuning
process can then be converted into three simpler processes:
tuning CPU related, memory related and IO device related
parameters respectively. Besides, as can be seen from Table 1,
most parameters are either continuous or have a very large
value range. We discretize the value ranges of the continuous
parameters into a series of equidistant points. For example,
we specify that for memory-related parameters, the interval
between each two points is 256MB. Hence we can estab-
lish a discretized configuration grid Grid{c} (c denotes an
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TABLE 1. Container resource parameters.

available parameter configuration). The length unit of
Grid{c} is defined as the distance between two adjacent
points in a dimension of Grid{c}, which is used to measure
the Manhattan distance between any two configurations in
Grid{c}.

A. CLUSTERING HISTORICAL APPLICATIONS
Asmentioned earlier, conTuner classifies the historical appli-
cations into several groups according to resource usage pat-
terns. In each group, applications exhibit similar performance
behaviors and resource requirements under different resource
conditions. In this subsection, we first collect relevant data
of historical applications, then adopt a clustering method to
group the historical applications according to the collected
data.

For each historical application, we exploit a combination
of open source tools cAdvisor and influxDB to collect perfor-
mance and resource utilization data of this application as a
basis for grouping. Specifically, during the running of a con-
tainer, we collect the time series data of CPU usage, memory
usage and disk usage, normalize each of them respectively,
and integrate them as a three dimensional resource utilization
signature belonging to that application. For a complex appli-
cation that launches multiple containers to perform different
functions respectively, in subsequent processing we take each
of the containers as a separate ‘‘small’’ application. In this
way, each historical application owns a unique resource uti-
lization signature, which can be used tomeasure the similarity
between applications on resource usages.

However, the lifespans of containers running different
applications are often different, resulting in different lengths
of the collected time series data. It is thus difficult to measure
the difference between these unequal-length time series data
directly using the traditional Euclidean distance metric. Such
problem can be addressed by employing a Dynamic Time

Wrapping (DTW) [18] based distance metric. For two time
series with different lengths, DTW can ‘‘wrap’’ the time axis
of one (or both) time series nonlinearly to find an optimal
alignment between these two time series, and compute their
similarities based on this alignment. The difference between
the resource utilization signature of two applications can then
be quantified as the distance in space through separately
calculating the DTW distance of the time series of resource
usages on each dimension. Calculating the distances between
the resource utilization signatures of different applications
respectively, the distribution of all the historical applications
in a three-dimensional space can finally be obtained for sub-
sequent clustering.

Next, conTuner employs amodifiedK-medoids based clus-
tering approach to classify the historical applications into
groups divided by resource usage patterns. K-medoids clus-
tering algorithm is a variant of the classic K-means cluster-
ing algorithm. Compared with K-means, K-medoids selects
actual data points to represent clusters, thus is more robust to
noise and outliers. However,K-medoids still has the following
shortcomings: Firstly, the accuracy of clustering is sensitive
to the selection of initial cluster centers. Randomly generating
the initial cluster centers might make the algorithm converge
to local optimum. Secondly, the algorithm must explicitly
specify the value of K (the number of clusters), but it is diffi-
cult to determine the appropriateK value before the algorithm
begins. Finally, K-medoids needs to calculate the distance
between data points repeatedlywhen updating cluster centers,
leading to low efficiency of the algorithm. In allusion to
these defects, conTuner has modified the K-medoids algo-
rithm accordingly that exploits Canopy clustering to select
the initial cluster centers. Canopy clustering algorithm [19]
can fast and roughly divide a dataset into multiple partially
overlapped subsets, which serve as the initial clusters for
subsequent K-medoids clustering.

However, in Canopy clustering, the selection of the center
point of each subset is still random. Here conTuner lever-
ages the max-min criterion to improve the Canopy clustering
algorithm so that the center points of subsets are dispersed as
much as possible. Specifically, when creating a new subset,
the distances between the candidate center points and the
determined center points are firstly calculated. Then con-
Tuner determines the shortest distance for each candidate
point and selects the candidate point corresponding to the
maximum of these shortest distances as the center point of
the new subset. The details of the modified algorithm are
described in Algorithm 1.

In the initialization phase (lines 1-3), the Canopy clus-
tering’s thresholds T1 and T2 need to be specified. We use
cross-validation method to determine their values. The algo-
rithm then exploits Canopy clustering (lines 4-25) to deter-
mine the number of subsets and their initial distributions.
After the Canopy clustering completes, the algorithm assigns
the data points belonging to multiple subsets to a subset
contains the nearest central point (lines 26-31), thereby con-
verting the partially overlapping subsets into disjoint clusters.
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Algorithm 1 Modified K-Medoids Clustering Algorithm
Input: Dataset D
1: Set the distance thresholds T1, T2 (T1 > T2).
2: Initialize list Medoids, nonMedoids and Candi,

two-dimensional list Clusters, upper triangular matrix
Distances.

3: nonMedoids← D
4: Randomly select p1 from D.
5: Add a new list C1 to Clusters. Insert p1 to C1 and Medoids.
6: Remove p1 from D and nonMedoids.
7: ocur ← p1, Ccur ← C1
8: repeat
9: for each point p in D do
10: if distance(p, ocur ) < T1 then
11: Insert p to Ci.
12: if distance(p, ocur ) < T2 then
13: Remove p from D.
14: end if
15: else
16: Insert p to Candi as a candidate point.
17: end if
18: end for
19: if Candi is not empty then
20: Find the next medoid pi from Candi according to max-

imin criterion.
21: Add a new list Ci to Clusters. Insert pi to Ci and

Medoids.
22: Remove p from D and nonMedoids.
23: ocur ← pi, Ccur ← Ci
24: end if
25: until D is empty or Candi is empty
26: for each point n in nonMedoids do
27: if n belongs to more than one cluster in Clusters then
28: Find the medoids ot nearest to n in Medoids and the

corresponding cluster Ct .
29: Remove n from clusters other than Ct .
30: end if
31: end for
32: Calculate Scur =

∑k
j=1

∑
pi∈Cj distance(pi, oj), the cost of

current clustering (k is the number of clusters).
33: repeat
34: for each point n in nonMedoids do
35: Fetch the medoid o′ of the cluster C ′ that n belongs to.
36: Calculate S ′, the cost of clustering if swapping o′ with

n.
37: if S ′ < Scur then
38: Replace o′ with n in Medoids.
39: Replace n with o′ in nonMedoids.
40: Rebuild Clusters, assign each point in nonMedoids

to the cluster with the nearest medoid.
41: Recalculate the cost of current clustering Scur .
42: end if
43: end for
44: until the clusters no longer change
Output: Clusters = {C1,C2, · · · },Medoids

Finally, the K-medoids clustering (lines 32-44) is performed
to iteratively update the clusters. In order to reduce the cal-
culation amount, the algorithm only calculates the cost of
exchanging data point inside the cluster, and do not exchange
data points between different clusters. Moreover, since the
process of calculating the distance between two data points
(i.e., the resource utilization signatures of two historical
applications) is complicated, an upper triangular matrix is

used to record the distance between every two data points.
For any two data points, if their distance is required at first
time, the algorithm calculates the distance by comparing the
similarity of the corresponding time series, and inserts the
result into thematrix Distances.When the distance is required
again, the corresponding value is fetched directly from the
matrix. When the algorithm terminates, each obtained cluster
corresponds to a group of historical applications with similar
resource usage pattern, and the application corresponding to
the cluster center is taken as the representative application of
the group.

B. SEARCHING THE OPTIMAL CONFIGURATION
After grouping the historical applications, conTuner opti-
mizes container resource configuration for applications in
each group. Because the resource usage patterns of applica-
tions in the same group are similar, conTuner only needs to
perform parameter tuning for the representative application
of the group, and the obtained optimal container resource
configuration can also be applied to all other applications
in that group. In the previous section, we have listed sev-
eral parameters that control the usage of container resources
and pre-processed them to simplify the process of parameter
tuning. Then conTuner is required to find the optimal con-
figuration for each representative application in a discretized
container resource configuration grid Grid{c}.

However, since it is too time-consuming to traverse all con-
figurations in Grid{c}, a two-phase random search algorithm
similar to [20] is introduced to improve search efficiency and
avoid local optima. This algorithm divides the search process
into two phases: global search and local search, as shown
in Algorithm 2. The global phase is based on a modified
genetic algorithm, aiming at discovering the local area to be
explored further. In the local phase, the optimal configuration
is found through hill climbing method. Furthermore, in order
to speed up searching, the algorithm runs multiple containers
concurrently in each iteration, each of which uses different
resource configuration.

The inputs of the algorithm include: in global search,
the population size n1, the Manhattan distance between two
configurations in the initial population r1, the crossover
probability Pc, the mutation probability Pm, the maximum
iterative number N and the maximum times of consecutive
global optimum unchanging b0; in local search, the number of
chosen configurations per iteration n2 and the neighborhood
radius r2. n1 and r1 default to the average length of dimen-
sions in Grid{c}, n2 defaults to 2/3 of n1, r2 defaults to 1/5 of
r1, and the default value of Pc, Pm, N and b0 is empirically
set to 0.8, 0.05, 20, and 5, respectively.

After initialization, the algorithm enters in the global
phase. Firstly, to generate the initial population of genetic
algorithm, n1 configurations are obtained using the latin
hypercube sampling (LHS) method [21]. In order to avoid
premature convergence, these configurations should be suffi-
ciently dispersed: the Manhattan distance between each two
configuration is specified to be not less than r1. Otherwise
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Algorithm 2 Two-Phase Random Search Algorithm
Input: in global search, the population size n1, the distance between

initial points r1, the crossover probability Pc, the mutation prob-
ability Pm, the maximum iterative number N and the threshold
of unchanging global optimum b0; in local search, the number
of chosen points per iteration n2 and the neighborhood radius
r2.

1: global search← 0, no better ← 0
2: repeat
3: Conf Set ← LHS Sampling (n1)
4: until ∀c1, c2 ∈ Conf Set , distancec1,c2 >= r1
5: ccandi ← FindBest(Conf Set), ccur ← ccandi
6: Sort Conf Set from good to bad, obtain Conf List .
7: while global search < N or no better < b0 do
8: Calculate the probability that each configuration in
Conf List is chosen.

9: Perform selection operation, obtain Conf sel. Conf sel
must include ccur .

10: Select pairwise configurations for crossover from Conf sel
by crossover probability Pc.

11: Perform crossover operation, obtain Conf cross tmp.
12: ccandi c ← FindBest(Conf cross tmp), accept configura-

tion based on Metropolis rule, obtain Conf cross.
13: Select configurations for mutation from Conf cross by

mutation probability Pm.
14: Perform mutation operation, obtain Conf mut tmp.
15: ccandi ← FindBest(Conf mut tmp), accept configuration

based on Metropolis rule, obtain Conf mut .
16: if ccandi is not better than ccandi c then
17: ccandi ← ccandi c, replace the worst configuration in

Conf mut with ccandi.
18: end if
19: if ccandi is better than ccur then
20: ccur ← ccandi, no better ← 0
21: else
22: no better++, Add ccur to Conf mut .
23: end if
24: if the number of configurations in Conf mut is less than n1

then
25: Complement Conf mut using the top ranked configura-

tions in Conf sel.
26: end if
27: Sort Conf mut from good to bad, obtain a new Conf List .
28: global search++
29: end while
30: ccandi ← ccur
31: while global search > 0 do
32: Ncur ← GetAllNeighbors(ccur , r2)
33: repeat
34: ccur ← ccandi
35: Conf Set ← SelectNeighbors (Ncur , n2, ccur , 1)
36: ccandi ← FindBest(Conf Set)
37: until ccandi is not better than ccur
38: repeat
39: Conf Set ← LHS Sampling (n1)
40: until ∀c1, c2 ∈ {Conf Set ∪ {ccur }}, distancec1,c2 >= r1
41: ccandi ← FindBest (Conf Set)
42: if ccandi is better than ccur then
43: ccur ← ccandi
44: else
45: global_search← 0
46: end if
47: end while
Output: ccur

the algorithm would invoke LHS repeatedly until acquir-
ing a set of satisfied configurations. Then the algorithm
launches n1 containers and sets resource parameters of each
container using one of the configurations obtained before.
These containers are sorted by performance after they finish
running. If there are multiple containers having the equal
performance, their order would be decided by the resource
utilization during run time. According to the sorting result,
the algorithm selects some of the configurations from the
current population with a certain probability. Note that the
current best configuration must be included in the selected
population Conf sel. Next, the algorithm selects configura-
tions from the population Conf sel by crossover probability
to perform crossover operation, then launches a new batch
of containers to evaluate the obtained child configurations.
Referring the idea of simulated annealing, the child configu-
rations that meet the Metropolis rule are preserved in popula-
tion Conf cross. Similarly, the algorithm performs mutation
operation and stores the accepted child configuration in pop-
ulation Conf mut , and takes actions to guarantee that, from
Conf cross to Conf mut , the best configuration in popula-
tion would not worsen. After that, the algorithm updates the
global best configuration. If the number of configurations in
populationConf mut is insufficient, the algorithm selects the
first k configurations of Conf sel to complement Conf mut
(k is the number of configurations need to be added). The
complementedConf mut is treated as the population for next
iteration. The above procedure repeats until the iteration num-
ber reaching the threshold N , or the global best configuration
does not change after consecutive b0 iterations. The algorithm
then switches to the local search phase to pinpoint the local
optimal configuration in a neighborhood with radius r2.

In the local search phase, in each iteration the algorithm
randomly selects n2 configurations with aManhattan distance
of 1 from the current central configuration, and determines
the best performing configuration through actual running.
This iterative process finishes when it is impossible to find
a configuration better than the current central configuration.
The final central configuration is then taken as the local
optimal configuration.

Finally, the algorithm enters the global phase again to
check whether the current local optimal configuration is
global optimum. If finding a better configuration, the algo-
rithm would make a local search once again around the newly
found configuration, otherwise the algorithm terminates and
outputs the optimal configuration.

Using the above two-phase random search algorithm,
conTuner can determine the optimal container resource
configuration for each representative historical application,
and build the optimized configuration pool based on these
resource configurations. However, the resource requirements
of some applications are sensitive to certain characteristics
(e.g. data scale, calculation accuracy). When such charac-
teristics change, the original optimal resource configuration

VOLUME 7, 2019 108535



L. Cai et al.: Improving Resource Usages of Containers Through Auto-Tuning Container Resource Parameters

FIGURE 4. The Workflow of Configuration Optimizer.

might be no longer optimum even for the same application.
Hence, for a specific application, it is necessary to identify its
sensitive characteristics and analyze the correlation between
these characteristics and the resource demands of the appli-
cation. conTuner has proposed a configuration adjustment
scheme for each representative application in order to opti-
mize container resource parameters properly when the appli-
cation’s sensitive characteristics change.

C. THE CONFIGURATION OPTIMIZER
After building the optimized configuration pool offline, con-
Tuner starts up the configuration optimizer to optimize con-
tainer resource parameters online for new applications. If a
new application has already run before, the optimizer takes
the configuration corresponding to the historical application
group it belongs to directly from the optimized configuration
pool. Otherwise the optimizer would first classify the new
application into one of the established historical application
groups based on the resource usage pattern, then employ the
corresponding configuration in the configuration pool to set
resource parameters for the container running this applica-
tion, and record the resource usages while the container is
running. Figure 4 shows the workflow of the configuration
optimizer.

However, the resource usage pattern of an application never
run before is unknown until it actually runs,making it difficult
to classify the application directly. conTuner thus conducts a
short trial run for the new application before actual running.
The trial run only takes very little time by adopting a variety
of time-saving ways (e.g. sampling large dataset or relaxing
high precision requirement).

During the trial run, the configuration optimizer collects
resource usage data from the launched container to gener-
ate a three dimensional resource utilization signature of the
new application. Then the optimizer compares this signature
with the resource utilization signature of every representative
historical application. Because the resource utilization sig-
natures are multidimensional time series that are difficult to

compare, directly the above comparisons are all conducted
based on the DTW distance metric. After finding out the
representative application whose resource utilization signa-
ture is nearest to the new application, the optimizer fetches
the corresponding optimized resource configuration from the
configuration pool.

As mentioned in the previous section, since the new
application and the historical applications are often different
in certain sensitive characteristics (e.g. data scale, calcula-
tion accuracy), the optimized resource configuration obtained
from the configuration pool might not be fully suitable for the
new application. The configuration optimizer thus employs
the previously described corresponding configuration adjust-
ment scheme to adjust the obtained resource configuration,
then uses the adjusted configuration to set resource parame-
ters for the container launched to run the new application.

On the other hand, as the historical applications continually
increases, it is necessary to timely update the grouping of
historical applications. However, as described earlier, reclas-
sifying historical applications, especially re-searching the
optimal resource configuration for each application group,
takes a considerable amount of time. Hence the frequency of
grouping update should not be too high. It is specifies here
that, the process of updating the grouping begins if the num-
ber of accumulated historical applications reaches the preset
threshold, or if the resource utilization or performance of
the container using the recommended resource configuration
differs greatly from expectation (e.g. greater than 10%).

Finally, we analyze the time cost of the configuration opti-
mizer. Since the configuration optimizer performs a series of
operations before the container actually runs, the time spent
on these operations should be taken into consideration in the
calculation. In these operations, apart from the trial run of
the application that takes some time, the time spent on other
operations (for example, sampling the dataset or adjusting
the already obtained configuration) is very little and can be
ignored. Therefore, the total time cost of the configuration
optimizer can be approximately expressed as:

Ttotal = Ttrial + Toptimal
= α · Toriginal + Toptimal (1)

where α indicates the reduction degree in the running time of
the trial run relative to the original running time. Toriginal and
Toptimal respectively represent the running time of containers
whose resource parameters are set using the original config-
uration and the optimal configuration. It is obvious that when
α is small enough, the configuration optimizer can optimize
container resource configuration with a small extra time cost.

IV. EVALUATION
A. EXPERIMENTAL SETTING
We have implemented and deployed conTuner on our exper-
imental cluster. The cluster consists of two blade servers,
each of which includes two Xeon E5649 2.53GHz hexa-core
processors, 64 GB memory, and 8TB hard disk. We use
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FIGURE 5. The accuracies of the resource configuration optimized by conTuner compared with no constraints on resource usage.

Ubuntu 14.04.5 64-bit with Linux kernel 4.4.0 and Docker
17.05.0.

In the evaluation, we select 10 commonly used applications
representing various types to construct workloads, as shown
in Table 2. We take the images of these applications from
Docker Hub [22] and build corresponding container(s). For
each application, a continuous operation (e.g. insert millions
of record into MySQL, or perform Terasort test on Hadoop)
is performed throughout the lifespan of container(s). Note
that for big data processing frameworks Hadoop and Spark,
the container for master node and the container for slave node
are treated as two different types of containers because their
resource usage patterns are different.

B. EVALUATION RESULTS
Firstly, we evaluate the accuracy of the configuration
obtained by tuning with conTuner, namely, compare the limit
of resource usages in the optimized configuration and the
actual resource requirements of the application, which is
acquired when running the application in container(s) with-
out resource usage constraint. Specifically, we select six

TABLE 2. Applications for evaluation.

odd-numbered applications from Table 2 as the historical
applications of conTuner for training, and select three appli-
cations in Table 2: Memcached, Hadoop and Zookeeper as

VOLUME 7, 2019 108537



L. Cai et al.: Improving Resource Usages of Containers Through Auto-Tuning Container Resource Parameters

FIGURE 6. The performance of containers optimized by conTuner and containers using pre-set usage limit.

new incoming applications to test conTuner. In the tests,
each application runs respectively in container(s) that use
conTuner to optimize resource parameters and in container(s)
that does not limit resource usages (the default situation).
The container performances in above two cases are shown
in Figure 5(a), while Figure 5(b) to 5(d) respectively compare
the upper bounds on CPU/memory/disk usage of container
in the optimized resource configurations with the maximum
usage of the corresponding resource for the container without
resource limit. As can be seen from the figures, the dif-
ference in the running time of container is within 5% and
the maximum gap of resources is less than 10%. Since the
performance of container without resource usage limit would
not be worse than the container with resource usage limit,
it can be conclude that conTuner can predict the actual
resource requirements of application accurately, and generate
a near-optimal container resource configuration based on the
predicted result. Although the container performance under
the optimized resource configuration is slightly worse than
the default situation, setting the container resource usage limit
is beneficial to reserve the resources required for running
container accurately.

Next, we compare the influence on the running results
for using conTuner to customize container resource usage
limit and using the pre-set resource limit of container. Here
the pre-set resource limit refers to the resource combina-
tion which is set according to the host’s hardware config-
uration, and is unrelated to the resource requirements of
the specific application. Specifically, in this experiment, we
leverage the models trained in the previous experiment to
optimize the resource configuration for each of the applica-
tions in Table 2 and specifies the upper limit of resources can
be used by container at runtime. On the other hand, we use

trial-and-error method to empirically select the most appro-
priate one for each application from the following five
resource combinations as the resource usage cap of container:
1. (1 CPU core and 2GB memory), 2. (2 CPU core and 2GB
RAM), 3. (2 CPU core and 4GB RAM), 4. (2 CPU core and
8GB memory) and 5. (4 CPU core and 8GB memory). The
comparison results are shown in Figure 6 and 7.

Figure 6 represents the container performance for each
application when setting different resource usage caps. It can
be observed that, for more than one-third of the applications,
the container performance when using the pre-set resource
usage limit is obviously lower than when using conTuner
for optimization. For the remain applications, the container
performances in this two cases are close, but as illustrated
in Figure 7, when using the pre-set resource usage limit, their
actualmaximumCPUormemory usages have not reached the
pre-set values. In other words, for most applications, the pre-
set resource usage ceilings are either too low or too high.
Hence it can be said that the container resource configura-
tion optimized by conTuner is better than the pre-set con-
tainer resource usage limit, which cannot match the container
resource requirement well without prior knowledge of the
application.

Finally, we validate the ability of conTuner to predict
the resource contention among containers. We concurrently
run a group of applications that are randomly selected from
Table 2 in a single server. These applications run twice: once
in containers that have no resource usage constraint and once
in containers that use conTuner to optimize resource param-
eters. In the second case, if the sum of the usage caps of all
containers on a specific resource exceeds the actual capacity
of this resource in the server, the excessive container(s) are
placed on the other server. The above procedure is repeated
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FIGURE 7. The ratio of the actual maximum CPU/memory usage to the upper limit when using pre-set resource limit.

200 times and each time the selected applications are differ-
ent. Table 3 lists the statistics for the results of the above
experiments. From the table we can see that, when running
in containers without resource usage constraint, the resource
contention among containers is detected for nearly three
quarters of the application groups. If using conTuner to opti-
mize container resource configuration before these appli-
cation group actually running, the resource contentions of
more than 85% application groups can be predicted. For
another quarter of application groups, in most cases, the dif-
ference between the container performances when using con-
Tuner and when do not limit the container resource usages
is within 10%, namely, the resource configuration opti-
mized by conTuner canfit the real resource demands. Over-
all, 174 of the 200 experiments meet expectation (detecting
resource contention or the optimized configuration performs
well), which means that the forecast accuracy of conTuner
reaches 87%.

V. RELATED WORKS
The performance issues of containers has been highly con-
cerned. Some of the recent works discussed the resource
optimization for containerized platforms.

Reference [23] investigated the influence of different con-
tainer resource configurations on the performance of Spark
jobs running in Docker containers, and proposed a perfor-
mance prediction model based on support vector regres-
sion (SVR). In [24], an engine based on a modified k-nearest
neighbor algorithm was designed to recommend resource
configuration automatically for Hadoop workloads running
on container-driven clouds. Reference [25] adopted sev-
eral machine learning techniques, such as linear regression
(LR), support vector machine (SVM) and artificial neural

TABLE 3. Results after running 200 groups of applications.

network (ANN), to model the relationship between appli-
cation performance and the resource parameter configura-
tion for Docker containers, and assessed the accuracy of the
established performance model. However, these approaches
only aim at a specific application (Spark or Hadoop),
and are not suitable for complex application environments.
Reference [26] presented a flexible container-based tuning
system that enables users to find appropriate network topolo-
gies and routing algorithms for big data applications. In [27]
a resource allocation approach based on stable matching
theory is proposed to optimize the resource utilization of the
container cloud while improving application performance.
Reference [28] employed an ant colony optimization (ACO)-
based algorithm to optimize the distribution and schedul-
ing of Docker containers. Reference [29] developed a linear
programming based framework that can optimize resource
allocation for application-oriented Docker containers and
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support automatic resource expansionwhen demand changes.
Reference [30] proposed a resource allocation mechanism
for container cloud based on combined double auction and
simulated annealing algorithms.

In addition, there are also numerous works focusing on
tuning the parameters of big data platforms. Reference [31]
introduced a concept of elastic container to Hadoop YARN
that can optimize parameter configuration and resource allo-
cation dynamically based on the collected real-time statis-
tics. In [32] a method combining the binary classification
and multi-classification is adopted to tune the parameters
of Spark automatically. Reference [33] proposed a gray-box
performance model for Spark that predict the performance of
each stage using regression algorithms. However, none of the
above approaches involves containers and the resource used
by containers.

VI. CONCLUSION
The container-based virtualization has been widely adopted
in the field of cloud computing. In order to avoid the resource
contention among multiple containers running concurrently,
several container resource parameters have been provided
to control the resource usages of container. However, for a
specific application, it is difficult to determine appropriate
parameter values just relying on experience, whereas the
time cost of manual parameter tuning is too high. In this
paper, we propose an adaptive tuning framework, conTuner,
to optimize container resource parameters for new applica-
tions online. conTuner first build an optimized configuration
pool offline, where each configuration is optimized for a
group of historical applications classified by resource usage
pattern. Then conTuner uses a configuration optimizer to
obtain the corresponding optimized configuration from the
configuration pool according to the resource usage pattern
of the new application. We deployed conTuner in an experi-
mental cluster and the evaluation results show that, compared
with using the pre-set resource usage limit of container, using
the container resource configuration optimized by conTuner
can reflect the actual resource requirements of the container
more accurately while achieving equal or better container
performance. In addition, when predicting the resource con-
tention among containers running concurrently, the accuracy
of conTuner reaches 87%.

In the future, we plan to extend our work in two aspects:
first, we will add optimization for network IO related parame-
ters and second, we will put the weight factors of applications
into account when optimizing the container resource config-
uration.
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