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ABSTRACT Fast maneuvers at large angles of attack are necessary for modern fighter aircrafts. The
aerodynamic coefficients in this situation are unsteady, with the characteristics of hysteresis and fast time-
varying. We propose an identification method based on the linear parameter varying (LPV) model. The
model takes into account the hysteresis with respect to the angle of attack, and fast time varying with
respect to the motion of post-stall maneuvers. By introducing the angular velocity as an exogenous variable,
the model can guarantee the tracking ability of fast time-varying variations. We use the instrumental variable
least squares (IVLS) algorithm to deal with the estimation problem. Finally, the experimental data obtained
from maneuvers at large angles of attack from wind tunnel tests are used to validate the applicability and
effectiveness of the proposed method.

INDEX TERMS Instrumental variable least squares (IVLS) algorithm, large angle of attack, linear parameter
varying (LPV) model, system identification, unsteady aerodynamics.

I. INTRODUCTION
Ehanced maneuverability and high agility is required by
modern fighter aircrafts. It is necessary to increase the aero-
dynamic angles of attack for maneuvering. Large angle-of-
attack maneuvers can help the aircrafts change the attitude
and direction dramatically in a small space over a short time,
and then the pilots can quickly turn the head of aircrafts and
realize the rapid nose pointing in air combat. Identification
of aerodynamics plays a crucial role in the overall design
of control systems, flight tests, flight simulation systems
and fault detection [1]–[4]. The coefficients of aerodynamic
forces and moments are represented as functions of flight
state parameters including angle of attack, sideslip angle
and the Mach number [5], [6]. Identification theory is an
efficient method to determine the aerodynamic coefficients
for establishing the equations of motion of aircrafts [7].
The identification method for aerodynamic coefficients at
the range of small angles of attack is mature, however,
the method cannot handle the situations beyond the tra-
ditional range, because the flow topology at large angles
of attack is more complex. Identification of aerodynamic
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coefficients at large angles of attack has attracted attentions
from researchers because the aerodynamics with respect to
the angle of attack is complicated, which is nonlinear and
unsteady [8]–[10].

A large number of wind tunnel tests for research of large
angle-of-attack aerodynamic characteristics have been devel-
oped, such as the tests at Central Aerohydrodynamic Insti-
tute (TsAGI), Russia and Defence and Evaluation Research
Agency (DERA Bedford), UK. Based on the nonlinear and
unsteady aerodynamic data obtained from the tests, math-
ematical models are established by means of identification
methods. The identification methods in general fall into two
categories. One combines physical mechanism in the estab-
lishment of mathematical models, and the other is divorced
from physical mechanism. The former is adopted more in
practice, because the latter contains more uncertainties which
makes the performance analysis complex and brings trou-
bles to the design of control system. A series of unsteady
aerodynamic modeling methods combining the knowledge
of physical mechanism exist, including reduced frequency
model [11], step response model [12], [13], state space
model [14], [15], differential equation model [16], [17], etc.

Hysteresis is usually observed at angles of attack close
to the stall angle. The flow separation causes sharp drop
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in the lift and notable increase in the drag. Since the past
history has an influence on the flow, it is also responsible for
aerodynamic hysteresis [18], [19]. Aerodynamic coefficients
have strong connections with the angle of attack, which are
determined not only by the value of the angle of attack, but
also by the variation of the angle of attack. Aerodynamic
characteristics always present a phenomenon of hysteresis
which is history dependent, and the connections between
aerodynamic coefficients and the angle of attack are multi-
valued mappings. The phenomenon is especially obvious at
large angles of attack.

Physical and mathematical features of hysteresis of Soyuz
spacecraft were analyzed by [20] according to the flight test
data and the hysteresis phenomenon was found to be the
result of damping. The effect of profile asymmetry, Reynolds
number on the hysteresis loop shape was studied in [21]
according to the wind tunnel test data of rectangular wings.
Hysteresis of NACA 0012 airfoil with a simple asymmetric
foil structure at the angles of attack close to stall angle was
studied in [22]. By conducting an experimental study on a
NASA low speed GA(W)-1 foil, the authors in [23] found
that the hysteresis had a close relationship with the phe-
nomenon of laminar boundary layer separation and transition
over the airfoil. However, the phenomenon is still not well
understood.

Rapid online identification is also required for the reason
that flight state parameters may be fast time-varying with
rapidly changing rate at large angles of attack. Therefore,
the identificationmethod should be able to track the fast time-
varying parameters or even a sudden change which usually
happens in the post-stall maneuvers. The existing methods
mainly focus on the hysteresis problem which can get a
good performance in the longitudinal maneuvers. The fast
time-varying problem, which plays an important role in the
aerodynamic characteristics under fast maneuvers, however,
still remains to be solved.

This paper studies the identification of aerodynamic coeffi-
cients under fast maneuvers at large angles of attack, in which
case, a clear hysteresis and fast time-varying features exist.
In the paper, we mainly discuss the aerodynamics under
lateral maneuvers.

II. LINEAR TIME VARYING (LPV)
In many practical situations, a system is usually associated to
some exogenous variables which may have physical mean-
ings. Then the system can be modeled as a function of these
fundamental parameters [24], [25]. One typical model is the
linear parameter varying (LPV) model, first introduced by
Shamma and Athans [26]. A system can be parameterized by
the LPV model as

H (q−1, p) = A(q−1, p)−1B(q−1, p), (1)

where q−1 is the delay operator with the relationship as
q−1y(k) = y(k − 1), p is a time-varying exogenous param-
eter which can be taken as a function of discrete time k as

p = p(k), and

A(q−1, p) = 1+ a1(p)q−1 + · · · + ana (p)q
−na ,

B(q−1, p) = b0(p)+ b1(p)q−1 + · · · + bnb (p)q
−nb , (2)

where na is the order of model output, nb is the order of model
input and na ≥ nb.
ai(p)(i = 1, . . . , na) and bj(p)(j = 1, . . . , nb) are the non-

linear mappings with respect to p(k). It can be seen that the
number of unknown functions to be identified is na + nb + 1.
p(k) is always chosen to be the parameter which can be
measured or easily predicted.

Equation (1) can also be represented as

A(q−1, p(k))y(k) = B(q−1, p(k))u(k), (3)

where u(k) is the input to the system, and y(k) is the output
of the system.
p(k) ∈ P ⊂ Rnp .P is the parameter space for p(k), and np is

the number of variables chosen as the exogenous parameters.
p(k) is written as pk , u(k) as uk , y(k) as yk in the discussion
behind.

Assume that the unknown functions {ai(·)}, {bj(·)} in (2) are
linear combinations of a set of basis functions {f1, . . . , fN },
which can be written as

ai(p) = a1i f1(p)+ · · · + a
N
i fN (p), i = 1, . . . , na, (4)

bj(p) = b1j f1(p)+ · · · + b
N
j fN (p), j = 1, . . . , nb, (5)

where ali and b
l
j (l = 1, . . . ,N ) are constants, and N is the

number of basis functions.
The identification problem is then transformed into the

estimation of ali and b
l
j . Basis functions can be chosen from

a variety of different forms, not limited to polynomial basis
functions fl(p) = pl−1 and Fourier basis functions fl(p) =
cos(2πp(l − 1)). Taking the polynomial function as the basis
function, (4) and (5) can be rewritten as

ai(p) = a1i + a
2
i p+ · · · + a

N
i p

N−1, i = 1, . . . , na. (6)

bj(p) = b1j + b
2
j p+ · · · + b

N
j p

N−1, j = 1, . . . , nb. (7)

Defining an n×N matrix2 consisting of parameters to be
identified as 

a11 · · · aN1
...

. . .
...

a1na · · · aNna

b10 · · · bN0
...

. . .
...

b1nb · · · bNnb


. (8)

Defining the regressor matrix 8k determined by values
of input and output data, together with the values of basis
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functions with respect to pk as

8k =



−yk−1
...

−yk−na
uk
...

uk−nb


[
1 pk · · · pN−1k

]
. (9)

By defining the matrices, (3) is then described by the form
of inner product

yk = 〈2,8k 〉 . (10)

According to the representation above, the model finally
obtained is linear with respect to the unknown parameters.
Then, the commonly used estimation algorithms can be
applied, such as the recursive least-square (RLS) algorithm
and the least mean-square (LMS) algorithm [27].

On the selection of p, it is convenient to choose the vari-
able which can be measured directly during the process.
If p is uncertain, a controller should be designed based on
the priori knowledge of p, such as the range of potential
variations.

III. PROPOSED FRAMEWORK
A. LPV-BASED MODELING STRATEGY
The fast time-varying characteristics of aerodynamic param-
eters are caused by the rapid maneuvers of aircrafts. Vortex
generating area and flow separating area interact with each
other in the lateral maneuvers such as rolling at large angles
of attack, which leads to complex flow topology.

Vortex breakdown has great influence on aerodynamic
characteristics, resulting in loss of lateral stability. The asym-
metric expansion of flow separation on the wing surface
brings asymmetric aerodynamic loads. Then, the asymmetric
flow topology leads to large rolling and yawingmoments, and
the values change rapidly at large angles of attack. The aero-
dynamic parameters appear to be rapidly time-varying. The
linear superposition principle is no longer applicable in this
situation. Then the traditional aerodynamic derivatives model
and other derived models based on the linear superposition
principle cannot be used.

The flight states change rapidly at large angles of attack
under complex flow structures, meanwhile the aerodynamic
parameters change dramatically. Based on the physical pro-
cess, we design our modeling framework by considering
that the unsteady aerodynamic coefficients are generated by
the static aerodynamic coefficients through a rapidly time-
varying dynamic process, which can be discretized into a
form of difference equations,

Ci(k)+ a1Ci(k − 1)+ · · · + anaCi(k − na)

= b0Ci0(k)+ b1Ci0(k − 1)+ · · · + bnbCi0(k − nb), (11)

where Ci(k) is the aerodynamic coefficient at time k , and
Ci0(k) is the static aerodynamic coefficient corresponding to

FIGURE 1. The identification framework based on the LPV model. The
rolling moment and yawing moment are the major concerns in the large
amplitude yawing motion. Ci is Cl or Cn.

the flight states at time k including the angle of attack and
sideslip angle which can be obtained by the static wind tunnel
test (p, q, r = 0).
According to the analysis above, the dynamic process

is characterized by the fast time-varying flight states, thus
the fast time-varying features in the flight states determine
the values of a1, · · · , ana , b0, · · · , bnb in (11). The angular
velocity is the key feature in the dynamic process. We choose
the angular velocity in the main direction as the exogenous
variable p in the LPV model (1). Taking the large amplitude
yawing motion as an example, the yawing rate ψ̇ is chosen
to be the exogenous variable p. Then (11) can be rewritten to
be the form of (3) by defining Ci0(k) as the input and Ci(k)
as the output. The identification framework based on the
LPV model is shown in Fig. 1. The model allows tracking of
flight states which change rapidly by introducing the angular
velocity as an exogenous variable.

B. PARAMETER ESTIMATION
The problem of estimating the LPV model y(k) = θTϕ(k)+
v(k) is considered, with the definitions,

y(k) = Ci(k);

ϕ(k) = [−Ci(k − 1),−Ci(k − 1)f1(pk−1), · · · ,−Ci(k

− 1)fN (pk−1), · · · ,−Ci(k − na)fN (pk−na ),

Ci0(k), · · · ,Ci0(k)fN (pk ), · · · ,Ci0(k − nb),

Ci0(k − nb)f1(pk−nb ), · · · ,Ci0(k − nb)fN (pk−nb ))]
T
;

θ = [a11, · · · , a
N
1 , · · · , a

0
na , · · · , a

N
na , b

1
0, · · · , b

N
0 , · · · ,

b1nb , · · · , b
N
nb ]

T. (12)

Then the least squares (LS) estimation gives the following
result

θ̂LS =

[
M∑
k=1

ϕ(k)ϕ(k)T
]−1 M∑

k=1

ϕ(k)y(k). (13)

The LS algorithm is based on the assumption that v(k) is
white noise. When the coloured noise is contained in the data,
the estimation result will be biased, given by

θ̂LS = θ0 +

[
M∑
k=1

ϕ(k)ϕ(k)T
]−1 M∑

k=1

ϕ(k)v(k). (14)

where θ0 is the true value of θ .
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Therefore, in order to ensure the estimation result to be
unbiased, according to the form of (14), the following equa-
tion need to be satisfied,

lim
M→∞

M∑
k=1

ϕ(k)v(k) = 0. (15)

We adopt the instrumental variable least squares (IVLS)
algorithm to ensure the consistency. By introducing an instru-
mental variable z(k), we get

y(k)z(k)T = θTϕ(k)z(k)T + v(k)z(k)T. (16)

The estimation result of the IVLS algorithm is

θ̂ IV = θ0 +

[
M∑
k=1

z(k)ϕ(k)T
]−1 M∑

k=1

z(k)v(k). (17)

Two conditions need to be satisfied to ensure the result to
be unbiased, ∣∣∣∣∣ lim

M→∞

M∑
k=1

z(k)ϕ(k)T
∣∣∣∣∣ 6= 0. (18)

lim
M→∞

M∑
k=1

z(k)v(k) = 0. (19)

The instrumental variable z(k) must be correlated with
ϕ(k), meanwhile non-correlated with v(k). Through analysis
of the elements in the vectorϕ(k),Ci0(k) and pk are correlated
with v(k), and Ci(k) is correlated with v(k). Hence, the instru-
mental variable is constructed,

z(k) = [−x(k − 1),−x(k − 1)f1(pk−1), · · · ,

− x(k − 1)fN (pk−1), · · · ,−x(k − na)fN (pk−na ),

Ci0(k), · · · ,Ci0(k)fN (pk ), · · · ,Ci0(k − nb),

Ci0(k − nb)f1(pk−nb ), · · · ,Ci0(k − nb)fN (pk−nb ))]
T,

(20)

where x(k) is Ĉi(k), the estimate of Ci(k), satisfying

A(q−1, p(k))x(k) = B(q−1, p(k))Ci0(k), (21)

where A,B are constructed by the LS result θ̂LS.
The recursive algorithm is then,

θ̂ (k) = θ̂ (k − 1)+ P(k)z(k)
[
y(k)− θT(k − 1)ϕ(k)

]
,

(22)

P−1(k) = P−1(k − 1)+ z(k)ϕT(k), (23)

z(k) = [−Ĉi(k − 1),−Ĉi(k − 1)f1(pk−1), · · · ,

− Ĉi(k − 1)fN (pk−1), · · · ,−Ĉi(k − na)fN (pk−na ),

Ci0(k), · · · ,Ci0(k)fN (pk ), · · · ,Ci0(k − nb),

Ci0(k−nb)f1(pk−nb ), · · · ,Ci0(k−nb)fN (pk−nb ))]
T.

(24)

In terms of conventional maneuvers, the estimation algo-
rithm is required to be less sensitive to measurement noise,

while in term of fast maneuvers such as post-stall maneuvers,
the estimation algorithm is required to converge in a short
time [28]. Therefore, we define an index to indicate whether
a fast change happens, as in

ε(k)− ε(k − 1)
ε(k − 1)

> η, (25)

where ε(k) is the prediction error at time k , and η is a pre-
defined threshold.

When the inequality holds, which means a fast time-
varying motion is detected, then the proportion of history
information influence on the estimation result should be
reduced, and meanwhile rapid convergence should be mainly
encouraged.

C. PERFORMANCE ANALYSIS
Weighted sum of a set of basis functions is usually used
to approximate the nonlinear function [29]. There are many
choices of basis functions types, such as Gaussian function,
polynomial, S function, wavelet function, etc.

The number of parameters to be estimated in the proposed
model is (na + nb + 1)N , which increases dramatically with
the increase of na, nb and N . Excessive number will lead
to high time complexity and space complexity. Additionally,
the model will suffer from overfitting. Hence selection of
model terms is required. We used the selection method dis-
cussed in [30].

Let âi(pk )(i = 1, . . . , na), b̂j(pk )(j = 0, 1, . . . , nb) denote
the approximation functions. Let 1ai and 1bj denote the
residual functions which are calculated by ai− âi and bj− b̂j
respectively.

The measurement noise v(k) is assumed to be bounded,
which is a standard assumption in identification problems,

‖v(k)‖h ≤ µ, h ∈ [1,∞). (26)

The error bound is an important criterion for evaluation of
model prediction performance. We discuss the error bound
below. First the following two assumptions are assumed:

A-1 For any 1ai and 1bj, Lipschitz condition is satisfied
in the space P with the Lipschitz constants li,

1ai ∈ L (li) = {f : |f (p1)− f (p2)| ≤ li‖p1− p2‖2,

∀p1, p2 ∈ P}, i = 1, . . . , na. (27)

1bj ∈ L (lna+j) = {f : |f (p1)− f (p2)| ≤ lna+j‖p1− p2‖2,

∀p1, p2 ∈ P}, j = 1, . . . , nb. (28)

A-2 The residual functions are bounded on the observation
data,

|1ai(pk )| ≤ εi, i = 1, . . . , na. (29)

|1bj(pk )| ≤ εna+j, j = 1, . . . , nb. (30)

The two assumption conditions hold in case of interpola-
tion of basis functions [31]. Then the error bound is given by
the theorem.
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FIGURE 2. FL-8 wind tunnel test section [32].

Theorem 1: For all q ∈ P, ai(q), i = 1, . . . , na and
bj(q), j = 1, . . . , nb can be estimated by the representations
of (4) and (5). LetM denote the number of training data. Then
the error bounds are given by min

k=1,...,M
(εi + li‖q− pk‖2) , i =

1, . . . , na and min
k=1,...,M

(
εna+j + lna+j‖q− pk‖2

)
, j =

1, . . . , nb respectively.
Proof: Under the condition (A-1), ∀q ∈ P, k =

1, . . . ,M ,

1ai(q)−1ai(pk ) ≤ li‖q− pk‖2. (31)

Then, with the training data it satisfies that

1ai(q) ≤ 1ai(pk )+ li‖q− pk‖2. (32)

According to the condition (A-2),

1ai(q) ≤ εi + li‖q− pk‖2. (33)

Hence,

1ai(q) ≤ min
k=1,...,M

(εi + li‖q− pk‖2) . (34)

The proof also holds for (30).

IV. EXPERIMENTAL RESULTS
FL-8 wind tunnel is used for large amplitude yawing oscil-
lation tests and static tests of the corresponding flight states
(Fig. 2). The experiments are done on the model with the
fourth-generation fighter configuration (Fig. 3). The physical
parameters are shown in Table 1. The experimental speed is
30m/s. The deflection angle of the leading edge flap is 30◦,
and the angles of other flight control surfaces are zero. The
oscillation frequency is 1Hz. The sampling period is 0.02s.

First we obtain the interpolation table of the static aero-
dynamic coefficients Ci0 with respect to the angles of attack
and yawing angles (α,ψ). Then we use ten groups of large
amplitude oscillation data with different testing conditions.
In the large amplitude yawing oscillation test, the notable
variations of aerodynamic coefficients are mainly reflected
on the rolling moment Cl and the yawing moment Cn.

FIGURE 3. 3D configuration of the experimental prototype [32].

TABLE 1. Physical parameters of the experimental prototype.

Thus, we validate the effectiveness of the proposed approach
according to the aerodynamic data of Cl and Cn.

The order na and nb are determined by comparison of fit-
ting degree of different models with observation data, which
is evaluated by the sum of squared errors,

J =
M∑
k=1

(
y(k)− θ̂

T
ϕ(k)

)T (
y(k)− θ̂

T
ϕ(k)

)
(35)

where θ̂ is the estimate of the model with given na and nb.
The sum of squared errors J decreases with the increase

of na and nb. When the values of na and nb are large enough,
which may be larger than the real values, the notable decrease
of J stops. Thus, the order of the model is determined based
on the variation tendency of J . The determination is realized
by gradually increasing na and nb in sequence, and calculat-
ing the corresponding θ̂ and J until no obvious decrease of J
can be observed.

We first set f1, . . . , fN to be polynomial basis functions
and N = 4. According to judgement discussed above,
na, nb = 3, and the number of parameters to be estimated
is 28. We choose 8 groups of data as training data to identify
the model with the method of the LS algorithm and the IVLS
algorithm respectively. The testing conditions of the data for
training the model are given in Table 2. Then we test the
models obtained with the training data on 2 groups. The
testing conditions of the data for testing the model are given
in Table 3. The experiments have been repeated in the AVIC
Aerodynamics Research Institute FL-8 wind tunnel [32]. The
comparison results are shown in Fig. 4 and Fig. 5. From
the result, the LPV model based on the polynomial basis
functions can effectively track the fast time-varying variations
of aerodynamics. Compared with the LS method, the IVLS
method can estimate the model with higher accuracy.
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TABLE 2. Testing conditions of the data for training the model.

TABLE 3. Testing conditions of the data for testing the model.

FIGURE 4. Comparison result on testing data of Group 1 in Table 3.

We then set the basis functions to be the form of Gaussian
function,

fi(pk ) = exp
(
‖pk − pi‖2

)
(36)

where pi ∈ {−1, 0, 1}.
The model is identified according to the same training data

corresponding to Table 2 by using the IVLSmethod, and then
validated on the data of Group 2 in Table 2. The prediction

FIGURE 5. Comparison result on testing data of Group 2 in Table 3.

FIGURE 6. Contrast curve on testing data of Group 2 in Table 3.

errors of rolling moment coefficients and yawing moment
coefficients between the model result and the real data are
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compared. The contrast curve of prediction error e(·) is seen
in Fig. 6. From the comparison result, using the same number
of basis functions to construct the LPVmodel, Gaussian basis
functions perform better.

V. CONCLUSION
By analyzing the physical mechanisms of aerodynamics
under the lateral maneuver at large angles of attack, we find
fast time-varying characteristic is the key problem in the
identification of aerodynamic coefficients in addition to the
phenomenon of hysteresis. Aiming at solving the tracking
problem, we propose an LPV-based framework. Traditional
approaches, such as the state space model and the step
response method, handle the pitch movement well, however,
not well in terms of the lateral movement. By introducing
exogenous variable, the algorithm can track both fast and
slow parameter changes, and handle the lateral movements
well. The experimental results have demonstrated that the
proposed algorithm dramatically improves the identification
performance of aircrafts when the flight state parameters are
fast time-varying at large angles of attack.
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