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ABSTRACT Contactless gesture recognition is an emerging interactive technique in ubiquitous and
mobile computing. It combines the linguistics with the wireless signals to analyze, judge, and integrate
human gestures by the usage of intelligent algorithms. The existing contactless gesture recognition studies
can achieve gesture recognition with the machine learning technologies. But in practice, some objective
factors, such as the user’s position, the non-line of sight condition, can seriously affect the performance of
these gesture recognition systems. In this paper, we propose an intelligent and robust contactless gesture
recognition using physical layer information. Instead of the usage of machine learning, we learn the gesture
characteristics based on the Fresnel zone model of wireless signals. First, we denoise the collected channel
state information (CSI) in a sliding window. Then, we extract the eigenvalues of channel phase information
based on Fresnel zone model to depict four basic gestures. The features of gestures are independent of
the user’s position and the signal amplitude. Finally, common-gesture recognition is achieved based on the
decision tree classification. Moreover, we develop a hidden Markov model to achieve the complex-gesture
recognition. The extensive experimental results show that our proposed method is position-independent and
robust. The accuracy of basic-gesture recognition is as high as 91% on average. And, the accuracy of the
complex-gesture recognition is also above 85% on average.

INDEX TERMS Contactless, Fresnel zone, channel state information, gesture recognition.

I. INTRODUCTION

With the rapid development of ubiquitous and mobile com-
puting, more users wish to interact with smart devices in
a contactless way. Traditional interaction with wearable
devices requires the physical touch of the user, such as a
mouse, a keyboard, or other peripheral devices, which causes
much inconvenience for daily life and work. Compared with
traditional ones, gesture-based interaction (remote recogni-
tion of gestures) can provide a more convenient and natural
way for users to interact with smart devices. The intelligent
applications, like smart home, virtual reality and body sense
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games, can learn the commands by the gestures, as shown
in Fig. 1. For example, a user can control a home lamp
by doing a slip-hand movement in the air without touching
household goods. Or you may control the size of the sound
on the sofa. In a formal presentation, users can also control
powerpoint page flipping without touching the computer but
by sliding hands in the air.

Traditional contactless gesture recognition can be divided
into two types: (1) one based on professional hardware
equipment. The camera-based gesture recognition systems
can identify the gestures of users by images [1], [2], nev-
ertheless only working under the conditions of line-of-sight
path. Besides, users can also wear specialized sensors, such
as smart wristbands [3], hand-held sensors [4], [S]. These
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(a) Push diagram (b) Pull diagram

FIGURE 1. Four different gestures defined in our experiments.

wear-based gesture recognition methods solve the challenge
of an invalid of non-line-of-sigh. However, wearable devices
bring inconvenience due to the limited power, even for the
older people. (2) the other based on radio frequency equip-
ment. This method does not require the user to wear any
physical sensor. It can also work under non-line-of-sight
conditions [6]-[11]. However, the system is realized based
on machine learning techniques. It requires extensive training
and learning in the early stage, and has a high limitation on
the environment where the user is located.

In order to overcoming existing challenges in contactless
gesture recognition, we propose an intelligent and robust
WiFi-based contractless gesture recognition, called iGest.
iGest uses the radio frequency sensing technique for position-
independent gesture recognition in the indoor environment. It
can be used to recognize the gestures in a contactless way
with the following advantages. (1) In terms of equipment,
we use commercial WiFi cards to achieve gesture recognition.
(2) We extract the time-domain features of gestures based on
the Fresnel zone model. The features are not related to the
signal amplitudes and independent of the user’s positions.

Then, we design and develop the position-independent
gesture recognition system based on the commercial WiFi
cards. First, we make a data processing for the physical
layer information of WiFi signals, including data collecting,
noise removal and window slice. The pure channel phase
information can be selected for the next feature extraction.
Next, we utilize the feature extraction to describe the different
gestures. The phase difference between subcarriers can be
extracted and used to calculate peak and valley features.
We encode eigenvalues after extracting the peak and valley
values. Finally, we use features coding for gesture recognition
based on the decision tree classification. Moreover, a hidden
Markov model is proposed to recognize the complex gestures.

The prototype system of iGest is designed and tested
in three environments. We use two mini computers as the
receiver and the transmitter respectively, while selecting the
physical layer information of WiFi from the Intel 5300 NIC.
In our experiments, we employ four volunteers to perform
four basic gestures and four complex gestures. We totally
take about 160 groups of gestures recognition in different
locations of different environments. The experimental eval-
uation shows that the iGest can achieve good performance.
It can overcome the limitation on the position of the human
body. Gestures can also be recognized in a non-line-of-sight
environment. In addition, no special sensing equipment is
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(c) Right diagram (d) Left diagram

required. Moreover, the system overcomes the shortcomings
of coarse granularity recognition based on the RF device. And
it can recognize human gestures with fine granularity.

In summary, the main contributions of this work are as
follows:

« We propose iGest an intelligent and robust contactless
gesture recognition using WiFi physical layer informa-
tion. It is a fine-grained and location-independent ges-
ture recognition system.

« 1Gest can recognize common gestures based on Fresnel
zone mode and decision tree classifier algorithm. It also
achieves complex and successive gesture recognition
based on the hidden Markov model.

« We design and implement the prototype system based on
commodity WiFi cards. We take comprehensive exper-
imental evaluation in different indoor environments.
Experimental results show that iGest achieves strong
robustness and high accuracy of 91% on average.

The structures in the rest of the paper are as follows: In
Section 2, we discuss the advantages and disadvantages of
gesture recognition in different ways. Our preliminary work
is described in Section 3. In the fourth section, we propose
a gesture recognition system and discuss the key parts of the
system in detail. In addition, we describe the experimental
and performance analysis results in section 5 and analyze the
experimental results in section 6.

Il. RELATED WORK

In general, the gesture recognition studies can be divided
into two types: contact gesture recognition and contactless
gesture recognition. The contact gesture recognition tech-
nique use the wearable devices to sense the movement of
the arms. By contrast, the contactless gesture recognition is
more convenient to users. With the development of ubiquitous
computing, the contactless gesture recognition is paid more
attention to.

A. CONTRACT GESTURE RECOGNITION

The earliest implementations of gesture recognition use spe-
cial wearable devices, such as smart wristband [12]. The
wristband uses a 9-axis inertial measurement unit to capture
changes in the direction of the arm. The start and end of
smoking can be judged by gestures, so smoking gestures and
conversations can be detected in real-time. Aiming at the
multi-sensory glove recognition system for paralyzed hand
gestures, Nelson et al. [13] design an EOG-based headband
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FIGURE 2. Geometry of the Fresnel zone.

using an accelerometer and flex sensors to detect eye and
hand gestures. The headband uses a glove and textile elec-
trodes, so the users can control the home’s smart appliances
by using EOG-based headband. Xu er al. [14] use the basic
features of gyroscope and accelerometer data to construct
a classifier which can uniquely recognize gestures. Further,
for expanding gesture recognition, finger writing can also be
accurately recognized.

B. CONTRACTLESS GESTURE RECOGNITION

In addition, some studies also use camera devices for gesture
recognition, such as the imaging technology of the depth
camera [15], multi-PC/ camera system [1]. The ellipsoid is
used to fit the contour data of the human body in the image
captured by the camera. The system realizes the real-time
3D reconstruction of the moving human body. And ASL [16]
measured static postures and hand motions by an optical cam-
era, and the pseudo-two-dimensional hidden Markov model
could classify them.

In recent years, most researchers try to use wireless sensing
to realize gesture recognition. Bo Chen et al. [17] implement
their receiver system on the NI-based SDR platform. With
full-training, the system can detect a keystroke within one
key offset. Wang et al. [18] transform the data matrix into
2-dimensional radio images and constructs image-based fea-
ture maps for the input of DNN. Due to the CNN method
extracts features from local fields, it can reduce the complex-
ity of training and reduce costs. It is necessary for users to
do a great deal of training and learning in different positions
to use these methods. Then the collected gesture signals are
compared with the training generated library and recognized
finally.

With the development of WiFi devices, there are many
researchers utilize channel state information (CSI) to achieve
gesture recognition. Wang et al. [8] develop an activity
recognition system that uses CSI to identify human activities
under WIFI equipment. E-eyes [19] utilizes CSI values for
recognizing household activities. In addition, fine-grained
gesture recognition systems based on Wi-Fi CSI were
proposed [20]-[22].

Compared with the existing methods, this paper proposes a
novel method of gesture recognition to overcome the depen-
dence of gestures recognition on the training learning. We
achieve an intelligent and robust contactless gesture recog-
nition based on a Fresnel zone model where the gesture
movement is detected by a modeling method.
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IIl. EXPERIMENTAL OBSERVATIONS

In this part, we will analyze the principle. The theory of
Fresnel zone and the effects of gestures in the Fresnel zone
model are briefly introduced. Then, according to the observed
experimental phenomena, the causes of the effects of gestures
in the Fresnel zone model are analyzed.

A. PRINCIPLE ANALYSIS

The channel state information (CSI) estimates the channel
information by representing the channel attributes of the com-
munication link [23]. The channel information is fine-grained
and contains detailed phase and amplitude information about
each subcarrier. The physical layer CSI can describe the
propagation path of each subcarrier and can reduce the mul-
tipath effect. Wi-Fi 802.11n specification utilizes an OFDM
based transmission scheme. The entire bandwidth is divided
into multiple subcarriers. 20 MHz channels with different
frequencies have 56 OFDM subcarriers (indexes from —28
to —1 and 1 to 28) with a carrier interval of 0.3125 MHz. The
total bandwidth occupied is 17.8 MHz.

Fresnel zone is a series of concentric ellipsoids with alter-
nating intensity caused by the propagation of light or radio
waves in free space. There will occur constructive and
destructive interference when paths of different lengths enter
and leave the phase. Assume that P1 and P2 are two radio
transceivers, as shown in Fig 2. Fresnel zone model is a
concentric ellipsoid with a focus in a pair of transceivers.
For a given radio wavelength of A, n ellipses contained in the
Fresnel zone can be constructed by ensuring:

|P1On| + |QnP2| — |P1P2| = nk/2 ey

where Q) is a point in the nth ellipse. The innermost ellipse is
defined as the first Fresnel Zone. The elliptical ring between
the first ellipse and the second ellipse is defined as the second
Fresnel zone. The nth Fresnel zone corresponds to the elliptic
ring between the n — 1 ellipse and the nth ellipse.

B. OBSERVATION RESULTS

When the users make gestures in the Fresnel zone, radio
signals are considered to be transmitted from the transmitter
to the receiver via two paths. One path is direct transmis-
sion (line-of-sight path). The other path is reflected by the
human (reflection path) [24], [25]. The signal of LOS remains
unchanged, and only the reflected signal of the palm surface
continuously changes. The two signals are combined to pro-
duce a superposition signal at the receiving end.

When the signal is reflected, the phase of the signal
reverses and changes by 7. If the phase difference between
the two signals is 27, they would enhance the signal strength.
If the phase difference between the two signals is 7, each
signal cancels each other, and reduces the signal strength.
As a result, when a gesture crosses the Fresnel boundary,
the received signal will have a peak or a valley.

In practice, we construct extensive experiments to under-
standing above analysis. The experimental results are shown

VOLUME 7, 2019



S. Ren et al.: Intelligent Contactless Gesture Recognition Using WLAN Physical Layer Information

IEEE Access

(a) Push gesture diagram (b) Pull gesture diagram

FIGURE 3. Illustration of gestures movement model in the Fresnel zone.

Times )

(b) Pull gesture

(a) Push gesture

FIGURE 4. Phase difference waveform with different gestures.

in the Fig. 4. From the figures, we can obtain the following
insights:

o Considering that when the user make gestures in the
Fresnel zone, the received signal will appear as a
peak or valley as the palm crosses the each boundary of
Fresnel zone. When the palm moves along the ellipse,
the received signal remains stable as the length of the
reflected signal path remains the same. When the palm
continuously spans multiple Fresnel zone boundaries,
the received signal looks like a sinusoidal waveform, and
the peaks of this sinusoidal waveform correspond to the
boundaries of the odd/even Fresnel zone, respectively.

o As shown in Fig. 3(a) and Fig. 3(b), when the user
gestures at a constant speed in Fresnel zone, the gestures
of push and pull are vertically cut across the Fresnel
zone boundaries. It takes shorter distance to cross two
Fresnel zone boundaries. So the time from the peak to
the adjacent valley is less. If the user makes a push ges-
ture, the palm moves closer to the center of the Fresnel
zone. As it approaches the center of Fresnel, the distance
between the two Fresnel zone boundaries may increase.
As shown in Fig. 4(a), the absolute values of wave
peaks and valleys with phase difference in the Fresnel
zone tend to increase. And while the user makes a pull
gesture that palm moves away from the center of Fresnel
zone, it’s the opposite to the gesture of push. As shown
in Fig. 4(b), the absolute values of wave peaks and val-
leys with phase difference in Fresnel zone may decrease.

o Asshown in Fig. 3(c) and Fig. 3(d), the user gestures at a
constant speed in the Fresnel zone, the gestures of right
and left are slanted to cut the Fresnel zone boundaries.
It takes longer distance to cross two boundaries. The
time of phase difference waveform from peak to adjacent
valley is obviously more than a push or pull gesture.
If the user makes a right gesture, the palm moves close
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(c) Right gesture diagram

(d) Left gesture diagram

(d) Left gesture

(c) Right gesture

to the center of the Fresnel zone. As shown in Fig. 4(c),
the absolute values of wave peaks and valleys with phase
difference in Fresnel zone tend to increase. As shown
in Fig. 4(d), when the user makes a left gesture, the time
of phase difference waveform from peak to adjacent
valley is obviously longer, and the absolute values of
wave peaks and valleys with phase difference in Fresnel
zone is decreasing.

o When users do the gesture movement to cut across
the Fresnel zone boundaries. The closer the angle of
motion is to vertical cutting, the less time it takes to
cross the Fresnel zone boundaries. The phase difference
waveform of the Fresnel zone has less time from peak
to the adjacent valley. When the motion is close to the
center of Fresnel, the absolute value of the waveform
peaks and valleys of the phase difference increases.
On the contrary, it shows a decreasing trend. From these,
we can judge the gestures made by the human body
according to the trend of the movement.

IV. iGest DESIGN

In this part, we design a robust contactless gesture recognition
system based on above observations [26]. As shown in the
Fig. 5, the system is divided into three modules. The first is
the data preprocessing module. In this module, raw gesture
data is processed through de-noised in the time windows.
The second module is the feature extraction. In this mod-
ule, signals features in the sliding window are extracted.
After extracting the phase difference between two subcarri-
ers, the peak and valley characteristics of the phase difference
are analyzed. Then we encode the eigenvalues according to
the conclusion of the analysis. The last one is the activity
analysis module. The gesture actions are classified based on
received feature codes. Finally, a hidden markov model is
applied in classification and accuracy judgment.

92761



IEEE Access

S. Ren et al.: Intelligent Contactless Gesture Recognition Using WLAN Physical Layer Information

Date Processing

Data collection

Gesture Recognition

Window Slice

Feature Extraction

‘ Phase Difference Extraction ‘
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Basic-Gesture Recognition

1

Complex-Gesture Recognition

Push—>Pull

Left->Right

Push—Right

‘ Peak and Valley Extraction ‘

FIGURE 5. The iGest system architecture.

A. DATA PROCESSING

1) DATA COLLECTION

The CSIs from the WiFi communication are collected at
receivers in the form of real-time streams. Then the data is
sent to a server to process [27], [28], [42]. The amplitude
and phase of CSI are sent every few minutes according to the
synchronization preamble.

2) NOISE REMOVAL

The noise signal is smoothed by filtering technique [29], [30].
There is a lot of noise interference in the CSI data collected.
Itis sensitive to noise when the system using cross-correlation
theory to measure two OFDM subcarriers. The data filtering
of each subcarrier is required to keep the same phase. We use
the Savitzky-Golay filter to smooth the signal to solve the
above problem [31].

3) WINDOW SLICE

The time window is used to divide the temporal signal fea-
tures into independent slices for recognizing different ges-
tures. When a user makes gestures indoors, the speed of
gestures in a short window can be regarded as constant. So the
choice of window size is particularly important. If the window
size is too small to cover the entire cycle, it cannot be reliable
to estimate. On the contrary, if the size of the window is too
large, users may gesture at different speeds in the window,
and it will cause inaccurate estimates.

In practice, the speed of normal people gesture in the
indoor environment is about 0.3 to 2 meters per second. In
the Fresnel zone, the peak distance is slightly greater than
A/2, which is about 3cm in the SGHz band. As a result,
CSI power fluctuates about (0.3,2) / 0.03 times per second,
equivalent to 10 Hz to 70Hz. A 0.1-second window contains
1 to 7 periods. Therefore, we think 0.1 second as window size
is better, which is evaluated in our experiment evaluation.

B. FEATURE EXTRACTION

1) PHASE DIFFERENCE EXTRACTION

Once two subcarriers are selected in the phase of phase
difference extraction, a longer reflection path will result in
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a larger phase difference Ap. When the position of the user
is fixed, the greater the frequency difference between the
two subcarriers is, the larger the phase difference Ap is.
If the difference between the two subcarriers is too small,
the two waveforms are too close to be differential. But the
large difference between the two subcarriers will cause phase
ambiguity [32]. Therefore, the selection of subcarriers is
particularly important.

Because multipath can lead to waveform distortion and
random phase shift. So we select 7/2 as the maximum
allowable phase delay to guide the selection of subcarriers.
Mathematically, we can calculate the frequency difference
between the subcarriers of wavelength A1 and A, according
to the phase difference Ap:

T

Af =2 @
T 27 - (dy — dp)
According to the equation :
c
Af = — 3
4 4nh )

If our room size is 6¥6 meters and the distance between
transmitter and receiver is 4 meters. The maximum possible
length of a single reflection path is less than 15 meters. When
Ap is limited to /2, the maximum allowable frequency-
frequency difference is 6.8MHz. If the WiFi card is con-
figured with 40 MHz bandwidth, the CSI value from
adjacent OFDM subcarriers is 1.25MHz according to the
802.11n-2009 specification. Therefore, we select two CSI
subcarriers, and they are interred per five indicators, such as 1
and 6, 2 and 7, etc.

2) PEAK AND VALLEY EXTRACTION

By analyzing the time delay distribution, the delay between
two subcarrier windows is calculated. The selection of eigen-
values is estimated by analyzing the delay distribution.

We respectively calculate the spatial feature o and temporal
feature S between adjacent peak or adjacent valley as the
feature of extraction and encode the extracted eigenvalues.
If the phase difference of the first peak is larger than that of
the second peak, the « is defined as 1. Conversely, the « is
set to 0. If the time difference between two peaks or valleys is

VOLUME 7, 2019



S. Ren et al.: Intelligent Contactless Gesture Recognition Using WLAN Physical Layer Information

IEEE Access

Hidden states

b Observed states

DIORONG

FIGURE 6. lllustration of the HMM model.

larger than the threshold (1500 ms in our experiments), the 8
is defined as 1, or the B is defined as 0. In the following,
we use the two features o and B to classify the gestures.

C. GESTURE RECOGNITION

1) BASIC-GESTURE RECOGNITION

In the section, we introduce the scheme of gesture recog-
nition. First, a decision tree classifier is used to deal
with the collected features to improve the accuracy of
detection [33]-[36]. Then, the gesture action is judged
according to the extracted features.

In the training stage, we construct extensive experiments to
select the training data. We respectively calculate the o and
the B values in the time windows for each gestures. Then we
make a training model for the gesture recognition. Moreover,
because the o and the g are independent of the users’ posi-
tions, we pay no attention to the locations and environments
during the training model. Hence, it needs no retraining when
the iGest system is deployed in a new environment.

2) COMPLEX-GESTURE RECOGNITION

In real life, many gestures are composed of the basic actions.
For example, the gesture of refusal “No” is a combination
of gesture “left” and “right”, the calling gesture “Come” is
a combination of gesture “push” and “pull”’. We detect the
movement trend in the time window and infer his next action
trend to complete the complex gesture recognition.

The hidden markov model is applied to infer the next
gesture [37]. In our system, dividing the collected data sets
into two parts, 70% for generating conversion probability, and
30% for testing validation.

We can define the HMM model as A = {m, A, B}, where
A is a transition probability matrix of hidden states, B is
a obfuscation matrix of observed states and 7 is an initial
probability distribution. Then we use a Viterbi algorithm [?]
to infer the hidden state according to the observed state, that
is, gesture movements can be inferred from our detection
data.

We define that A is a transition probability matrix of hidden
states, a hidden state is represented by S. The S; is the hidden
state at # + 1 time and the state S; is at ¢ time. N is the number
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of hidden states, that is, the number of gestures.

Aj=P(SjlS), 1<ij<N )

B is defined as the obfuscation matrix. The observed state
is represented by O. In fact, B denotes the probability of the
observed state O; when the hidden state S; at the # moment. M
is defined as the number of observed states, that is, the number
of features observed in the experiments.

Byj=P(0ilS), 1<i<M,1<j<N 5)

m is an initial probability distribution and it is a one-
dimensional matrix.

m=[P(S1) P(S2) P(SN) ] Q)

Using recursive methods to reduce computational com-
plexity is the core principle of Viterbi algorithm. Knowing
that a gesture is a state. The relevant values are defined
as follows: The probability of reaching an intermediate
state is §. Hidden state (previous gesture) is x. Observ-
able output (current gesture ) is y. The state transition
probability (the probability that x becomes y) is a. Out-
put probability (probability of gesture) is b, as shown
in Fig. 6.

When t = 1, the relationship between probability of the
i state and the transition probability of the ith state to the
observable sequence k is as follows:

81 () = m (i) biry N

Calculate the partial probability of + > 1 time, and the
probability that x occurs in the end of a sequence depends on
previous state before it.

Based on these three probability values (Maximum prob-
ability of the previous state, Conversion probability between
two states, Output probability of the next state), we can get
the maximum probability of the next state:

Pr(X;) = i:rEanC Pr(i;_1) x Pr(X|i) x Pr(observation;|X)
(3)

By extending the above expression, we can get the formula
for calculating the maximum partial probability of the ith
state of the observable state at ¢ time:

8(i) = mjax(azfl(j)ajibik,) ©))

where it represents the probability of transition from state j
to state 7, and bj, represents the probability that state i is
observed as k;.

There is a partial optimal probability of § (i, f) in each
intermediate state and final state. But our goal is to find the
hidden state sequence with the highest probability.

To calculate the partial probability at time 7, we only need
to know the partial probability at time 7— 1. So we only need to
record the state that caused the maximum partial probability
at time .
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(a) Classroom

(b) Meeting room

(c) Laboratory room

FIGURE 7. Three different environments tested in our experiments.

The previous state of the maximum local probability of a
state can be recorded with a backward pointer ¢:

@i (i) = arg mJaX(SH (Naji) (10)

At this point, the current gesture can be judged based on
the acquired data and the previous gesture can be inferred.
The complex gesture is judged according to the combination
of the two gestures.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our contactless
gesture recognition system. First, we describe the experimen-
tal setup and experimental environment. Then the detailed
experimental results are given and analyzed comprehensively.
Finally, we present the discussion about our techniques.

A. EXPERIMENTAL SETUP

We designed experiments in three test environments [10],
[38], [39], as shown in Fig. 7.

1) Testbed-1: We constructed our experiments in a class-
room room, which was 6mx6m. It was surrounded by
a large number of chairs, desks. One pair of TX and RX
was placed apart about 3m, about 1.4m above the floor
and we chose 8 reference test locations according to the
floor flan in Figure 7(a).

2) Testbed-2: We constructed our experiments in a meet-
ing room, which was 4mx5m. It was surrounded by
a large number of chairs, desks. One pair of TX and
RX was placed apart 2.5m, about 1.4m above the floor
and we chose 8 reference test locations according to the
floor flan in Figure 7(b).

3) Testbed-3: We tested iGest in a typical laboratory
room, which was over approximately 12m?. It was
surrounded by a large number of chairs, desks and com-
puters. One pair of TX and RX was placed apart 2m,
about 1.4m above the floor and we chose 8 reference
test locations according to the floor flan in Figure 7(c).

92764

In our experiments, we used two mini host PCs (Intel®
Desktop Board D2700MUD, 1GB RAM, Mini-ITX SIZE
170 mm x 170 mm, three external antennas) equipped with
Intel 5300 NIC and running 32-bit Ubuntu Linux (version
10.04LTS of the Server Edition) were used as the receiver
(RX) and the transmitter (TX). The iwlwifi firmware is mod-
ified as [40], [41] to start traffic flow and export CSI of
each packet, i.e., a group of 30 CSI for further analysis.
Each wireless card is equipped with a full outgoing antenna.
We only select one antenna to receive or send packets. The
transmitter is configured to send packets in injection mode.
The transmitter drops some packets in a predefined mode
every 10 seconds as a synchronization signal. Therefore, two
receivers can align data based on this signal. To capture finer
Fresnel phase differences between subcarriers, gestures can
be identified more accurately. We chose the 5.32 GHz band
to experiment with a bandwidth of 40 MHz. To capture the
signal fluctuations generated by human gesture recognition
better, we set the sampling frequency to 500 packets per
second.

We employed four volunteers during the experiments.
First, each volunteer was assigned four simple gestures: push,
pull, left, and right at a given test point (8 test points).
Each group of gestures was repeated 5 times. There were
4 % 8 % 5 = 160 groups of experiments in each environment.
And then each volunteer was also assigned four complex
gestures: push->pull, left->right, push->right and push->
right->pull.

B. RESULT EVALUATION
We take extensive experimental evaluation in the test environ-
ments to test the performance of iGest systems.

1) OVERALL PERFORMANCE OF GESTURE RECOGNITION

Fig. 8 shows the confusion matrix for four basic gestures
recognition performance. Each row represents the actual ges-
tures performed by the user, and each column represents the
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FIGURE 8. Accuracy of basic gestures recognition.

Push->Pull
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FIGURE 9. Accuracy of complex gestures recognition.
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FIGURE 10. Performance of iGest in different environments.

classified gestures. Each element in the matrix corresponds
to the fraction of the gesture in the row that is classified as
the gesture in the column.

When classifying the four basic gestures, the average accu-
racy is 91% on average. Compared with the accuracy of four
gestures recognition, it is found that the recognition accuracy
is similar. Among them, the recognition accuracy of push and
pull is relatively high, while the accuracy of left and right is
relatively low. It shows that it is easier to identify the gestures
that vertically go through Fresnel zone, by compared with the
gestures that horizontally cut Fresnel zone.

Moreover, we evaluate the performance of iGest on iden-
tifying the complex gestures. In our experiments, we test
four complex gestures when the volunteers stand at different
locations. As shown in the Figure 9, the accuracy of complex
gesture recognition is above 85% on average.

2) ACCURACY IN DIFFERENT SCENARIOS

Fig. 10 shows the average accuracy of detection when the
volunteers takes the experiments in different experimental
environments. The accuracy of gestures recognition is 91.7%
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FIGURE 12. Performance of iGest with different distances to LOS path.

on average when the volunteers were in the classroom, and
90.2% on average in the laboratory, 91.1% on average in
the meeting room. It can be seen that the accuracy of the
iGest system does not change dramatically among different
experimental environments. The detection accuracy is stable
about 91% on average, so the iGest system is relatively robust
for the environments.

3) ACCURACY WITH DIFFERENT TIME WINDOW SIZES

The sliding window size may affect the overall performance
of the system. If the window size is too small to cover the
entire cycle, the accuracy will be reduced; On the contrary,
if the window size is too large, people may make gestures at
different speeds in this window, and the accuracy of detection
may be also reduced.

From Fig. 11, it is observed that when we set the sliding
window size as 0.1 second, the detection performance of the
system is the highest with the accuracy up to 91%. Therefore,
the sliding window size of 0.1s is the best choice for the iGest
system.

4) ACCURACY WITH DIFFERENT DISTANCES TO LOS PATH
Fig. 12 shows the average detection accuracy when the users
stand at different distances to the link of TX-RX pair. When
the distance is very small, the accuracy of gesture detection is
about 90.7% on average. The accuracy is about 91.3% in the
moderate distance, and 91% in far distance. In our system,
though the distances between the volunteer and the link of
TX-RX pair are different, the accuracy of iGest system is
similar about 91% on average. Hence, the distance of the
user’s position to the center of the Fresnel zone model has
little effect on the iGest system in a specified range.
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5) PERFORMANCE OF iGest IN NLOS ENVIRONMENTS
Sometimes, the users may locate in a non line-of-sight
(NLOS) environment, such as behind the wall or behind a
door. Hence, the performance of iGest in NLOS environments
is needed to be evaluated. In our experiments, the volunteer
stands behind the door and makes four gestures. Fig. 13 shows
that the average detection accuracy of four gestures is 86.7%
when the user locates in the NLOS environment. It is also
observed that he detection accuracy of push or pull gestures
is higher than that of left and right gestures.

VI. CONCLUSIONS

This article demonstrates the ability and robustness to rec-
ognize human gesture information by a ready-made WiFi
device based on Fresnel phase analysis theory. We conduct a
comprehensive theoretical study and take deeply experimen-
tal observations. Furthermore, we design an intelligent ges-
ture recognition system (iGest) using the commercial WiFi
devices. Our experimental results show that the iGest can
recognize gestures in different indoor environments, and the
overall recognition rate error is less than 10%. The results
promote the establishment of our cost-effective gesture recog-
nition system based on channel state information of WiFi. We
believe that our system can be applied to a wider range of
macro-micro human interaction applications.
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