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ABSTRACT In this paper, a combination of artificial neural network and ant colony optimization (ANN-
ACO) was used for dynamic conditions of retaining wall structures. The retaining walls produce different
responses to dynamic loads. The applied data of this study comprising of wall height and thickness, soil
density, internal friction angle, and stone density. The walls were designed in a variety of dynamic conditions.
Various conditions were considered for the design of the retaining wall structures. Then, an extended data
set was created for the next step. After that, the new systems were implemented using optimized artificial
intelligence techniques. The neural network provided strong relationships between various wall parameters.
The design of various networks in the present research led to the best evaluation of the dynamic conditions of
the retainingwalls. Under these conditions, anACOwas used for optimal design. Effects of parameters varied
due to different wall conditions when dynamic loads were considered. Therefore, the impact of parameters
was evaluated using hybrid ANN-ACO to increase the efficiency. These designs provided more control over
dangers by dynamic loads of a retaining wall structure.

INDEX TERMS ACO, ANN, optimization, prediction, retaining wall, safety factor.

I. INTRODUCTION
Since the original study ofMononobe [1] and analytical study
of Okabe [2], there have been several experimental, analytical
and numerical studies of the dynamic behavior of retaining
walls (RWs) due to offer a method for rational modeling.
The various methodologies were applied to investigate active
earth pressures can be alienated into three main methods
such as analytical, numerical, and experimental. Based on
previous investigations, a recent alternative to theMononobe-
Okabe (M-O) method for plastic soils was presented by
Mylonakis et al. [3]. They offered a closed-form stress
plasticity solution for gravitational and earthquake-induced
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earth pressures on RWs. Moreover, Nakumara [4] and
Al-Atik and Sitar [5] recently carried out separate shake
table tests using centrifuge facilities, and both separately con-
cluded that the measured earth pressure during shaking was
lower than the M-O method predictions. Nakamura [4] also
highlighted that the inertial force was not always transmitted
to the wall and backfill simultaneously. Dewoolkar et al. [6]
carried out centrifuge dynamic excitation tests with fixed-
base cantilever walls supporting saturated, liquefiable, cohe-
sion less backfills. Based on the results, Dewoolkar et al. [6]
found that excess pore pressure generation is increased
significantly to seismic lateral earth pressure in the sat-
urated backfill. They also pointed out that the maximum
dynamic thrust is proportional to the input base acceleration.
Green and Ebeling [7] designed the dynamically induced
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lateral earth pressure on the stem portion of a concrete can-
tilever earth RWwith dry medium dense sand using finite dif-
ference code FLAC. They determined that at very low level of
seismic activity, the seismic earth pressures are in agreement
with M-O predictions; however, as accelerations increased,
seismic earth pressures are larger than those forecasted by
the M-O method. Gazetas et al. [8] completed models of
L-shaped walls, pre-stressed anchored pile walls, and rein-
forced soil walls, employing both linear and non-linear soil
models. Using those models, Gazetas et al. [8] considered
some parameters such as the wall flexibility, foundation soil
deformability, material soil yielding and soil wall separation
and sliding tends to reduce the effects of dynamic excitations
on those walls. They also used an FEmodel to simulate a case
history in which a RW performed well during an actual earth-
quake. Psarropoulos et al. [9] implemented a study to confirm
the assumptions of Veletsos and Younan analytical solution
and to propose the range if its applicability. The numerical
designs were presented using the commercial finite-element
method (FEM). The versatility of the numerical methods,
finite-element and finite-difference, permitted the treatment
of more realistic situations that are not amenable to analytical
solution including the heterogeneity of the retained soil, and
translational flexibility of the wall foundation. To investi-
gate the characteristics of the lateral seismic soil pressure
on building walls, Ostadan [10] performed a series of soil-
structure-interaction analyses using SASSI. Using the con-
cept of a single degree-of-freedom, Ostadan [10] proposed a
simplified method to predict maximum seismic soil pressures
for building walls resting on firm foundation material. The
method resulted in dynamic earth pressure profiles compa-
rable to or larger than the Wood [11] solution, with the
maximum earth pressure occurring at the top of the wall.

Using intelligent models in engineering problems can
improve the performance of structures. Ant colony optimiza-
tion (ACO) is a one of the most interesting optimization tech-
niques which belonging to the group of swarm intelligence
algorithm and aims to find an optimal path (best solution)
within a computational space. Inspired by the exploratory
behavior or life of ants in search of food, the way copies the
behavior of ants in finding a path between their congestion
and the source of food [12], [13]. The first algorithm of ACO
was introduced as an innovative method for finding complex
optimization problems in early 1990s [13]. Subsequently, var-
ious algorithmswere introduced as the ant colony system [12]
and the maximum/minimum ant system [44]. Later, ACOwas
developed to solve multi-objective optimization problems.
The multi-objective ACO consists of an ACO algorithm as a
basis as well as specific algorithm components for overcom-
ing the multi-objective optimization. This can be done by a
variety of ways such as the use of various pheromonematrices
for any purpose, or the use of multi-colony approach with a
colony for each case [14], [15]. ACO is also accepted to be
applied for continuous optimization problems.

In this research, a combination of two models of artifi-
cial neural network (ANN) and ACO was presented for the

dynamic conditions of RWs. Various conditions are consid-
ered for the design of the RW. Then, an extended data set was
created for the next step. In the intelligent section, different
models were developed to obtain an appropriate relation-
ship for SF determination. After that, a new methodology
based on ACO was used to optimize design engineering. The
ANN models were controlled by ACO to improve various
conditions with different safety factor (SF). Using this com-
bination, a wide range of issues can be implemented and
designed.

II. MATERIAL AND METHODS
A. ARTIFICIAL NEURAL NETWORK
Since the 1940s, ANNs have been used as a predictive tool in
fields of science and engineering [16]–[18]. ANNs are flex-
ible mathematical structures that can define a high-level and
non-linear relationship between input and output parameters
without solving complex partial differential equations (PDEs)
[13], [15], [19]. ANNs are based on a hypothesis similar
to the neural structure and human learning process. They
have been successfully used to build environmental controls.
These networks are made of three main components includ-
ing layers (input, hidden and output), neurons, and weights
among neurons. Each layer is made of neurons. In particular,
the output layer neurons produce results of network computa-
tions.Weights indicate the effect factor of neurons. A training
process is usually necessary to make optimal computations
to determine weights prior to the practical application in
system controls [20]. In the ANN training process, a weight
is assigned to all links, and then, all weighted inputs are
combined and the output neuron is generated. The following
equation is used:

yt = α0 +
n∑
j=1

αjf (
m∑
i=1

βijyt−1 + β0j),

[i = 1, . . . ,m and j = 1, . . . , n] (1)

where m is the number of input nodes; n is the number of
hidden nodes; αj represents the vector of weights from hidden
to output nodes; and βij represents weights from input to
hidden nodes. α0 and β0j are weights of arches resulting from
biased terms that always have values equal to 1; and f is the
transfer function. Figure 1 shows the connection structure
of the input data, weights, constant coefficients, activation
functions and output.

B. ANT COLONY OPTIMIZATION
The ACO is a meta-heuristic optimization algorithm inspired
by the search behavior of ants to identify the shortest path
from their nest to a food source using pheromone traces [21].
In this algorithm, the decision space in the optimization prob-
lem is represented by a graph where nodes and sides are as
decision variables and decision variable options, respectively.
The solution ismade by ant passing on the graph and selecting
a side on each node. As the ants go forward the graph,
they left behind pheromones. The highly used paths have
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FIGURE 1. A structure of ANN modeling.

FIGURE 2. An sample of the pheromone performance for a seven-city
TSP [23].

higher concentrations of pheromones and are more likely to
be selected by other ants in the future [22]. Figure 2 shows
an example of the pheromone distribution for the traveling
salesman problem (TSP) with seven cities. In this figure,
thicker sides (5-4-3-2-1-6-7) in the right diagram have higher
pheromones in proportional to levels. In each ACO process
repeat, all members of a colony traverse the graph; and each
one produces a response. After each repeat, the paths lead-
ing to better overall responses receive more pheromones as
rewards, thereby increasing the chance of their selection in
subsequent repeats. Therefore, better responses evolve due
to the increased number of repeats. At each decision point,
the probability that an ant selects a certain side (e.g. AB side)
can be determined using the following equation:

PAB =
[τAB(t)]α[ηAB]β∑NA
B=1 [τAB(t)]

α[ηAB]β
(2)

where, t is the repeat index; AB(t) is the size of Pheromone
side (AB) in the repeat t; and AB is the visibility of side (AB)
leading to the provision of a biased amount of local optimal
solutions at the desired decision point; NA is the set of all
decision options at the decision point A; α is the importance
of pheromone; and β is the coefficient of the visibility impor-
tance. Updating pheromones on each side (e.g. AB side) after

FIGURE 3. Dimension model for gravity masonry retaining wall.

each repeat can be obtained by the following equation [21]:

τAB(t + 1) = ρτAB(t)+1τAB(t) (3)

where, ρ is the durability factor of pheromone indicating the
evaporation rate of pheromone from one repeat to another;
τAB(t) is the amount of added pheromone to the side (AB) in
the repeat t and it can be obtained using different approaches
such as ant colony system, elite ant system, rank-based ant
system, and MAX-MIN ant system [23]. ACO repeats con-
tinue as long as the specific stop criterion is fulfilled such as
completing a certain number of iteration or when there is no
improvement in the objective function.

C. DATA COLLECTION
To create a dataset, different designswere performed based on
several parameters, and finally the amount of SF was deter-
mined formodel. The process consisted ofmodel dimensions,
material properties, introducing boundary conditions, and
seismic motion. Mononobe’s method utilizing visual basic
language was applied to obtain SF values in this study. Sev-
eral homogenous soils such as sand, gravel-sand and gravel
behind the retaining masonry wall (in terms of material,
γ = 17, 17.50, 18, 18.5 and 19 ton/m3) with different modes
were designed to achieve SF. RWs with heights of 3, 4, 5,
6, 7, 8, 9 and 10 m, were modeled. The location of models
were assumed on the bedrock because of its rigid behavior.
In addition, the wall width of 0.5, 0.6, 0.7 and 0.8 m were
assumed for all models. Moreover, the range of gravity for
stone mixed cement was considered as 20, 24 and 28 ton/m3.
Figure 3 shows the details of RW model considered in this
study. It can be seen that, both angles β and i are zero in this
study. The Mohr–Coulomb failure criterion was considered
for themodels. The values of cohesions were assumed as 0 for
granular soil and internal friction angles of 30◦, 35◦, 40◦, and
45◦ were applied in the analyses process. Granular soil was
used because of avoiding the pure water pressure behind the
walls. It can be noted that, the earthquake motion effect is an
important role to control the RWs behavior. Figure 4 shows
the distribution of active pressure for static and dynamic
conditions and body forces for soil and stone blocks. As men-
tioned byKramer 1996, peak ground acceleration (PGA) is an
important measure of earthquake acceleration on the ground.
In the current research, the amplitudes of PGA were assumed
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FIGURE 4. Distribution of active force for static and dynamic conditions
with body forces for soil and Stone blocks.

FIGURE 5. A matrix regression of all data.

TABLE 1. General description of applied data.

to be 0.1, 0.2, 0.3, 0.4 and 0.5 g for horizontal direction and
it was zero for vertical direction based on the scope of study.
As noted before, the SF values can be calculated for different
conditions, as 9600 models were simulated.

Table 1 provides a general description of various designs of
a RW for dynamic conditions. The reason for these changes is
engineering design to collect a strong dataset. Figure 5 shows
the relationship between the parameters with each other as
well as their distribution.

Finally, the flowchart designed for this research is pre-
sented in Figure 6. With this flowchart, a summary of the
work to design the RWs engineering is provided.

III. RESULT AND DISCUSSION
A. ANN MODELING
It is generally accepted that ANN is a simulation method
that designs simple to complex problems based on

various functions. This system consists of various elements
each of which performs its tasks together to improve the
performance of models. The use of neural models to obtain
appropriate models between parameters has increased the use
of these methods. These methods can be called suitable alter-
natives to statistical methods such as multivariate regression
and linear correlation.

In general, neural networks require methods that can teach
them well [24], [25]. These methods, which are obtained by
different algorithms, can change the system’s performance.
In the current study, theMulti-layer Perceptron (MLP), which
consists of three layers, was used to predict the issue. Back-
propagation (BP) algorithm is an algorithm that has been used
by various researchers [26], [27]. These training algorithms
include several layers that are most recommended using with
three layers. Each layer contains nodes that have distinct
classifications according to their locations. Nodes at the first
layer are introduced as the input data. The second layer, which
is also known as the hidden section of model, in fact contains
neurons; and mathematical calculations can be used to find
relationships between parameters. Finally, the output of this
system is provided as an amount at the third layer.

In this research, based on recommendation of previous
studies, a variety of neurons from 2 to 16 were tested for
hidden layer. The number of neurons is one of the most
important parameters affecting the results of the models.
Outputs were evaluated according to coefficient of deter-
mination (R2) and root mean square error (RMSE) results
for comparing the efficiency of each training and testing
datasets [28], [29]. As mentioned by previous researchers,
the 80% of all data was assigned to the training part and the
rest to the testing section. A selection comparison was made
on the basis of a rating technique by Zorlu et al. [30]. In this
technique, a score is assigned to each section. Similarly, the
performance of the developed models was measured in terms
of R2 and RMSE for each system to compare. For example,
R2 values of 0.9863, 0.9864, 0.9865, 0.9865, 0.9944, 0.9934,
0.9941 and 0.9940 were achieved for models 1 to 8 of the
training dataset with scores of 2, 3, 4, 4, 8, 5, 7, and 6
respectively. These scores were obtained for all row and then,
their cumulative ranking was calculated in the last column.
In this method, the score was created for 8 models; and the
model with the highest score between others was considered
as the best model. Table 2 presents results of the ANN model
for predicting SF of RWs. As shown, model 5 with high
precision of prediction, find the highest score and considered
the selected model. A significant points of this table indicates
that increasing the number of neurons at the hidden layer
does not result in improved network performance due to the
probability of occurrence in the ANN model. As the present
study aimed to find the best ANN system and develop the
network, the network was utilized to forecast SF in the RW.
Figures 7 and 8, show results of implementedANN in training
as well as experimental steps for themodel 5 (the best model).
In these figures, measured and predicted values of SF are
respectively obtained by the GeoStudio software and ANN.
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FIGURE 6. A general flowchart of the current study.

FIGURE 7. Training results for presented model 5 in Table.

High values of 0.9944 and 0.9931 for R2 of training and
testing steps respectively indicate the precision of the ANN
model in forecasting the SF with the lowest error rate. In
addition, results of the testing step of the model indicate that
the network has a good ability to predict unknown data that

FIGURE 8. Testing results for presented model 5 in table 2.

can be considered as a validation. Results indicate the good
modeling performance of the selected ANN in forecasting the
SF of RWs in dynamic condition.

The ANN model selected as the best model was evaluated
using different data. This will ensure that models are judged

94696 VOLUME 7, 2019



C. Xu et al.: Improving Performance of Retaining Walls Under Dynamic Conditions Developing an Optimized ANN

TABLE 2. The results of designed models for predicting SF of RWs in dynamic conditions.

FIGURE 9. Predicted and measured values of new model for SF values
greater than 3.

to be in a variety of situations. The amount of SF varies
under different dynamic conditions. For various engineering
design, three conditions were introduced to assess the ability
of the new model. In Figures 9 to 11, evaluation results of
three modes is shown. Figure 9 examines the model under
conditions of a SF greater than 3. As it can be seen, the model
can provide well-prediction in different conditions. Due to the
importance of the SF, values for 2-3 and 1.5-2 are obtained
in Figures 10 and 11, respectively. As a result, almost in all
cases, the predicted SF values are close to measured values
of SF. However, SF values greater than 3 are closer to mea-
sured SF values compared to SF = 2-3 and SF = 1.5-2.

B. DYNAMIC ANALYSIS OF RETAINING WALL STRUCTURE
In this research, an ACO algorithm for maximizing SF values
of RWs was used. To this end, a model of cost function
should be first provided. The model of cost function needs
a proper relationship between input data and output. Here,
the best model of ANN system was introduced as a function
(model) to the ACO algorithm. It should be mentioned the
all models were implemented in MATLAB environment. In
this algorithm, various parameters and the constant values can
effect on the ACO algorithm. The following description are
considered in optimization modeling:

FIGURE 10. Predicted and measured values of new model for SF values
between 2 and 3.

FIGURE 11. Predicted and measured values of new model for SF values
between 1.5 and 2.

Q refers to constants for converting the minimum/ maxi-
mum function to the maximum/ minimum function.
α is introduced as critical parameter that can con-

trol or change the weights (pheromone)
β is a useful parameter for assigning weight to innovative

information.
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FIGURE 12. A comparison between 30 and 20 ants for the problem 1.

Repeat of a considered number for repetitions to find the
optimal solution.
Ro: Assigned values to different ant routings.
The mentioned parameters are the main attributes of the

ACO algorithm that can affect the performance of the opti-
mization problem. The ‘‘Ant routing’’ program, which is
assigned to find the shortest (best solution) routing, is accord-
ing to a proper search that the ant chooses the shortest (best
solution) route, and thus the defined function is improved
(maximum). For implementation of this process, the first
action should be done for producing 500 different part for
the various solution in which the parts (routs) ware chosen
randomly. In the following, the defined ants (populations)
were forced to use different routes. It was found that there
was an attitude to routes for ants from a particular route.
A special route tends to find a higher values of pheromones
than other routes. In the next step, the best range of routes
were selected for each the data which introduced as input
data (Table 1) by the ant routing algorithm indicating the
minimum/ maximum cost function. The cost function is con-
verted into the minimum/ maximum function by separating
the defined function with a constant such as Q. After a while,
the optimal route of each tour is obtained as the selected
route. Thus, the action is repeated for whole remaining routes
to find any other proper solution. A trial and error process
was used to find ACO parameters. To determine the optimal
values, two issues were considered separately. Then, with the
number of 20 and 30 ants, theminimumvalues were obtained.
Figures 12 and 13 show the results of this comparison. As it
can be seen, the performance of 30 ant is better, as well as
the number of iterations in two states of 500. For this reason,
these two values were used to determine the conditions of the
RWs engineering.

Figures 14-16 show the values of obtained results for maxi-
mizing the SF using this optimization algorithm. This process
is used for each repeat to get the best response. As shown in
the previous section, three designs were made to check the
SF values more precisely. The SF values were 1.5-2, 2-3 and
greater than 3 more detailed ones. Due to the importance of
the amount of SF in different conditions, their optimal design
can also be effective. For this reason, optimal designs were
made to maximize the amount of SF for the stated conditions.

Figure 14 shows the optimization results for optimal design
of the RWs in dynamic conditions and SF values higher

FIGURE 13. A comparison between 30 and 20 ants for the problem 2.

FIGURE 14. The result of ACO Algorithm for SF greater than 3.

TABLE 3. Optimization models built for SF greater than 3.

than 3. The parameters used in this study were designed to
implement RWswith SF values of between 3 and 6.4. To eval-
uate the effect of different parameters of the ACO algorithm,
the number of iteration in all designs was 500. Then, the effect
of ant number on obtaining optimal conditions was evaluated.

As it can be seen in Figure 14, all results of SF values
provide the higher values than the lowest (3). By increasing
the number of ant, the optimal values of RWs will increase.
One of the reasons for this increase is due to the impact of
a population that can better identify optimal conditions. This
makes it possible to reduce the engineering error in different
conditions and increase the design performance. In addition,
the amount of ant = 50 is able to provide a better condition
than the maximum value for a SF in dynamic conditions.
Finally, the optimal parameters were obtained for each mode.
These parameters are given in Table 3.With these parameters,
the performance of RWs can be improved.

For the latter, the same processes of the first state were
repeated. The minimum and maximum values for this state
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FIGURE 15. The result of ACO Algorithm for SF = 2-3.

TABLE 4. Optimization models built for SF = 2-3.

TABLE 5. Optimization models built for SF = 1.5-2.

are between 2-3. As shown in Figure 15, all surveys are better
than the minimum amount of SF. In addition, with two ant
values of 40 and 50, it also offers better performance. With
these conditions, the precision in the design of the RWs is
increased in dynamic conditions. Table 4 provides optimal
values for this mode.

One of the important parts in engineering design is to
increase SF values (mostly greater than 1). In most designs,
the SF value is about 1.5-2. Therefore, the conditions for this
interval were examined by ACO optimization algorithm. The

FIGURE 16. The result of ACO algorithm for SF = 1.5-2.

previous steps are implemented here. However, ant values
above 5 showed a better performance than baseline condi-
tions. These results show that if the range of variations is
lower, better performance can be obtained for optimal con-
ditions. The results of this section are shown in Figure 16.
Finally, the optimal values for these conditions are given
in Table 5 for the RWs. All of above procedures can be done
in different situations and intervals for designing engineering
of RWs.

IV. CONCLUSION
In the present study, a hybrid model of ANN and ACO was
implemented to forecast and optimize RWs under dynamic
conditions. The applied data was obtained by coding more
than 9000 different states. Various data was used with effects
on dynamics of RW structure. After trial and error process,
an ANN model was proposed based on training algorithm of
LM with combination of 6-10-1 to forecast the SF values of
RWs. This network was properly selected by scoring method.
The best ANN model was used as an input of ACO for opti-
mization purposes. The ACO algorithm evaluated the wall
under dynamic conditions using various factors. Different and
effective parameters for increasing SF values were identi-
fied, and optimal states were designed. The states indicated
that effects of parameters should be carefully evaluated in
dynamic conditions. This could control potential problems
during dynamic loads.
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