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ABSTRACT Network embedding, aiming to learn low-dimensional representations of nodes in networks,
is very useful for many vector-based machine learning algorithms and has become a hot research topic
in network analysis. Although many methods for network embedding have been proposed before, most
of them are unsupervised, which ignores the role of prior information available in the network. In this
paper, we propose a novel method for network embedding using semi-supervised kernel nonnegative matrix
factorization (SSKNMF), which can incorporate prior information and thus to learn more useful features
from the network through introducing kernel methodology. Besides, it can improve robustness against noises
by using the objective function based on L2,1 norm. Efficient iterative update rules are derived to resolve the
network embedding model using the SSKNMF, and the convergence of these rules are strictly proved from
the perspective of mathematics. The results from extensive experiments on several real-world networks show
that our proposed algorithm is effective and has better performance than the existing representative methods.

INDEX TERMS Kernel method, network analysis, network embedding, nonnegative matrix factorization,
semi-supervised learning.

I. INTRODUCTION
With the rapid growth of various network mechanisms
(e.g., online social networks, WWW hyperlink networks
and co-authorship networks), network analysis has attracted
much attention from researchers in extensive fields, such
as node classification [1], node clustering (a.k.a. commu-
nity detection) [2], link prediction [3] and visualization, etc.,
in which the research tasks are significantly dependent on
how the networks are represented.

A network is represented normally by an adjacency matrix,
which is usually very sparse and suffers from overwhelming
dimensionality. Thus, it cannot capture more complex and
higher-order structural relationships hidden in the network,
which as a result makes many tasks of network analysis
costly in computation and ineffective in performance. To deal
with these problems, network embedding has emerged and
become a popular solution. Network embedding pursues the
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aim of learning low-dimensional latent representation of each
node in a network, while still preserving structural and inher-
ent properties of the network itself. After new representa-
tions of nodes have been learned, many tasks of network
analysis can be effectively carried out by using conventional
vector-based machine learning algorithms, such as K-means
and support vector machine (SVM). The existing works have
also demonstrated that effective network embedding methods
can help to improve the performance of different tasks on
network analysis [4]–[6].

Over the past few years, network embedding has become a
significant topic in the research of network analysis, while
many methods have been proposed such as DeepWalk [7],
LINE (Large-scale information network embedding) [8],
GraRep (Graph representation) [9], node2vec (Node to
vector) [10], and so on. Generally, most of the existing meth-
ods for network embedding are unsupervised, where prior
information from the nodes are not considered. However,
the prior information has to be taken into consideration
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usually in practice, because it has strong relationships with
network representations. For example, we can assign com-
munity (a.k.a. cluster or group) labels to a portion of nodes
manually, of which the ones with the same community
label are kept closer to each other in new representation
space. Therefore, by integrating prior information, network
embedding can be expected to obtain a more informative
and discriminative representation for every node. To achieve
this goal, we propose a method for network embedding
using semi-supervised kernel nonnegative matrix factoriza-
tion (SSKNMF), and the work is summarized as follows:
• A network embedding model based on SSKNMF is
proposed, which is capable of integrating available prior
information in the network. Meanwhile, we use L2,1
norm to devise the objective function for the model to
improve the robustness concerning noises.

• We derive efficient iterative update rules as the optimal
solution to the network embedding model and provide
strict proof for the convergence.

• We evaluate our method on four real-world network
datasets under different network analysis tasks, includ-
ing node clustering and visualization. The results
demonstrates its effectiveness and superiority.

The rest of this paper is organized as follows. A brief
review of the related work on KNMF and network embedding
are given in Section II. In Section III, we present our method
for network embedding in detail, including the model, solu-
tion and convergence proof. Experimental results are reported
in Section IV. Finally, conclusions are drawn and future work
is discussed in Section V.

II. RELATED WORK
A. KERNEL NMF
Nonnegative matrix factorization (NMF) [11] is a popular
low-rank matrix decomposition model that focuses on the
analysis of data matrices whose elements are nonnegative.
Given a data matrix X = [x1, . . . , xn] ∈ Rm×n

+ composed
of n columns with desired dimension d � min(m, n), where
m is the dimension of data and n is the number of samples,
NMF aims to find two nonnegative matricesW = [wil]m×d ∈
Rm×d
+ and H = [hlj]d×n ∈ Rd×n

+ , whose product can
approximate to the original matrix X: X ≈ WH. Here,
W and H are the basis matrix and the coefficient matrix,
respectively. By imposing nonnegativity constraints on W
and H, each data sample xi can be represented as an additive
linear combination of the nonnegative basis vectors. Namely,
we have xj ≈

∑d
l=1 wlhlj, where wl is the l-th column vector

of W. NMF provides more interpretable parts based decom-
positions, because it naturally conforms to intuitive human
cognition of ‘‘combining parts to form a whole’’. This feature
makes NMF widely used in various data representation tasks,
including image representation [12], [13], microbiome data
representation [14] and attribute representation [15].

NMF is essentially a linear model, thus it cannot rep-
resent more useful features hidden in the data, espe-
cially the nonlinear features. To overcome this limitation,

Zhang et al. [16] proposed the kernel NMF (KNMF), which
is a combination of NMF and the kernel method. As a first
step, it maps each data sample into a higher or infinite
dimensional feature space via a nonlinear mapping function
φ(·), so that a new data matrix φ(X) = [φ(x1), . . . , φ(xn)]
can be obtained. Then, two nonnegative matrices Wφ and
H satisfying φ(X) ≈ WφH are attempted to be acquired.
Although direct factorization of φ(X) is impractical due to the
complicacy of φ(·), KNMF can solve this problem smartly by
introducing the kernel matrix asK = φ(X)Tφ(X) = [kij]n×n,
where kij = φ(xi)Tφ(xj) can be computed using a given
kernel function, such as Linear kernel, Polynomial kernel,
Gaussian kernel and Sigmoid kernel mentioned in [17]. This
solution is also called kernel trick. Compared with NMF,
KNMF can extract more useful features hidden in the data,
which has been validated by many existing works, including
spectral EEG feature extraction [18], face recognition [19],
and hyperspectral image reconstruction [20].

B. NETWORK EMBEDDING
Recently, many methods on network embedding have been
proposed to learn compact and low-dimensional vector repre-
sentations of nodes, and the existing methods can be divided
into three categories in general: random walk based methods,
matrix factorization based methods and deep learning based
methods.

The randomwalk basedmethods can preserve higher-order
proximity between two nodes globally, where the net-
work is transformed into a collection of node sequences
at first by using random walk, then structural relationships
between nodes are captured from these node-context pairs.
DeepWalk [7], node2vec [10] and DDRW (Discriminative
deep random walk) [21] are representatives of random walk
based methods.

Matrix factorization based methods represent the con-
nections between nodes in the form of matrix and fac-
torize this matrix to obtain the embedding, which varies
accordingly on the basis of matrix properties. If the
obtained matrix is positive semi-definite, one can execute
eigenvalue decomposition, such as GraRep [9] and LLE
(Locally linear embedding) [22]. For unstructured matrices,
one can devise alternative optimization methods to obtain
the embedding, such as M-NMF (Modularized nonnegative
matrix factorization) [23] and DMF (Discriminative matrix
factorization) [24].

Deep learning based methods mainly use varieties of neu-
ral network models to learn feature representations of net-
works. Representative methods include DNGR (Deep neural
networks for graph representations) [25], SDNE (Structural
deep network embedding) [26] and DDNE (Deep dynamic
network embedding) [27]. All of them can learn complex and
highly nonlinear node representations from networks.

On the other hand, from the perspective that whether
the prior information attached to nodes is considered,
the network embedding methods also can be classified
into two groups: unsupervised network embedding and
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semi-supervised embedding. At present, most of the exist-
ing methods fall into the unsupervised category, in which
the node representation can be learned without incorporat-
ing any available prior information, such as DeepWalk [7],
GraRep [9] and SDNE [26] as mentioned above. Compared
with the unsupervised methods, only a few works focus on
the semi-supervised methods, and the representatives include
DMF [24], MMDW (Max-margin deepwalk) [28] and LANE
(Label informed attributed network embedding) [29], all of
which are only based on matrix factorization other than ran-
dom walk or deep learning. These semi-supervised methods
are more flexible to incorporate prior information by adding
constraint terms, and complex learning framework with too
many parameters to be tuned does not need to be designed
at all. In fact, they also perform better than some main-
stream semi-supervised network embedding methods based
on random walk or deep learning, such as DDRW (Discrimi-
native deep random walk) [21], Planetoid (Predicting labels
and neighbors with embeddings transductively or induc-
tively from Data) [30] and TriDNR (Tri-party deep network
representation) [31]. In short, matrix factorization is a simple
and effective solution to be implemented in semi-supervised
network embedding.

In this paper, our proposed method is also built on matrix
factorization. However, it has some differences from DMF,
MMDW and LANE. Firstly, we impose nonnegative con-
straint on feature representation, which makes the exper-
imental results more intuitive and interpretable. Secondly,
we introduce the kernel method, which can help to learn more
useful features, especially the nonlinear features. Finally,
we use L2,1 norm to devise the objective function, which
makes the embedding model more robust against noises.

III. METHODOLOGY
A. PROBLEM STATEMENT
Without loss of generality, a given network can be formally
represented as a directed and unweighted graph as G =
(V ,E), where V = {v1, . . . , vn} is the set of n nodes, and
E = {eij|vi ∈ V ∧ vj ∈ V } denotes the set of all the edges
between two nodes. Typically, we can use a simple adjacent
matrixA = [aij]n×n to represent the topological features ofG.
If eij ∈ E , then aij = 1, else aij = 0. Assuming that the given
network has prior information that some nodes are assigned
with community labels, we can construct a corresponding
constrained symmetric matrix M = [mij]n×n as:

mij =

{
1 if vi and vj have the same community label
0 otherwise.

(1)

With the aforementioned notations and definitions,
the problem of network embedding here can be formally
stated as follows:

Network embedding. Given a network G with matrices A
andM, we aim to learn a low-dimensional vector representa-
tion for each node as

f (A,M) : vi→ hi ∈ Rd
+, (2)

where f (·) maps each node vi to a d-dimensional vector
hi with d � n. This new representation form should be
consistent with both the structure of the network and the
prior information of the nodes. Namely, if nodes vi and vj are
similar to each other in terms of their topographical features,
or if their corresponding element mij in M is equal to 1, they
should have similar representations.

B. NETWORK EMBEDDING MODEL
The adjacent matrix A only presents first-order proximity
information between two nodes and cannot present global
structure information about the network, thereby we do not
factorize A directly to obtain the low-dimensional represen-
tations of the nodes. Motivated by the work about equiva-
lence of DeepWalk andmatrix factorization described in [32],
we choose to factor the following matrix instead of the adja-
cent matrix A:

X =
A+ A2

+ . . .+ Ap

p
, (3)

where Ap denotes the p-th order proximity information
between nodes. By combing multiple high-order proximities,
X can be expected to capture more global structure features.
In [32], p is recommended to be set as 2 to make a trade-off
between speed and accuracy.

Assuming that the expected dimension of representation
is d , satisfying d � n, we can learn new representations
from X by using NMF to decompose X approximately into
the product of Y and H, written as X ≈ YH, where Y =
[y1, . . . , yd ] ∈ Rn×d

+ and H = [h1, . . . ,hn] ∈ Rd×n
+ .

Each column of H can be regarded as low-dimensional rep-
resentation of the corresponding node. Namely, hi is the
new vector representation of node vi in d-dimensional space.
It is intuitive that, if any two nodes vi and vj have the same
community label (i.e., mij = 1), they should be spatially
close to each other in high-dimensional space. To keep their
consistence in intrinsic geometric structure in both high and
low dimensional space, their corresponding new represen-
tations hi and hj should also get spatially close. Formally,
the constraints from these prior information can be denoted
as:

R(X) =
n∑
i=1

n∑
j=1

||hi − hj||2mij

= 2
n∑
i=1

hTi hidii − 2
n∑
i,j

hTi hjmij

= 2tr(HDHT )− 2tr(HMHT )

= 2tr(HLHT ), (4)

where tr(·) denotes the trace of a matrix, D = [dii]n×n is a
diagonal matrix (dii =

∑n
j=1 mij and dij = 0 if i 6= j), and

L = D−M is the Laplacian matrix ofM. By employing R(X)
as the regularization term, we can naturally incorporate prior
information into the NMF-based model to guide the learn-
ing process of network embedding. If we select the widely
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used Frobenius norm to construct the objective function, this
semi-supervised network embedding model based on NMF
can be represented as:

min
Y≥0,H≥0

J (Y,H) = ||X− YH||2F +
λ

2
R(X)

= ||X− YH||2F + λtr(HLHT )

=

n∑
i=1

||xi − Yhi||2 + λtr(HLHT ), (5)

where, λ controls the contribution of prior information, which
will be analyzed in the experiments. From Eq. (5), we can
see that noises with large errors in X are prone to domi-
nate the objective function in the form of squared errors,
which means that this network embedding model based on
NMF with Frobenius norm is not robust enough regarding
noises. Besides, by reason that KNMF has better feature
learning capability than NMF, which has been introduced in
Section 2.1, it will be better to use KNMF to construct the
network embedding model. Based on the analysis, we are
inspired to use KNMF and L2,1 norm to construct the fol-
lowing semi-supervised network embedding model:

min
Yφ≥0,H≥0

J (Yφ,H) = ||φ(X)− YφH||2,1 + λtr(HLHT )

=

n∑
i=1

√√√√ n∑
j=1

(φ(X)− YφH)2ji

+λtr(HLHT )

=

n∑
i=1

||φ(xi)− Yφhi||

+λtr(HLHT ), (6)

where φ(·) is the nonlinear mapping function and Yφ is the
basic matrix in new feature space. Obviously, this objective
function using L2,1 norm does not square the errors, therefore
it can be used to reduce the impact of noises and improve the
robustness of the network embedding model.

C. THE OPTIMIZATION SOLUTION
We employ convex NMF mentioned in [33] to solve the
model described as Eq. (6). Firstly, taking into account the
interpretability, we impose the constraint that the vectors
of Yφ lie within the column space of φ(X), which can be
obtained by expressing column vector yl ∈ Yφ as convex
combination of input data vectors:

yl = w1lφ(x1)+ . . .+ wnlφ(xn), (7)

This can be written as in the matrix form: Yφ = φ(X)W,
where W = [wil]n×d . Replacing Yφ with φ(X)W, we can
rewrite Eq. (6) to be:

min
W≥0,H≥0

J (W,H) = ||φ(X)− φ(X)WH||2,1

+λtr(HLHT ). (8)

The minimization of Eq. (8) is a typical optimization prob-
lem, which can be solved to obtainW andH by using iterative
update rules. To attain the optimization, we need to transform
the objective function J (W,H) through the following steps at
first:

J (W,H)

=

n∑
i=1

||φ(xi)− φ(X)Whi||2
1

||φ(xi)− φ(X)Whi||

+λtr(HLHT )

=

n∑
i=1

((φ(X)−φ(X)WH)T (φ(X)−φ(X)WH))iisii

+λtr(HLHT )

=

n∑
i=1

n∑
j=1

((φ(X)−φ(X)WH)T (φ(X)−φ(X)WH))ijsji

+λtr(HLHT )

= tr((φ(X)− φ(X)WH)S(φ(X)− φ(X)WH)T )

+λtr(HLHT )

= tr((I−WH)Tφ(X)Tφ(X)(I−WH)S)+λtr(HLHT )

= tr((I−WH)TK(I−WH)S)

+λtr(HLHT ), (9)

where, K = [kij]n×n is the kernel matrix and its element kij
is only dependent on the inner product form φ(xi)Tφ(xj), I is
an n× n identity matrix and S = [sii]n×n is an n× n diagonal
matrix defined as:

sii =
1

||φ(xi)− φ(X)Whi||
. (10)

Besides, it is noted that

||φ(xi)−φ(X)Whi|| =

√√√√ n∑
j=1

(φ(X)−φ(X)WH)2ji

=

√
((I−WH)Tφ(X)Tφ(X)(I−WH))ii

=

√
((I−WH)TK(I−WH))ii, (11)

which is also only dependent on the kernel matrix K. For
∀wil ∈ W (i = 1 . . . n, l = 1 . . . d) and ∀hlj ∈ H (l =
1 . . . d, j = 1 . . . n), we have wil ≥ 0 and hlj ≥ 0. Therefore,
the minimization of J (W,H) can be solved by using the
Lagrange multiplier method. Letting 8 = [8il]n×d and � =
[�lj]d×n respectively denote the Lagrange multipliers for W
and H, the corresponding Lagrange function of J (W,H) is:

F(W,H) = J (W,H)+ tr(8WT )+ tr(�HT ). (12)

The derivatives of F(W,H) with respect to W and H are:

∂F(W,H)
∂W

= −2KSHT
+ 2KWHSHT

+8, (13)

∂F(W,H)
∂H

= −2WTKXS+ 2WTKWHS

+2λHL+�. (14)
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Using theKarush-Kuhn-Tucker (KKT) conditions8ilwil = 0
and �ljhlj = 0, we can obtain the following equations
for wil and hlj:

(−2KSHT
+ 2KWHSHT )ilwil +8ilwil = 0, (15)

(−2WTKS+ 2WTKWHS+ 2λHL)ljhlj +�ljhlj = 0.

(16)

These equations can lead to the following iterative update
rules:

wil = wil
(KSHT )il

(KWHSHT )il
, (17)

hlj = hlj
(WTKS)lj

(WTKWHS+ λHL)lj
. (18)

J (W,H) is non-increasing and can converge to obtain the
minimum under the above iterative updating rules. The proof
will be presented in the next section.

D. CONVERGENCE PROOF
In this section, we will prove the convergence of iterative
updating rules described in the following Theorems.
Theorem 1: Updating W using the rule of Eq. (17) while

fixing H, the objective function of Eq. (8) monotonically
decreases, which can be written as

||φ(X)− φ(X)Wt+1H||2,1
≤ ||φ(X)− φ(X)WtH||2,1, (19)

where t means the number of iterations.
Theorem 2: Updating H using the rule of Eq. (18) while

fixing W, the objective function of Eq. (8) monotonically
decreases, which can be written as

||φ(X)− φ(X)WHt+1
||2,1 + λtr(Ht+1L(Ht+1)T )

≤ ||φ(X)− φ(X)WHt
||2,1 + λtr(HtL(Ht )T ). (20)

The proof of convergence for W is identical to that for H,
thus we only focus on H here (i.e., the proof of Theorem 2).
To prove Theorem 2, we need to employ the following two
Lemmas.
Lemma 1: Given nonnegative matrices C, N and B, where

C = CT and N = NT , we have

tr(BTCBN) ≤
∑
i,j

(CB′N)ij
B2
ij

B′ij
, (21)

and the equality holds when B = B′. The detailed proof of
this Lemma can be found in [33].
Lemma 2: Under the updating rule of Eq. (18), the follow-

ing inequation holds

tr((I−WHt+1)TK(I−WHt+1)S)

+λtr(Ht+1L(Ht+1)T )

≤ tr((I−WHt )TK(I−WHt )S)

+λtr(HtL(Ht )T ), (22)

where the diagonal element sii in S is defined as sii =
1/||φ(xi)− φ(X)Whti ||.
Proof: Lemma 2 is proved by using the auxiliary function

approach proposed in [34]. First of all, we define

G(H) = tr((I−WH)TK(I−WH)S)+ λtr(HLHT ). (23)

Then, Eq. (22) can be reformulated as

G(Ht+1) ≤ G(Ht ). (24)

According to Lemma 1, we can obtain

G(H) = tr((I−WH)TK(I−WH)S)

+λtr(HLHT )

= tr(KS− 2HTWTKS)+ tr(HTWTKWHS)

+λtr(HLHT )

≤ tr(KS− 2HTWTKS)+
∑
l,j

(WTKWH′S)lj
h2lj
h′lj

+λ
∑
l,j

(H′L)lj
h2lj
h′lj

= Z (H,H′). (25)

The equality holds when H = H′, hence Z (H,H′) is
an auxiliary function of G(H). The 1st order and 2nd order
derivatives of Z (H,H′) with regard to H are respectively
expressed as follows:

∂Z (H,H′)
∂hlj

= 2(−WTKS)lj

+
2(WTKWH′S+ λH′L)ljhlj

h′lj
, (26)

∂Z2(H,H′)
∂hlj∂hlj

=
2(WTKWH′S+ λH′L)lj

h′lj
. (27)

Due to the nonnegative property of each matrix involved,
we have ∂Z2(H,H′)

∂hlj∂hlj
≥ 0, which makes the Hessian matrix

of Z (H,H′) be positive semi-definite. This indicates that
Z (H,H′) is a convex function and has a global minimum,
which can be obtained by setting the gradient of Z (H,H′) to
zero and solving it for H. Thus, we set Eq. (26) to zero and
can obtain

hlj = h′lj
(WTKS)lj

(WTKWH′S+λH′L)lj
. (28)

Eq. (28) will be as same as Eq. (18) if lettingHt+1
= H and

Ht
= H′. Under this updating rule, G(H) decreases mono-

tonically. Namely, we have G(Ht+1) ≤ G(Ht ). Therefore,
Lemma 2 holds.

From Eq. (9), we can deduce that the left-hand side of
Eq. (20) is actually equal to G(Ht+1) and the right-hand side
of Eq. (19) is actually equal toG(Ht ). According to Lemma 2,
G(Ht+1) ≤ G(Ht ), Eq. (20) holds. Hence, Theorem 2 holds.
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IV. EXPERIMENTS
In this section, we introduce the datasets for experiments and
the baseline methods used for comparisons at first. After-
wards, we evaluate our proposed method (called SSKNMF
for short hereafter) on two network analysis tasks: node clus-
tering and visualization. Finally, we test the robustness and
the sensitivity of SSKNMF parameters.

A. DATASETS
We select four real-world network datasets to evaluate our
method SSKNMF. Their details are introduced as follows and
their statistics are listed in Table 1.

TABLE 1. Statistics of selected datasets.

• Political blog network (Polblog) [35]. Polblog is a
directed hyperlink network of websites, which is com-
posed of blogs about US politics and the hyperlinks
related to them. This network has 1224 nodes (blogs)
and 19025 links, and the nodes are divided into 2 com-
munities according to their political labels (liberal and
conservative).

• Email-Eu-core network (Email) [36]. Email is a directed
communication network generated by email data from a
large European research institution. It has 1005 nodes
(institution members) and 25571 links (email communi-
cation relationships from the members), and the nodes
are divided into 42 communities according to their
department labels.

• DBLP [37]. DBLP is an undirected co-authorship
network extracted from DBLP computer science bibli-
ography. It has 4985 nodes (authors) and 24954 links
(co-authorships from authors), and the nodes are divided
into 201 communities according to their research interest
labels.

• YouTube [37]. YouTube is an undirected social network
extracted from YouTube video-sharing website. It con-
tains 11297 nodes (users) and 841340 links (friendships
between users), and the nodes are divided into 137 com-
munities according to their interest labels.

Note that both the DBLP and YouTube datasets here are
much smaller than the original ones in [37], because the
nodes are only selected from some non-overlapped commu-
nities for the convenience of subsequent performance com-
parisons of node hard clustering. Besides, although these
two datasets are undirected networks, we can treat them
as directed networks with bidirections along the connection
edges, which should be applicable to our SSKNMF model.

All of these selected datasets have ground-truth results
of community partition, which can provide reliable sources

for setting the known prior information. Assuming that the
ground-truth set of communities is C = {c1, . . . , cr },
the possible number (MLpairs) of node pairs having the same
community label can be expressed as:

MLpairs =
∑r

i=1
|ci|(|ci|−1)

2 . (29)

In our experiments, we randomly extract these labeled
node pairs as prior information according to the pre-assigned
ratio, and then construct the pairwisely constrained symmet-
ric matrixM correspondingly.

B. BASELINE METHODS
In order to demonstrate the advantages of our method,
three types of unsupervised methods and four types of
semi-supervised methods are selected to be compared in
the experiments. These methods are simply introduced as
follows:
• DeepWalk [7]. DeepWalk is a random walk based unsu-
pervised method for network embedding. Its parameters
are set as: γ = 80 (walks per vertex) and ω = 10
(window size) on Polblog and Email datasets, γ = 100
and ω = 12 on DBLP and YouTube datasets.

• GraRep [9]. GraRep is a matrix factorization based
unsupervised method. It uses k-steps probability transi-
tion matrix of the network to learn node representations.
In this paper, we set k = 3 on Polblog and Email
datasets, k = 6 on DBLP and YouTube datasets.

• DNGR [25]. DNGR is a deep learning based unsuper-
vised method. It applies the stacked denoising autoen-
coders (SDAE) to learn node representations from the
high-dimensional positive pointwisemutual information
matrix of the network.We set the number of layers of the
neural networks for all the datasets to be 4, and besides,
all the neurons are activated by the sigmoid function.

• MMDW [28]. MMDW is also a matrix factorization
based semi-supervised method. It provides a unified
network embedding learning framework that jointly
optimizes the max-margin classifier and the aimed
embedding learning model. Therefore, it needs a certain
proportion of labeled nodes for training. MMDW has a
hyper-parameter η to balance the biased gradient and the
original gradient of the joint objective function. In this
paper, we set η = 10−2 for Polblog and Email datasets,
η = 10−3 for DBLP and YouTube datasets.

• TriDNR [31]. TriDNR is a deep learning based
semi-supervised method. It applies a coupled deep nat-
ural language module to learn node representations,
which can enhance the performance by integrating
information from three parties: node structure, node
content (if available) and node labels (if available). The
parameters are set as follows: ω = 10 (window size)
and α = 0.6 (weight parameter) on Polblog and Email
datasets, ω = 12 and α = 0.8 on DBLP and YouTube
datasets.

• ANRL [38]. ANRL (Attributed network representation
learning) is also a deep learning based semi-supervised
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method. It designs an attribute-aware skip-gram model
to learn node representations, which can also integrate
node label information into node structures. The settings
of parameters γ (walks per vertex) and ω (window size)
are as same as those of DeepWalk.

• SSNMF. SSNMF is actually a short version of SSKNMF
without using kernel method. Its corresponding network
embedding model is:

min
Y≥0,H≥0

J (Y,H) = ||X− YH||2,1

+λtr(HLHT ). (30)

By comparing SSKNMF with SSNMF, we can validate
the effectiveness of kernel method used for network
embedding. In our experiments, we set the λ parameter
both in SSKNMF and SSNMF to be 1 according to
the analysis results of parameter sensitivity described in
Section 4.6. By the way, the kernel function we use in
SSKNMF is Gaussian kernel.

All of the baselines mentioned above are implemented
according to the programs released by the original authors,
meanwhile the parameters have been tuned to be optimal. For
fair comparisons, all these methods use the same represen-
tation dimension as d = 10 ∗ (#Communities) on the same
dataset. Besides, under each kind of setting of parameters for
different methods, the experiments are repeated for 20 times
and the average results are reported.

C. NODE CLUSTERING
In this subsection, we evaluate the performance of each
network embedding method comparatively from apply-
ing K-means algorithm to cluster the learned representa-
tions of nodes. As each node has a unique ground-truth
community label (i.e., cluster label), we use the widely
used accuracy (AC) as the evaluation metric. Given a
node vi, let l ′i and li be its cluster label and the
ground-truth label respectively, then AC can be defined as
follows:

AC =

∑n
i=1 δ(li,map(l

′
i ))

n
, (31)

where, n denotes the total number of nodes in the network,
δ(x, y) is the delta function that equals 1 if x = y and equals
0 otherwise, and map(l ′i ) is the mapping function that maps
each cluster label l ′i to equivalent ground-truth label from
the network. The best mapping can be efficiently obtained
by the Hungarian algorithm [39]. The range of AC is (0, 1],
while the larger the AC is, the better the performance of
node clustering will be. In our experiments, for a specified
dataset, we randomly select different ratios of labeled node
pairs as prior information, including 0%, 5%, 10%, 15% and
20% respectively. Note that DeepWalk, GraRep and DNGR
are all unsupervised methods that do not consider any prior
information, hence we specially set the ratio as 0%. Based on
the settings mentioned above, we run every method on four

TABLE 2. Node clustering results (note that the results of unsupervised
methods DeepWalk, GraRep and DNGR keep the same along with
different ratios of labeled node pairs, because they do not use
any prior information).

datasets and the results are shown in Table 2. From Table 2,
we have the following observations:

(1) Prior information can improve the performance of
network embedding. Although five semi-supervised methods
MMDW, TriDNR, ANRL, SSNMF and SSKNMF are not
as good as the unsupervised methods DeepWalk, GraRep
and DNGR when the ratio of labeled node pairs is 0%,
their performance values improve significantly with the
increase of the ratio and eventually surpass those of Deep-
Walk, GraRep and DNGR. For example, when the ratio
of labeled node pairs is 20% on Polblog, the performance
values of MMDW, TriDNR, ANRL, SSNMF and SSKNMF
improve by 22.9%, 11.2%, 14.9%, 26.1%, and 39.7%
respectively compared with the best unsupervised method,
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FIGURE 1. Visualization results of polblog.

DeepWalk. Similar results can also be found on the other
three datasets. All these results show that prior information
plays a positive role in improving the performance of network
embedding.

(2) SSKNMF performs better than the other semi-
supervised methods. Comparing with MMDW, TriDNR,
ANRL and SSNMF on each dataset, SSKNMF not only
maximizes the performance but also performs the best
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FIGURE 2. Visualization results of email.

with the increase of the ratio of labeled node pairs.
Considering that both SSNMF and MMDW are based on
matrix factorization without using kernel method, we can
infer that the kernel method effectively helps SSKNMF learn
more useful features from the network and thereby helps

SSKNMF improve the performance of network embedding.
For the other two deep learning based semi-supervised meth-
ods TriDNR and ANRL, not only do they perform worse
than SSKNMF, they need to spend too much time to tune too
many model parameters. On the contrary, SSKNMF has only
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FIGURE 3. Comparisons on robustness.

one parameter λ to be adjusted, which makes it much more
efficient.

D. VISUALIZATION
In this part of experiment, we further compare the perfor-
mance of network embedding methods by visualizing the
learned representations of nodes. If a figure can display clear
boundaries between different clusters, the learned representa-
tions are much more discriminative, which also indicates the
corresponding network embedding method performs better.
We use t-SNE visualization tool [40] to map the learned
representations of nodes into 2D space, where the nodes
with the same community label are highlighted with the
same color. For the convenience of presentation and analy-
sis, we only show the visualization results of each method
on PolBlog and Email with 20% labeled node pairs, both
of which have relatively few nodes and communities. The
results are shown in Fig. 1 and Fig. 2, respectively. From
Fig. 1 and Fig. 2, we can observe that the visualization
outputs from SSKNMF display more clear boundaries: nodes
in different colors appear in separate areas, and the majority
of the nodes with the same color are clustered altogether.
On the contrary, the visualization outputs from the other seven
baselines, especially the unsupervised methods DeepWalk,
GraRep and DNGR, all show unclear boundaries and diffuse
clusters, where many nodes with different colors tend to be
mixed together. Generally, these visualization results illus-
trate that the representations learned by ourmethod SSKNMF

are more discriminative, which further demonstrates its
advantage.

E. ROBUSTNESS TEST
To improve the robustness against noises, we select L2,1 norm
instead of the widely used Frobenius norm to devise the
network embedding model SSKNMF. To validate the effec-
tiveness of this strategy, we specially conduct comparative
experiments between using L2,1 norm (SSKNMF_L21) and
using Frobenius norm (SSKNMF_Fro). For each dataset,
we firstly define a so-called cannot-link pairwise constraints
which include pairs of nodeswith different community labels.
The possible numbers (CLpairs) of cannot-link pairwise
constraints on a network with ground-truth communities set
C = {c1, . . . , cr } can be expressed as:

CLpairs =
r∑
i=1

r∑
j=i+1

|ci||cj|. (32)

Then, we randomly extract the fixed ratios (including 6 lev-
els: 0%, 1%, 2%, 3%, 4% and 5%) of cannot-link pair-
wise constraints to establish virtual links, which can be
regarded as noises. Finally, we evaluate the performances of
SSKNMF_L21 and SSKNMF_Fro on node clustering tasks.
Note that we do not use any prior information for the con-
venience of comparisons. The results on all the different
datasets are shown in Fig. 3. As we can see From Fig. 3,
on each dataset, the performance decline of SSKNMF_L21 is
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FIGURE 4. AC w.r.t. λ.

much smaller than that of SSKNMF_Fro with the increase of
the ratio of noises. For example, when the ratio of noises is
5% on YouTube dataset, the AC value of SSKNMF_L21 is
0.256, which is 29.4% lower than that without noises, but
the AC value of SSKNMF_Fro is 0.122, which is 60.1%
lower than that without noises. We can also find similar
results on the other three datasets. All the results show that
SSKNMF_L21 has better robustness than SSKNMF_Fro.
This makes SSKNMF_L21 more suitable to be applied to
real-world networks that are usually noisy.

F. PARAMETER SENSITIVITY
In the SSKNMF network embedding model, parameter λ is
used to balance the contribution of prior information. To test
its sensitivity, for each dataset we fix the ratio of labeled node
pairs to 20% and test the performance of node clustering with
different λ (starting from 0.1 to 100, increasing by 0.1 each
time). Results are shown in Fig. 4. We can observe that:
on each dataset the performance of SSKNMF is stable and
the best when λ ranges from 0.1 to 10. Beyond this range,
the performance of SSKNMF generally presents a decline
trend with the increase of λ. This phenomenon means that a
fixed parameter λ is suitable for different datasets. Therefore,
it is reasonable to set λ to be 1 in the experiments described
above, which also takes into account the convenience of
computation.

V. CONCLUSIONS
In this paper, we propose a network embedding method using
semi-supervised kernel NMF (SSKNMF), which specially

focuses on how to use prior information available in the
network to further improve the performance of network
embedding. SSKNMF uses semi-supervised NMF frame-
work to incorporate prior information flexibly, and applies
kernel method to strengthen the representations learned from
the network. Moreover, SSKNMF improves the robustness
against noises by using L2,1 norm. Extensive comparative
experiments also illustrate its superiority. It can be noticed
that the time complexity of SSKNMF is O(tn2d), which
restricts SSKNMF to be applied effectively in large-scale
networks. In our future work, we will focus on how to
improve the efficiency of SSKNMF, while the implementa-
tions on distributed computing frameworks (e.g., Spark) will
be carried out similarly as what we have made before in
our previous work [41], [42]. Besides, to further explore the
kernel of SSKNMF, we will also conduct more comparative
experiments by using different kernel functions.
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