
Received June 9, 2019, accepted June 30, 2019, date of publication July 9, 2019, date of current version September 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2927489

Predicting Software Defects Using
Self-Organizing Data Mining
JUN-HUA REN AND FENG LIU
School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China

Corresponding author: Jun-Hua Ren (renjunhua.net@163.com)

This work was supported in part by the National Key Research and Development Plan under Grant 2016YFF0204002, and in part by the
Research Project under Grant 2016ZNZZ01-01.

ABSTRACT The study predicts the software defect of ranking and classification by utilizing the
self-organizing data mining method. The causal relation between software metrics and defects in software
modules is established. In the analysis, software metric parameters are considered as the influencing factors
and independent variables; defect label values of software modules are considered as dependent variables.
When ranking is predicted during the model training process, the bugs of the defect-free modules are
replaced with a negative value and those of the defective modules remain unchanged. During classification
predictions, the false values of the defect-free modules are replaced with a negative value, whereas the true
values of the defective modules are replaced with a positive value ≥1.5. Then, case studies and comparison
based on data sets of NASA, SoftLab and Promise are conducted by imposing different algorithms. The
results show that in the ranking tests, the self-organizing data mining method achieves the smallest errors.
In the classification tests, the F-measure values obtained in self-organizing data mining method are the most
optimal among the tested algorithms. The self-organizing data mining method is high efficiency and feasible
for predicting the software defects.

INDEX TERMS Label function, software defect prediction, software metrics, self-organizing data mining.

I. INTRODUCTION
Software defects are the primary factors affecting software
quality [1]. Software defect prediction is an active research
topic in computer science [2], [3]. Software defect prediction
includes both dynamic and static predictions. Dynamic soft-
ware defect prediction is mainly based on empirical or sta-
tistical means for estimating the distribution of the software
defects over the software’s life cycle. Static software defect
prediction establishes a model for predicting the number and
distribution of defects in unknownmodules based on the met-
rics related to software defects. Even though several software
defect prediction methods have been proposed, the technol-
ogy is still considered to be inaccurate.

Software defects may be caused by several factors. The
factors are mainly determined based on the characteristics
of the software itself and the development process, including
the size and the complexity of the software, the developers’
understanding of the customer requirements, the algorithms
and grammar used during the software development process,

The associate editor coordinating the review of this article and approving
it for publication was Haider Abbas.

and the level of cooperation among the development team.
Coding errors are the main cause of software defects. The
metrics of software system describe the features of software
system to some extent. Some of these features are visible,
whereas some are invisible, although all features are included
in the metric dataset. Thus, a logical mapping relation exists
between the software defects and metrics. Software defect
prediction technology is implemented to determine software
defects using these implicit characteristics and to further
discover whether the software module is defective via the
implicit logical relationship in the metric dataset. Software
metrics provide a measure of the software quality and indexes
and parameters to describe the characteristics of software
products. The existing software metrics include the McCabe,
Halstead, and Childamber Kemerer or the complexity met-
rics, and all of these are extensively used in software defect
prediction [4], [5]. As the software development has become
increasingly complex, a large number of metrics have been
introduced and their validity and range of applications are
considered to be active research topics [6].

The objectives of the current software defect prediction
technologies based on metrics can be approximately divided

122796 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-1240-7863

J.-H. Ren, F. Liu: Predicting Software Defects Using Self-Organizing Data Mining

into the following two categories: ranking and classification.
The former intends to predict the number of defects in soft-
ware modules, whereas the latter intends to simply predict
whether the module contains defects. Both the aforemen-
tioned approaches help the developers to efficiently deploy
resources and have been researched for several decades.
As early as 1971, Akiyama formulated the relation between
the number of defects and lines of code (LOC), which can be
commonly known as the Akiyama model [7]. Subsequently,
Arthur, Ottensteln, and Lipow proposed a relation between
the number of defects and the complexity metrics [8]–[11].
Thesemodels contained only one variable, such as LOC.With
the increasing diversity of metrics, various regression tech-
niques are used for describing the relation between metrics
and the number of defects, including multiple linear regres-
sion [12], negative binomial regression (NBR) [13], support
vector machine (SVM) [14], [15], and random forest algo-
rithms [16]. Simultaneously, several classification algorithms
have also been used to construct software defect prediction
models for performing a classification task. The most com-
mon models include logistic regression (LR) [17], Bayesian
belief network (BBN) [18], decision tree [19], and naive
Bayes (NB) [20], [21]. Recently, several methods with neural
networks, genetic algorithms, and combinations thereof have
been used to predict the software defects for performing the
ranking and classification tasks with the increasing complex-
ity of computer and machine learning technology [22]–[30].

The causal relation between the software defects and the
software development process is often uncertain. The existing
methods for software defect prediction target various factors
that affect the software reliability based on relevant stan-
dards and practical knowledge. Further, a subset of metrics
that affects the software reliability is typically selected for
constructing the software defect prediction models. Because
of the large number of metrics related to software defects,
the research community has not identified a comprehensive
method for judging the relation between metrics and the
number of software defects. The traditional software defect
prediction models are based on the relations between the
software defects and metrics such as correlation, dependency,
consistency, and causality. Further, the functional relations
between the input and output variables are generally con-
structed using statistical analysis for obtaining predictive
models. Among these technologies, software defect predic-
tion based on causality analysis is the most extensively used
technology. Zhang et al. used the Eclipse JDT and Eclipse
PDE datasets to develop the self-organizing data-mining
models [31]. In their study, however, only 8 among the 48 pos-
sible metrics were considered for model construction, and
the specific mathematical model was not provided. Jing X Y,
Wu F, Dong x, et al. focus on solving the imbalance of clas-
sification by using SDA and dictionary learning methods,
so that the performance of software defect prediction model
in the project can be improved and better than other algo-
rithms [32], [33]. Furthermore, they expanded the application
to other cross-project and obtained better results [34]–[37].

There are not many studies on causal factors between Bug
and metric elements at present. To fill this gap in literature,
this study proposes a general method for performing soft-
ware defect prediction using an extensive range of metrics.
An extensive selection of databases is used for model con-
struction and testing.

In the present study, a general overview of the
self-organizing data mining method (SODM) is introduced
in section II. Then, the methods that are used to evaluate the
prediction models are presented in Section III. The related
case studies are described in sections of IV, V and VI.
In Section IV, themethod of establishing the predictionmodel
and the selection of optimization model is discussed in detail.
Section V offers general steps and methods for establishing
defect prediction model with self-organized data- mining so
that illustrate the usefulness of self-organized data mining
for obtaining predictive models of software defects. Further-
more, case studies and comparisons with other methods are
made in section VI. Conclusions are obtained from the results
of the case study and are presented along with the future work
in section VII.

II. SELF-ORGANIZING DATA-MINING
THEORY AND METHODS
In software defect predictions based on metrics, the metrics
are equivalent to independent variables and the number or
tendency of the software defects are dependent variables.
Any functional relation between the independent and depen-
dent variables can be expressed using a Kolmogorov–Gavbor
polynomial as follows:

y=a0+
m∑
i=1

aixi+
m∑
i=1

m∑
j=1

aijxixj+
m∑
i=1

m∑
j=1

m∑
k=1

aijkxixjxk+· · ·

(1)

With sufficient data volume, the coefficients in Eq. (1)
can be fitted to derive an expression for the function trajec-
tory. However, the parameter values for a0, ai, . . . cannot be
completely determined. Further, the number of terms drasti-
cally increases as the time and number of variables increase,
increasing the difficulty of computation. The self-organizing
data-mining method proposed by Ivakhnenko can solve this
computational problem using a multi-layer self-organizing
structure [38], [39]. Thus, a series of mathematical models
is constructed and iteratively evaluated using the biologically
inspired algorithms. A series of active neurons is generated
by cross-combining each input unit of the system, and each
neuron performs an optimal transfer. Further, the neurons
that are closest to the target variables are selected from the
generated neurons. These selected neurons are strongly com-
bined to produce new neurons. This competitive survival and
evolution process is repeated until the new neural network
does not outperform the previous generation.

Starting from the set of m input variables x1, x2, . . .xm
(Such as x1-wmc, x2-dit, x3-noc, x4-cbo, x5-cbo,), the regres-
sion Eq. (2) is calculated for each pair of inputs xi,

VOLUME 7, 2019 122797

J.-H. Ren, F. Liu: Predicting Software Defects Using Self-Organizing Data Mining

xi and output y, which is the number or the tendency of
defects:

y = a+ bxi + cxj + dx2i + ex
2
j + fxixj (2)

The m (m−1)/2 higher order variables are generated to
replace the original m variables x1, x2, . . .xm for estimat-
ing y (the output variable). Further, each equation is eval-
uated based on a criterion after finding these regression
equations using a set of input and output observations,
and the optimal regression equations are selected and pre-
served. Subsequently, a set of the optimal y estimates of the
quadratic equation is produced (each estimate depends on
only two independent variables). The observed values of the
second-generation input variables are generated by each of
these newly obtained regression equations and are used to
replace the original observation values x1, x2, . . .xm.
Using the samemethod as above, the y quadratic regression

equation is calculated for these new input variables, and the
regression equations with m1(m1 − 1)/2 new variables will
be obtained for estimating y. Further, the optimal variables
are selected, the third-generation input variables are selected
to replace the second-generation input variables, and the
quadratic regression equation is constructed by combining
the third-generation input variables. This process is continued
until the accuracy of the estimations decline than the previous
equation. The optimal estimation in the last generation is
selected from the quadratic polynomials after the iteration of
the regression equations is terminated. Further, the complex
Ivakhnenko polynomial Eq. (1) is obtained after reverse alge-
braic substitution.

The core technology of self-organizing data mining can
be referred to as the group method of data handling
(GMDH) [40], [41], which classifies the data into training
and test sets. In the training set, the interior criterion is used
for estimating the parameters, and the exterior criterion is
used for selecting the interior candidate model. This process
is repeated until the exterior criterion value is no longer
improved. This termination rule guarantees the data fitting
accuracy and presents likely predictions at a certain noise
level, yielding a complexity model that achieves optimal
balance. Further, the process of optimal model generation is
depicted in Fig. 1.

The GMDH algorithm is implemented using the following
steps:

Step 1. The sample data (N data) are divided into a training
set A and a testing set B (Nω = NA + NB, ω = A ∪ B);

Step 2. A general relation is established between the output
and the inputs. Further, the K–G polynomial is commonly
used as the reference function. For a system containing three
inputs and a single output, a quadratic K–G polynomial can
be used for the following reference function:

f (x1, x2, x3) = a0 + a1x1 + a2x2 + a3x3 + a4x21
+ a5x22 + a6x

2
3 + a7x1x2 + a8x1x3 + a9x2x3

FIGURE 1. Generation of the optimal complexity model.

Further, m terms are used as the initial models in the
network structure.

v1 = a0, v2 = a1x1, v3 = a2x2, · · · , v10 = a9x3x2,

where m=10;
Step 3. Select one (or several) of the criteria with com-

plementary nature as the objective function or select some
external criteria;

Step 4. The yk = fk (vi, vj)(k = 1, 2, . . . , 10) trans-
fer functions represent the first-layer intermediate models,
which are adaptively generated using the self-organizing pro-
cesses, and the number of variables and structure of functions
are observed to differ. Meanwhile, the yk parameter (k =
1, 2, . . . , 10) are estimated based on the training set A;
Step 5. The first-layer intermediate models are screened

on the detection set B according to the external criteria. The
selected intermediate model ωk (k = 2, 3, 6, 7, 9) will be
used as the input variable of the second layer in the network;

Step 6. By repeating steps 4 and 5, the intermediate models
of layers 2 and 3 are generated. Finally, an explicit opti-
mal complexity model is developed for performing analysis
(Fig. 1). By considering the state after layer 3 as an example,
the model contains only four variables vi, and the variable v2
in five initial variables is automatically eliminated during the
screening.

From the above steps, we can observe that the GMDH
method requires no specific prior knowledge and assumptions
about premises. Because of the recursive nature of the GMDH
algorithm, GMDH modeling can effectively resist the noise
interference and avoid overfitting. Further, the predictive abil-
ity of the model is good, and the final model can be easily
interpreted.

III. PERFORMANCE EVALUATION OF THE
PREDICTION MODELS
The software defect prediction models that are used for rank-
ing task are often derived from the regression algorithms.
Their performances can be evaluated based on the degree
of regression fitting (R2) [42], the average absolute error

122798 VOLUME 7, 2019

J.-H. Ren, F. Liu: Predicting Software Defects Using Self-Organizing Data Mining

(AAE) [43], and the average relative error (ARE) [12]. These
indices can be defined as follows:

R2 = 1−
SSerr
SStot

= 1−

n∑
i=1

(yi − fi)2

n∑
i=1

(yi − ȳi)2

AAE =
1
n

n∑
i=1

|yi − fi|

ARE =
1
n

n∑
i=1

|yi − fi|
yi + 1

(3)

In Eq. (3), n represents the number of analyzed software
modules, yi denotes the number of actual bugs in the ith soft-
ware module, fi denotes the predicted bugs in the ith software
module, and ȳi denotes the mean value of yi.
The performance evaluations of the software defect predic-

tion models while performing classification task are based
on the confusion matrix, which includes the measures of
accuracy, precision, recall, F-measure, and so on [3]. These
indices can be defined as follows:

accuracy =
TP+ TN

TP+ FP+ FN + TN

Precision =
TP

TP+ FN

recall =
TP

TP+ FP

f − measure =
2× Recall× precision
Recall+ Precision

(4)

In Eq.(4), TP denotes the number of accurate positive
predictions, i.e., the number of modules that are actually
defective and are correctly predicted to be defective; FP
denotes the number of inaccurate positive predictions, i.e., the
number of modules that are actually defective but that are pre-
dicted to be defect-free; FN denotes the number of inaccurate
negative predictions, that is, the number of modules that are
actually defect-free but that are predicted to be defective; TN
represents the number of correct negative predictions, that is,
the number of modules that are actually defect-free and that
are predicted to be defect-free.

In addition, the fault-percentile average is used to evaluate
the defect prediction models for ranking [14]. However, this
study focuses only onR2,AAE, andARE to ensure simplicity.

IV. MODELING EXPERIMENTS USING
SELF-ORGANIZING DATA-MINING
A. ESTABLISHMENT OF A SELF-ORGANIZING DATA-
MINING MODEL OF SOFTWARE DEFECT
PREDICTION WITH A RANKING TASK
Software defect prediction models for ranking task are
intended to predict the number of defects in software mod-
ules; these defects can be used to order the software modules
based on their defect numbers and therefore can test software
modules in that order (modules with more defects are tested
first) [23]. Herein, we use the wspornaganiepi dataset in the
PROMISE database [44] as an example to demonstrate the

effectiveness of the self-organizing data-mining prediction
method. c

First, a prediction model using self-organizing data-
mining was trained using the wspornaganiepi dataset in the
PROMISE database. The dataset comprises 18 software mod-
ules, and each module is measured using 20 metrics and
different metric parameters that correspond to bugs. The
defectivemodules contain 29 bugs. Further, themetric param-
eters for each module are considered to be independent vari-
ables (x1 ∼ x30), and the bugs corresponding to the modules
are considered to constitute the dependent variable x21. The
software defect prediction model is established based on
self-organizing data-mining as follows:

x21 = 1.727z52 + 0.04595z251 + 1.611
z51 = 4.145x10 − 2.795
z52 = 0.08045z41 + 1.001z42
z41 = 0.5495x19 − 1.252
z42 = −0.1128z31 + 1.016z32
z31 = 0.5906x9 − 1.608
z32 = 1.064z22 + 0.5043z21z22 + 0.08342z222
z21 = 6.715x15 − 3.485
z22 = 0.9954z12 − 0.4849z11z12
z11 = 0.5906x9 − 1.608
z12 = 1.873x13−0.03264x5x13+0.2054x213−0.5265

(5)

The fitting results between the bugs predicted by Eq. (5) and
the actual bugs are depicted in Fig. 2.

FIGURE 2. Comparisons between the bugs calculated by model (5) and
actual bugs.

Polynomial Eq. (1) is obtained by iterating Eq. (5) from
backward to forward as follows:

x21
= 0.0195 x413 − 0.0064 x19x413 + 0.0005 x219x

4
13

− 0.1145 x19x313 − 0.0064 x5x313 + 0.0021 x19x5x313
+ 0.0092 x219x

3
13 − 0.0004 x219x5x

3
13 + 0.3554 x313

+ 1.0754 x213 − 0.419 x19x213 + 2.1126 x15x213
− 0.3497 x15x12x213 + 0.0183 x10x12x213 + 0.0005 x213x

2
13

VOLUME 7, 2019 122799

J.-H. Ren, F. Liu: Predicting Software Defects Using Self-Organizing Data Mining

− 0.0001x19x213x
2
13 + 0.028213x

2
13 − 0.0014x219x1x

2
13

+ 0.000014x219x
2
5x

2
13 + 0.0003x215x13 − 0.0117x213x13

+ 0.0033x219 + 0.897x15x15 + 0.0558x15x19x5x13
− 3.1903x15x19x13 − 5.5589x15 − 0.3449x15x13
+ 19.7752x15x13 + 0.1418x19x5x13 + 0.8003x19x13
+ 0.0864x5x13 − 4.9603x13 − 0.0389x9 + 0.7895x210
− 0.225x19 − 1.0647x10 + 3.3763 (6)

The metrics included in wspornaganiepi corresponding to
each variable in x21 are x5—rfc, x9—npm, x10—lcom3, x13—
moa, x15—cam, and x19—max_cc.zij is the active neuron
observed during the iterative process of the model-formation
algorithm.

From the Eq.(5) and (6), we can observe that the software
defect prediction model uses only six of the 20 metrics that
are included in the dataset because the remaining metrics
were eliminated during the iterative self-organizing process.
The polynomial for x21 is the defect prediction model that
is formed with self-organizing data-mining based on the
wspornaganiepi dataset and that can be used to predict the
original bugs. Further, the calculated result of x21 is not an
integer; however, the prediction results must be integers[].
Therefore, the results are rounded up using the following
operation:

bugs = INT (x21 + 0.5) (7)

Here, INT represents an integer operation.
The calculated x21, the rounded number of bugs calculated

using Eq. (7), and the actual number of bugs are compared
in Table 1.

TABLE 1. Comparison between the predicted and actual bugs (Bugs
labelled=INT(x21 + 0.5).

The data presented in Table 1 denote that the number of
predicted bugs in all the modules is consistent with the actual
number of bugs, except that one less bug is predicted in
the second and fifth modules. The correlation coefficient R2

is 0.983, the AAE is 0.111, and the ARE is 0.037 between the
actual and predicted bugs.

The x21 value of in each module is not calculated by
polynomial (6) while iteratively fitting the model parameters
but is iterated from the last to the first term according to
model (5).

B. ESTABLISHMENT OF THE SELF-ORGANIZING
DATA-MINING MODEL FOR SOFTWARE DEFECT
PREDICTION WITH A CLASSIFICATION TASK
Software defect prediction with a classification task is used
to predict whether software modules have defects, which can
help developers decide whether software modules should be
tested. Prediction modules for the classification task require
both high detection rates of defect-prone modules and little
wastage of tasting resources (caused by erroneous predictions
of defect-free software modules) [23].

The software defect prediction model for classification
task was trained using the Ar3 dataset in the SOFTLAB
database [45]. This dataset contained 63 modules, and each
module contained 29 metric parameters and a defect label,
which is false or true. The modules corresponding to false
are defect-free, whereas the modules corresponding to true
are defective. First, false labels were replaced with −0.5 and
true labels were replaced with 1.5 in this demonstration.
A total of 29 metrics parameters are obtained as independent
variables; the corresponding defect label values of −0.5 and
1.5 are considered to be dependent variables, and the follow-
ing model was formed using the self-organizing data-mining
method:

x30 = −0.09397z41 + 0.7469z42 − 0.246
z41 = 0.06518x14 − 1.101
z42 = 1.093z32 − 0.136z31z32
z31 = 0.05602x26 − 0.5398
z32 = 0.9541z22 + 0.7441z21z22 − 0.532z221
z21 = 0.0000142x15 − 0.4949
z22 = 0.7891z12 + 0.2363z211
z11 = 0.0001822x2x10 − 0.371
z12 = 0.003897x14x22 − 0.00344x222 − 0.3172

(8)

The corresponding metrics to the variables presented
in model (8) are x2 -blank_loc, x10 -halstead_vocabulary,
x14-halstead_difficulty, x15-halstead_effort, x22-multiple_
condition_count, x26-design_complexity, x30-defects, zij is
the active neuron during the iterative process of the
model-formation algorithm. Only six of the 29 metrics were
selected in the final model. The fitting results between defects
calculated by Eq. (8) and the actual defects are depicted
in Fig. 3.

For the sake of convenience, Eq. (8) was not iterated for
obtaining the corresponding Eq. (1); however, the prediction
values of each module were directly computed according
to each item of Eq. (8) in each iteration from backward to
forward. Let

_

E(x) indicate the tendentiousness of the defects
in the module based on the value predicted by model (8).

_

E(x) =

{
0, when x30 < 0
1, when x30 ≥ 0

(9)

The classification results predicted based on Eq. (8) and
Eq. (9) are compared with the actual defects presented for
Ar3 dataset in Table 2.

122800 VOLUME 7, 2019

J.-H. Ren, F. Liu: Predicting Software Defects Using Self-Organizing Data Mining

TABLE 2. Comparisonof the model calculation, model label, and actual values (Defects labelled = 0, when x30 < 0, Defects labelled = 1, when x30 ≥ 0).

FIGURE 3. Comparisons between the defects by model (8) and the actual
defects.

Table 2 shows that according to the self-organizing data-
mining Eq. (8), 55 defect-free modules of the 63 modules
are accurately predicted; 6 of 8 defect modules are accurately
predicted, and 2 actually defective modules are predicted as
being defect-free. Calculating the evaluation index of Eq. (8),
we find that the accuracy, precision, recall, and F-measure of
the model are 0.968, 1.0, 0.75, and 0.857, respectively.

C. DISCUSSION
In the above defect predictions for classification, the false
label is replaced with −0.5 to indicate that the module is
defect-free, and the true label is replaced with 1.5 to indi-
cate that the module is defective. Further, we verified the
effectiveness of defect classification while replacing false
and true labels with different negative and positive scalar
values, respectively. We verified the false labels by replacing

them with 0, −0.5, and −1.0 and the true labels by replac-
ing them with 1, 2, and 4 for establishing the prediction
model with self-organizing data-mining. Because the order
of the modules in the dataset does not affect the model
formation, we ordered the modules in ascending order based
on the number of the defects so that the defect-free and
defective modules would be clustered respectively together
in the resulting graphical representations to ensure clarity.
Fig. 4 depicts the plots exhibiting different false and true
values for Ar3 classification.

In Fig. 4, the plots of defect-free and defective modules
are observed to be entirely above the horizontal coordinate
axis if false is equal to 0 and true is equal to 1. Therefore,
it is difficult to observe the difference between defective
and defect-free modules. However, if the binary values are
replaced with negative and positive scalars, the horizontal
axis distinguishes the defective and defect-free modules.
These plots depict that the whole curve is translated upward
if the true value is increased and the false value is fixed, and
vice versa. For performing software testing, the choice of
scalar values to represent false and true should be considered
from a comprehensive point of view. In general, predicting a
defective module to be defect-free is considerably expensive
than predicting a defect-free module to be defective [46].
Therefore, the label values for the defect-free and defective
modules should be selected using repeated tests to determine
an appropriately conservative model. Defect-free modules
can be generally represented with a negative number less than
or equal to −0.1, and defective modules can be generally
represented with a positive number greater than or equal to
1.5 because the number of bugs in a defective module is at
least 1.

VOLUME 7, 2019 122801

J.-H. Ren, F. Liu: Predicting Software Defects Using Self-Organizing Data Mining

FIGURE 4. Classification changes when defects are labelled with different
values.

In previous quantitative studies, the false label of
defect-free module is usually represented by 0 and the true
label of defective module is represented by 1. However, when

an automated data-mining system is used to build a predictive
model, this binary representation is considered to be inade-
quate [58]. A defect-free module is completely opposite to
a defective module; therefore, some ambiguity will remain
if 0 is used to classify the modules as defect-free because
the distinction between a positive value and 0 is not as clear
as the distinction between positive and negative. Because
positive numbers represent a defect, a negative number should
be used to represent the absence of defects. Furthermore,
the difference between 0 and 1 is not quantitatively large
enough to distinguish two objects with completely different
properties when the magnitude of the difference is used to
train a model using several iterations. Moreover, in terms of
the number of bugs, there is at least one bug in the defective
module and the average number of bugs is definitely>1 in all
defective modules. Therefore, negative values are used herein
to indicate defect-free modules and the value greater than or
equal to 1.5 is used to indicate defective modules in the defect
prediction of classification task B.

Because of the difficulties associated with accurately
counting software defects using a predictive model, majority
of studies have focused on defect prediction for classification
task [23]. According to the above defect prediction for the
classification task, we can further improve the self-organized
data-mining technique to develop models that can be used to
ranking predictions based on the number of defects. Because
the numbers of bugs corresponding to each module in the
ranking prediction is 0 or a positive integer, the label 0 of bugs
in the defect-free modules can be replaced with a negative
value, while the number of bugs in the defective module is left
unchanged. Further, the self-organizing data-mining model is
trained by considering all the software metric parameters as
independent variables and the corresponding outputs of the
number of bugs as dependent variables.

_

E(x) provides the
label function of software defects based on the established
model, and the number of bugs is the model (10) output.

_

E(x) =

{
0, when bug ≤ 0
INT (bug+ k), when bug > 0, k is a positive

(10)

Here, INT represents an integer operation.
The Eclipse PDE dataset in the SEIP database [47] was also

used in a case study to denote the effectiveness of expressing
defective and defect-free modules with different false value
during training. Details of this data can be seen in the TABLE
7. 576 modules are included in the dataset, and each module
is associated with 48 metrics parameters and some known
number of bugs. The datasets include 466 defect-free mod-
ules and 110 defective modules. The total number of bugs in
the defective modules is 242. First, eachmodule of the dataset
is sorted according to the known number of bugs; further,
the label 0 of bugs in the defect-free modules is replaced
by −0.3 so that the defective and defect-free modules can
be distinguished by the horizontal axis in a graphical dis-
play. The final model returned by self-organizing data-mining

122802 VOLUME 7, 2019

J.-H. Ren, F. Liu: Predicting Software Defects Using Self-Organizing Data Mining

using this set of intermediate outputs is given in model (11)
as follows:

x49 = 1.212z82−0.1291z81z82+0.04893z282+0.178
z81 = 1.737x45−0.6062
z82 = 1.076z72+0.1631z71z72
z71 = 0.03764x22−4.945
z72 =−0.7929z61+1.735z62
z61 = 0.7773z22+0.05725z21z22
z21 = 0.9019z12+0.08939z11z12
z11 = 0.1439x19−0.9916
z12 = 0.003072x2−0.05708x9+0.001641x2x9−0.3778
z22 =−0.04946z11+1.15z12−0.06492z11z12
z11 = 0.4201x36−0.6082
z12 = 0.003072x2−0.05708x9+0.001641x2x9−0.3778
z62 = 0.5069z51+0.5196z52
z51 = 1.088z42+0.3919z41z42
z41 = 2.005x43−0.2611
z42 = 0.9622z32−0.221z31z32+0.1441z232
z31 = 0.002816x1+0.0001271x1x46−0.4549
z32 = 0.7712z22+0.1186z21z22+0.05782z222
z21 = 343.2x38−0.0417
z22 =−0.04946z11+1.15z12−0.06492z11z12
z11 = 0.4201x36−0.6082
z12 = 0.003072x2−0.05708x9+0.001641x2x9−0.3778
z52 = 0.3663z41+0.4985z42+0.0544z242
z41 = 0.004447x2+0.1135x6−0.0008241x26−0.4806
z42 = 0.9329z32−0.08852z231+0.0607z

2
32

z31 = 0.00306x2+0.0001789x2x46−0.3972
z32 =−0.09529z21+0.9156z22+0.1521z21z22
z21 = 1.077x13−1.799
z22 = 1.128z12−0.07237z11z12
z11 = 0.4201x36−0.6082
z12 = 0.004285x3−0.06183x9+0.002187x3x9−0.3817

(11)

In model (11), x1-LOC, x2-SLOC_P, x3-SLOC_L,
x6-C_SLOC, x9-HCLOC, x13-AVCC, x19-PACK, x22-MI,
x36-NQU, x38-SIX, x43-MPC, x45-INTR, x46-CCOM,
x49-bug_cnt, and zij is the active neuron during the iterative
process of the model-formation algorithm.

The prediction results of model (11) were labelled accord-
ing to model (10) with k=0.5 to count the predicted number
of defects in each module. 31 modules from among the
466 defect-free modules were inaccurately predicted to be
defective; the total number of defects was 33 because 2 mod-
ules were predicted to have 2 bugs, 1 module was predicted
to have 3 bugs, and each of the remaining 28 modules had
1 bug. 133 bugs were predicted to be present among the
110 defective modules. The evaluation indices R2, AAE, and
ARE of the model (11) are 0.86, 0.26, and 0.12, respectively.

To observe the influence of different label values on the
model’s prediction results, the label 0 of the defect-free mod-
ules in Eclipse PDE dataset was replaced with −0.5. The
self-organizing data-mining model predicted that 26 bugs
were present among 466 defect-free modules, and 119 bugs
were predicted among 110 defective modules. The evalua-
tion indices R2, AAE, and ARE of the model were 0.85,
0.28, and 0.13, respectively. If the defect-free modules were
labelled as 0 during model training, the self-organizing
data-mining model predicted 57 bugs among 466 defect-free
modules and 149 bugs among 110 defective modules. The
evaluation indices R2, AAE, and ARE of the model results
were 0.85, 0.28, and 0.16, respectively. If the defect-free
modules were labelled with 0 but the prediction output of
the model were labelled with x49 < 0,

_

E(x) = 0 and
when x49 > 0, Ê(x)=INT(x49), the resulting model predicted
22 bugs among 466 defect-free modules and 108 bugs among
110 defective modules. The evaluation indices R2, AAE, and
ARE of the model were 0.85, 0.28, and 0.13, respectively.
The graphical representations of the model results trained
with different values of false in the Eclipse PDE dataset are
depicted in Fig. 5. The predictions of the model as calculated
with different labels are presented in Table 3.

According to the evaluation indexes in Table 3, R2 is the
largest andAEE andARE are the smallest when false= −0.3.
Thus, when bugs 0 in defect-free modules are replaced by
−0.3,the evaluation indexes of the model are better than those
of other models.

For comparing between false = 0, x49 < 0,
_

E(x) = 0,
x49 > 0,

_

E(x) = INT (x49 + 0.5) and false= −0.3, x49 < 0,
_

E(x) = 0, x49 > 0,
_

E(x) = INT (x49+0.5), the former predic-
tion increased 16 bugs (149 bugsminus 133 bugs) in defective
modules and 24 bugs(57 bugs minus 33 bugs) in defect-free
modules than the latter. The false-positives for 24 bugs denote
the cost of accurately detecting 16 more bugs in defective
modules. In other words, more defect-free modules will be
inevitably detected as defective models when predictingmore
bugs in defective modules. In contrast, the label function with
x49 < 0,

_

E(x) = 0, and x49 > 0,
_

E(x) = INT (x49 + 0.5)
was more accurate than x49 < 0,

_

E(x) = 0 and x49 > 0,
_

E(x) = INT (x49) if defect-free was represented with 0.
The latter function predicted few bugs in defective modules,
which increased the risk of software failure. Furthermore,
in this example, if false is equal to−0.3 and the label function
is x49 < 0,

_

E(x) = 0, and x49 > 0
_

E(x) = INT (x49 + 1.5),
the model predicts 183 bugs in 466 defect-free modules and
233 bugs in 110 defective modules. The bugs predicted in
the defective modules accounted for 96.3% of the actual
bugs; however, the evaluation indices R2, AAE, and ARE
of the model were 0.84, 0.47, and 0.37, respectively, which
were worse than the values mentioned previously. In addition,
it can be seen from Fig. 5 (d) that more defective modules
may be predicted as defect-free modules when bugs 0 in
defect-free modules are replaced by −1.0, which increases
the risk of software failure obviously.

VOLUME 7, 2019 122803

J.-H. Ren, F. Liu: Predicting Software Defects Using Self-Organizing Data Mining

TABLE 3. Comparison of the predictions of false different label in Eclipse PDE.

FIGURE 5. Graphical model with different false values of Eclipse PDE.

V. GENERAL STEPS AND METHODS FOR ESTABLISHING
DEFECT PREDICTION MODEL WITH
SELF-ORGANIZED DATA- MINING
The experiment in Section IV suggests that replacing the false
label with a negative scalar allows the defect-free modules to
be accurately predicted, whereas the label function

_

E(x) =
INT (x49+k) (with k as the parameter) can improve the accu-
racy of the label of defective modules. Therefore, we propose
the following general steps and methods to predict software
defects using self-organizing data-mining techniques.

A. GENERAL STEPS AND METHODS FOR THE
RANKING PREDICTION
For ranking prediction based on the bugs in softwaremodules,
the method described in IV.A can be used to establish a pre-
dictive model. The following steps can be used for predicting
the bugs in datasets that are difficult to choose metrics using
self-organizing data-mining:

Step 1. The defect prediction models are established based
on a known software dataset. First, the bug values of 0 cor-
responding the defect-free modules are alternately replaced

122804 VOLUME 7, 2019

J.-H. Ren, F. Liu: Predicting Software Defects Using Self-Organizing Data Mining

with a value less than or equal to −0.1, and the bugs in
the defective modules remain unchanged. Further, using the
self-organizing data-mining software tool [47], [48], some
predictivemodels are established by considering eachmodule
metric parameters as an independent variable and the number
of bugs as dependent variables. The graphics of each model
are observed; the model corresponding to the bug value of the
defect-free module when maximum defect-free modules are
gathered under the horizontal coordinate axis and maximum
defective modules above the horizontal coordinate axis is
chosen as the prediction model. To improve the visibility
without affecting the validity of the model, the modules in
known dataset can be arranged in the ascending order based
on the number of bugs before modeling.

Step 2. The prediction values of the model are calculated,
and the label function is constructed. For the self-organizing
data-mining model selected, the appropriate label function is
formulated according to the prediction value of the metric
parameters of each module in the known software dataset
to translate the model output into the number of bugs. If x
represents prediction value of the model,

_

E(x) represents the
label function. While x < 0,

_

E(x) = 0; while x > 0,
_

E(x) = INT (x+k) (in general, k=0.5). The selection of k
scalar is considered to achieve the optimal balance among the
model errors, the cost of software testing, and the importance
of the software.

Step 3. The self-organizing data-mining model is evalu-
ated. Further, the evaluation indices R2,AAE, andARE of the
model are computed. If each evaluation index is reasonable,
the prediction model based on self-organizing data-mining
is considered to be valid and can be used to predict the bug
number of modules in new software dataset.

Step 4. The number of bugs in new software modules is
predicted using the established self-organizing data-mining
model and the selected label function. Eachmetric parameters
of the new software module is provided as input into the
established prediction model; further, the bug values of each
module are calculated, and the final numbers of bugs in each
module are determined using the established label function.

B. GENERAL STEPS AND METHODS FOR THE
CLASSIFYING PREDICTION
For classifying prediction based on the defect tendency in
software modules, the method described in IV.B can be used
to establish a predictive model. The following steps can be
used for predicting the defect tendency in datasets that are
difficult to choose metrics using self-organizing data-mining:

Step 1. The defect prediction models are established based
on a known software dataset. First, the metric parameters
of each module are considered as independent variables and
the corresponding label false and true values are consid-
ered as dependent variables. In addition, all the false val-
ues corresponding to the defect-free modules are replaced
with a numbers less than or equal to −0.1 alternately, and
all the true values corresponding to the defective modules

are replaced with a number ≥1.5 in the known software
dataset. The self-organizing data-mining prediction models
are established using a self-organizing data-mining software
tool [47], [48]. First, the figures of the model output are
observed and the prediction model is selected so that the
figures of the defect-free modules are gathered as much as
possible under the horizontal coordinate axis and the figures
of the defective modules are gathered as much as possible
above the horizontal coordinate axis. To improve the visibil-
ity without affecting the validity of the model, the modules
in known software datasets can be arranged in ascending
order based on the false and true label values prior to
modeling.

Step 2. The prediction model for self-organizing data min-
ing is evaluated. The prediction values for the self-organizing
data-mining model selected corresponding to the suitable
replacement value in the first step are calculated. According
to the prediction values of the model and the actual bugs,
the determined label function is used to identify the bugs in
the module. x represents the prediction value of each bug in
a module based on the self-organizing data-mining model,
and

_

E(x) is the label function. In general, x < 0,
_

E(x) = 0
and x > 0,

_

E(x) = 1 are chosen as the label functions. The
validity of the model is evaluated according to the label and
the actual results.

Step 3. The defects of the new software module are pre-
dicted by the selected model. The new software module
metric parameters are input into the established model, and
the prediction values are computed. Then, the new software
modules are classified according to a predicted value of ≤0
or > 0. The modules with predicted value of ≤0 are labelled
as 0, indicating that the software module is defect-free. The
modules with predicted values>0 are labelled as 1, indicating
that the software module is defective.

VI. THE CASE STUDIES AND COMPARISON WITH
OTHER METHODS
A. CASE STUDIES AND THE COMPARISON WITH OTHER
METHODS FOR THE RANKING PREDICTION
Using the steps and methods of software defect prediction
for ranking prediction mentioned in V.A, we selected several
datasets from PROMISE software defect database for mod-
eling and prediction. Due to computer memory limitation,
we only select 12 datasets within 1000 modules (instances)
for modeling and prediction. Details of this data can be
seen in the TABLE 4. The defect number 0 in each dataset
is replaced by a different negative number, and then each
module (instance) is identified by model (10). The evaluation
indexes of the result are shown in Table 5.

The results of this method with six other methods used
in the literatures [49]–[51], namely the traditional Lin-
ear Regression, Multilayer perceptron, Negative Binomial
Regression, Zero-Inflated Poisson Regression, Decision Tree
Regression, and Genetic Programming, are compared in the
Table 6.

VOLUME 7, 2019 122805

J.-H. Ren, F. Liu: Predicting Software Defects Using Self-Organizing Data Mining

TABLE 4. Data set information for ranking experiments.

TABLE 5. Evaluation for Predictive Results of Self-organizing Data Mining Model for 12 Data Sets (Bugs labelled in SODM=INT (Bugs calculated +0.5).

TABLE 6. Comparison of Defect Prediction Results for Four Different Data Sets by Different Methods (Bugs labelled in SODM=INT (bugs calculated by
model +0.5)).

It can be seen from Table 5 that the AAE and ARE of
SODM are the minimum compared with other tested methods
on Xerces 1.3, Camel 1.4, Camel 1.6, Ant 1.7, Xalan 2.4 and
Xalan 2.6. Although the AAE of SODM method is not the

smallest on Camel 1.2 and Xalan 2.5 datasets, its ARE is the
smallest. The AAE and ARE average values of SODM are
the smallest among the tested methods. The results demonstr-
ate that the SODM obtains the best performance of error rate.

122806 VOLUME 7, 2019

J.-H. Ren, F. Liu: Predicting Software Defects Using Self-Organizing Data Mining

TABLE 7. Data set information for classifying experiments.

TABLE 8. Evaluation of Prediction Results Using Self-organizing Data Mining (Defect labelled=0 when defect calculated<0; Defect labelled=1 when
defect calculated≥0 in SODM).

TABLE 9. Comparisons between self-organizing data mining and other prediction methods (Defect labelled=0 when defect calculated<0, Defect
labelled=1 when defect calculated≥0 in SODM).

B. CASE STUDIES AND COMPARISON WITH OTHER
METHODS FOR THE CLASSIFYING PREDICTION
Using the steps and methods of software defect prediction
for classification prediction mentioned in V.B, we choose

SOFTLAB [45] and NASA defect database to build mod-
els for prediction. Because of computer memory limitation,
we only select 12 data sets within 1000 modules (instances)
for modeling. Details of this data can be seen in the TABLE 7.

VOLUME 7, 2019 122807

J.-H. Ren, F. Liu: Predicting Software Defects Using Self-Organizing Data Mining

Firstly, the false in each dataset is replaced by a negative
number less than or equal to −0.1, and the ture is replaced
by a positive number greater than or equal 1.5, and then
the self-organizing data mining model is established. Then,
prediction results by the model is identified by Eq.(10). The
evaluation index of the result is shown in Table 8.

The predicted results of SODM with those of support
vector machine (SVM) [54], Compressed C4.5 decision tree
(CC4.5) [55], weighted Nave Bayes (NB) [56], coding based
ensemble learning (CEL) [57], cost-sensitive boosting neural
network (CBNN) [58] and Dictionary learning (CDDL) [33]
used in relevant literature are shown in table 9 The pd
in Table 7 is the mentioned Recall in formula (4), and
the pf is the error prediction rate of the flawless module,
i.e. pf = FP/(FP+TN). It can be seen from the pd value in
table 9 that although the CDDL obtains the best pd value
(0.783) among all the methods, the SODM adopted method
in this paper also obtains the 0.707 equivalent value, and
the pd value of the SODM on MC2, KC3, PC1 datasets
is higher than that of the other five methods. The NB
obtained the best pf value (0.145), but its pd value (0.397)
was lower. Although the pf value (0.238)of SODM is not
best, it was better than pf values(0.292 and 0.303, respec-
tively)of the CBNN and CDDL. In addition, although the
values of pd and PF of SODM are not all good in Table 9,
Compared with the average value of the comprehensive
index F-measure, the index of SODM is superior to other
methods.

Based on the situation, the upper integral function |x| (the
smallest integer greater than or equal to x) or the lower
integral function |x| (the largest integer less than or equal to x)
can be used as the label function.

C. THE COMPLEXITIES OF THE SELF-ORGANIZING DATA
MINING WITH TRADITIONAL APPROACH
The self-organizing data mining method based on GMDH
is an algorithm that simulates the brain to identify complex
nonlinear systems. This algorithm has obvious advantages
in grouping data. However, when dealing with large data,
the SODM algorithm is relatively weak although the fitting
condition is terminated appropriately. Therefore, Wang [59]
studied how to improve the computational efficiency of
SODM algorithm without changing the accuracy of SODM
algorithm. An algorithm that combines the inverse matrix
method with the fast selection method was proposed to
solve the fitting equation, and the fitting end conditions
were reasonably selected and the best model was quickly
selected by using extrapolation criterion. The algorithm
average complexity was O(n), this value is comparable
to the traditional Naïve Bayes method given in [56]. The
worst complexity of SODM algorithm was O(n2), com-
pared with the complexity O(mn log n) + O(n(log n)2 of tra-
ditional decision tree induction method given in Ref [60],
the improved fast selection SODM algorithm has certain
advantages.

VII. CONCLUSION
The self-organizing data-mining methods were comprehen-
sively tested for ranking and classifying the software defec-
tive prediction. All the metric parameters of the software
modules were directly provided as input into the algorithm
as influencing factors to automatically establish a screen-
ing. The self-organizing modeling method was demonstrated
using tests with open source datasets. Further, generalizable
steps and methods for software defect prediction were pro-
posed. According to TABLE 6 and TABLE 9, as compared
with other traditional methods, the average AAE and the
average ARE of the SODM approach reduces 9.4% and
9.2% respectively. The average F-measure value of SODM
approach is improved by 22.7% compared with other meth-
ods. Therefore, case studies and comparisons with other
methods show that self-organizing data mining is effec-
tive in predicting software defect. Self-organizing data min-
ing provides clear mathematical explanations and graphical
representations compared with other methods. Because of
the causal relation between common software metrics and
defects, the self-organizing data-mining methods can be used
as models of complex systems of software. This method can
be used to analyze the causal relation between the software
defects and multiple software metrics and to extract relevant
features based on the complete set of software metrics.

Similar to any other method, self-organizing data mining
cannot handle all the tasks of software defect prediction.
In some cases, the evaluation indices that were obtained
by software defect prediction models for ranking prediction
were observed to be less than ideal. The methods for select-
ing values with which defect-free modules can be repre-
sented during model training, for selecting the label function,
and for evaluating the models require further study. Also,
Self-organizing data mining methods for cross-project soft-
ware defect prediction, including homogeneous cross-project
ranking, homogeneous cross-project classification and het-
erogeneous cross-project software defect predictions, need
further research.

REFERENCES
[1] L. Bettini, D. D. Ruscio, L. Iovino, and A. Pierantonio, ‘‘Quality-driven

detection and resolution of metamodel smells,’’ IEEE Access, vol. 7,
pp. 16364–16376, Aug. 2019.

[2] S. Riaz, A. Arshad, and L. Jiao, ‘‘Rough noise-filtered easy ensemble for
software fault prediction,’’ IEEE Access, vol. 6, pp. 46886–46899, 2018.

[3] R. H. Chang and P. Jia, ‘‘Review of static software defect prediction based
on metrics,’’ Fire Control Command Control, vol. 40, no. 2, pp. 1–4,
Feb. 2015.

[4] Y. Jiang, B. Cukic, and Y. Ma, ‘‘Techniques for evaluating fault prediction
models,’’ Empirical Softw. Eng., vol. 13, no. 5, pp. 561–595, 2008.

[5] S. Wang and X. Yao, ‘‘Using class imbalance learning for software defect
prediction,’’ IEEE Trans. Rel., vol. 62, no. 2, pp. 434–443, Jun. 2013.

[6] Z. Li, X.-Y. Jing, and X. Zhu, ‘‘Progress on approaches to software defect
prediction,’’ IET Softw., vol. 12, no. 3, pp. 161–175, Jun. 2018.

[7] D. S. Wang and Y. Z. Gong, ‘‘On software defects,’’ Appl. Res. Comput.,
vol. 25, no. 12, pp. 3531–3533, Dec. 2008.

[8] E. Arthur, Ferdinand, ‘‘A theory of system complexity,’’ Int. J. Gen. Syst.,
vol. 1, no. 1, pp. 19–33, Jan. 1974.

[9] L. M. Ottenstein, ‘‘Quantitative estimates of debugging requirements,’’
IEEE Trans. Softw. Eng., vol. SE-5, no. 5, pp. 504–514, Sep. 1979.

122808 VOLUME 7, 2019

J.-H. Ren, F. Liu: Predicting Software Defects Using Self-Organizing Data Mining

[10] M. Lipow, ‘‘Number of faults per line of code,’’ IEEE Trans. Softw. Eng.,
vol. SE-8, no. 4, pp. 437–439, Jul. 1982.

[11] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, ‘‘Where the bugs are,’’ ACM
SIGSOFT Softw. Eng. Notes, vol. 29, no. 24, pp. 86–96, 2004.

[12] T. M. Khoshgoftaar and E. B. Allen, ‘‘Ordering fault-prone software
modules,’’ Softw. Qual. J., vol. 11, no. 1, pp. 19–37, Jan. 2003.

[13] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, ‘‘Predicting the location
and number of faults in large software systems,’’ IEEE Trans. Softw. Eng.,
vol. 31, no. 4, pp. 340–355, Apr. 2005.

[14] S. Bibi, G. Tsoumakas, I. Stamelos, and I. Vlahavas, ‘‘Regression via
Classification applied on software defect estimation,’’ Expert Syst. Appl.,
vol. 34, no. 3, pp. 2091–2101, Apr. 2008.

[15] Z. Yan, X. Y. Chen, and P. Guo, ‘‘Software defect prediction using fuzzy
support vector regression,’’ Proc. 7th Int. Conf. Adv. Neural Netw., Shang-
hai, China, 2010, pp. 17–34.

[16] E. J. Weyuker, T. J. Ostrand, and R. M. Bell, ‘‘Comparing the effectiveness
of several modeling methods for fault prediction,’’ Empirical Softw. Eng.,
vol. 15, no. 3, pp. 277–295, Jun. 2010.

[17] V. R. Basili, L. C. Briand, andW. L. Melo, ‘‘A validation of object-oriented
design metrics as quality indicators,’’ IEEE Trans. Softw. Eng., vol. 22,
no. 10, pp. 751–761, Oct. 1996.

[18] N. E. Fenton and M. Neil, ‘‘A critique of software defect prediction
models,’’ IEEE Trans. Softw. Eng., vol. 25, no. 5, pp. 675–689, Sep. 1999.

[19] T. Menzies, J. Greenwald, and A. Frank, ‘‘Data mining static code
attributes to learn defect predictors,’’ IEEE Trans. Softw. Eng., vol. 33,
no. 1, pp. 2–13, Jan. 2007.

[20] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, ‘‘A systematic
review of fault prediction performance in software engineering,’’ IEEE
Trans. Softw. Eng., vol. 38, no. 6, pp. 1276–1304, Oct. 2011.

[21] T. C. Liang, ‘‘A software defect prediction model based on Naive Bayesian
method of public immunity,’’ M.S. thesis, Dept. Comput., Nanjing Univ.
Posts Telecommun., Nanjing, China, 2015.

[22] L. Guo, Y. Ma, B. Cukic, and H. Singh, ‘‘Robust prediction of
fault-proneness by random forests,’’ in Proc. IEEE 15th Int. Conf. Softw
Rel. Eng., Nov. 2004, pp. 417–428.

[23] X. X. Yang, ‘‘Metrics-based software defect prediction,’’
Ph.D. dissertation, Dept. Inf. Sci. Technol., Univ. Sci. Technol. China,
Hefei, China, 2013.

[24] Y. Ran, ‘‘Research on software defect prediction model based on
SAPSO-BP,’’ M.S. thesis, Dept. Comput. Inf. Sci., Southwest Univ.,
Chongqing, China, 2014.

[25] C. X. Chen, ‘‘Research on software defect prediction based on classifiers
fusion technology,’’ M.S. thesis, Dept. Comput. Commun., China Univ.
Petroleum, Beijing, China, 2015.

[26] N. S. Wang, ‘‘The research of software defect prediction model based
on support vector machine optimized by genetic algorithm,’’ M.S. thesis,
Dept. Comput. Sci. Technol., Beijing Inst. Technol., Beijing, China, 2015.

[27] X. T. Rong, ‘‘Research on static multi-objective software defect prediction
strategy,’’ M.S. thesis, Dept. Comput. Sci. Technol., Taiyuan Univ. Sci.
Technol., Taiyuan, China, 2017.

[28] L. N. Qin, ‘‘Research on static prediction of software defect,’’ M.S. thesis,
Dept. Comput. Sci., Central China Normal Univ., Wuhan, China, 2011.

[29] H. Qiao, ‘‘Research on software defect prediction techniques,’’M.S. thesis,
Dept. Cryptogr. Eng., PLA Inf. Eng. Univ., Zhengzhou, China, 2013.

[30] X. S. Jiang, ‘‘Fish optimization of multi-kernel SVM in the application
of the software defect prediction,’’ M.S. thesis, Dept. Comput. Inf. Sci.,
Chongqing Normal Univ., Chongqing, China, 2016.

[31] D. P. Zhang, G. Q. Liu, and K. Zhang, ‘‘Software defect prediction
model based on GMDH causal relationship,’’ Comput. Sci., vol. 43, no. 7,
pp. 171–175, Jul. 2016.

[32] X.-Y. Jing, F. Wu, X. Dong, and B. Xu, ‘‘An improved SDA based defect
prediction framework for both within-project and cross-project class-
imbalance problems,’’ IEEE Trans. Softw. Eng., vol. 43, no. 4, pp. 321–339,
Apr. 2017.

[33] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J. Liu, ‘‘Dictionary
learning based software defect prediction,’’ in Proc. IEEE Int. Conf. Softw.
Eng., Jun. 2014, pp. 414–423.

[34] Z. Q. Li, X. Y. Jing, F. Wu, X. K. Zhu, B. W. Xu, and S. Ying, ‘‘Cost-
sensitive transfer kernel canonical correlation analysis for heterogeneous
defect prediction,’’ Autom. Softw. Eng., vol. 25, no. 2, pp. 201–245,
Aug. 2017.

[35] Z. Li, X.-Y. Jing, and X. Zhu, ‘‘Heterogeneous fault prediction with
cost-sensitive domain adaptation,’’ Softw. Test. Verification Rel., vol. 28,
no. 2, p. e1658, Jan. 2018.

[36] W. Fei, X.-Y. Jing, S. Ying, S. Jing, and Y. Sun, ‘‘Cross-project
and within-project semisupervised software defect prediction: A unified
approach,’’ IEEE Trans. Rel., vol. 67, no. 2, pp. 581–597, Jun. 2018.

[37] Z. Li, X.-Y. Jing, X. Zhu, H. Zhang, B. Xu, and S. Ying, ‘‘On the multiple
sources and privacy preservation issues for heterogeneous defect predic-
tion,’’ IEEE Trans. Softw. Eng., vol. 45, no. 4, pp. 391–411, Apr. 2019.

[38] C. Z. He, Self-Organizing Data Mining Algorithms of Self-Organization
Data Mining and Economic Forecast, 1st ed. Beijing, China:
Science in China Press, 2005, pp. 40–49.

[39] J. A. Mueller and F. Lemke, ‘‘Self-organising data mining: An intelligent
approach to extracting knowledge from data,’’ Syst. Anal. Model. Simul.,
vol. 43, no. 2, pp. 231–240, Feb. 2003.

[40] A. G. Ivankhnenko and J. V. Koppa, ‘‘The group method of data handling
for the solution of the various interpolation problems of cybernetics,’’ in
Proc. IFAC Symp. Identificat. Parameter Estimation, 1970, pp. 66–75.

[41] P. A. Karnazes and R. D. Bonnell, ‘‘System identification techniques using
the group method of data handling,’’ IFAC Proc. Volumes, vol. 15, no. 4,
pp. 622–627, 1982.

[42] G. Denaro and M. Pezze, ‘‘An empirical evaluation of fault-proneness
models,’’ in Proc. 24th Int. Conf. Softw. Eng., Orlando, FL, USA, 2002,
pp. 241–251.

[43] K. Gao and T. M. Khoshgoftaar, ‘‘A comprehensive empirical study of
count models for software fault prediction,’’ IEEE Trans. Rel., vol. 56,
no. 2, pp. 223–236, Feb. 2007.

[44] J. Marian and L. Madeyski, ‘‘Towards identifying software project clusters
with regard to defect prediction,’’ in Proc. 6th Int. Conf. Predictive Models
Softw. Eng., Timioara, Romania, Sep. 2010, Art. no. 9.

[45] B. Caglayan, E. Kocaguneli, J. Krall, F. Peters, and B. Turhan, ‘‘The
PROMISE repository of empirical software engineering data,’’ Ph.D. dis-
sertation, Dept. Comput. Sci., West Virginia Univ., Morgantown, WA,
USA, 2012.

[46] J. Y. He, ‘‘Search based semi-supervised ensemble learning research for
cross-project defect prediction,’’ M.S. thesis, Dept. Softw., Tianjin Univ.,
Tianjin, China, 2016.

[47] M. Goran, G. G. Tihana, and D. B. Bojana, ‘‘A systematic data collection
procedure for software defect prediction,’’ Comput. Sci. Inform. Syst.,
vol. 13, p. 61, Jan. 2016.

[48] F. Lemke, ‘‘Selforganize!—A software tool for modelling and prediction
of complex systems,’’ Syst. Anal. Model. Simulat., vol. 20, nos. 1–2,
pp. 17–27, Jan. 1995.

[49] Knowledge Miner. Accessed: 2016. [Online]. Available: http://www.
knowledgeminer.net

[50] S. S. Rathore and S. Kumar, ‘‘An empirical study of some software fault
prediction techniques for the number of faults prediction,’’ Soft. Comput.,
vol. 21, no. 24, pp. 7417–7434, Jul. 2016.

[51] S. S. Rathore and S. Kumar, ‘‘A decision tree regression based approach
for the number of software faults prediction,’’ Softw. Eng. Notes, vol. 41,
no. 1, pp. 1–6, Feb. 2016.

[52] S. S. Rathore and S. Kumar, ‘‘Predicting number of faults in software
system using genetic programming,’’ in Proc. Int. Conf. Soft Comput.
Softw. Eng., vol. 62, 2015, pp. 303–311.

[53] M. Shepperd, Q. Song, Z. Sun, and C. Mair, ‘‘Data quality: Some com-
ments on the NASA software defect datasets,’’ IEEE Trans. Softw. Eng.,
vol. 39, no. 9, pp. 1208–1215, Sep. 2013.

[54] K. O. Elish and M. O. Elish, ‘‘Predicting defect-prone software modules
using support vector machines,’’ J. Syst. Softw., vol. 81, no. 5, pp. 649–660,
2008.

[55] J. Wang, B. J. Shen, and Y. T. Chen, ‘‘Compressed C4.5 models for
software defect prediction,’’ in Proc. IEEE Int. Conf. Qual. Softw., Xi’an,
China, Aug. 2012, pp. 13–16.

[56] T. Wang and W. H. Li, ‘‘Naïve Bayes software defect prediction model,’’
Proc. IEEE Int. Conf. Comput. Intell. Softw. Eng., Wuhan, China,
Dec. 2010, pp. 1–4.

[57] Z. B. Sun, Q. B. Song, and X. Y. Zhu, ‘‘Using coding-based ensemble
learning to improve software defect prediction,’’ IEEE Trans. Syst., Man,
Cybern. C, Appl. Rev., vol. 42, no. 6, pp. 1806–1817, Nov. 2012.

[58] J. Zheng, ‘‘Cost-sensitive boosting neural networks for software defect
prediction,’’ Expert Syst. Appl., vol. 37, no. 6, pp. 4537–4543, Jun. 2010.

VOLUME 7, 2019 122809

J.-H. Ren, F. Liu: Predicting Software Defects Using Self-Organizing Data Mining

[59] A. H. Wang, ‘‘Research on the method of rapid processing data packets,’’
J. Chongqing Normal Univ., vol. 32, no. 4, pp. 113–117, Jul. 2015.

[60] L.Witten, E. Frank, andM.Hall,DataMining PracticalMachine Learning
Tools and Techniques, 3rd ed. Amsterdam, The Netherlands: Elsevier,
2010, pp. 132–133.

JUN-HUA REN received the B.S. degree in com-
puter science and technology from the Century
College of Beijing Posts and Telecommunica-
tions University, Beijing, China, in 2010, and the
M.S. degree in software engineering from the
Chinese Academy of Sciences, Beijing, in 2013.
She is currently pursuing the Ph.D. degree with the
School of Computer and Information Technology,
Beijing Jiaotong University, Beijing. She has pub-
lished over eight journals and conference papers.

Her current research interest includes software testing.

FENG LIU received the B.S. degree in com-
puter software from Beijing Jiaotong University,
Beijing, in 1983, and the Ph.D. degree in eco-
nomics from the Renmin University of China,
Beijing, in 1997. He is currently a Professor with
the School of Computer and Information Technol-
ogy, Beijing Jiaotong University, and the Director
of the Engineering Research Center of Network
Management. He is also a Visiting Professor with
the Computer Science Institute, Chinese Science

Academy. He is also a member of the Editorial Board of the Journal of
Computer Research and Development. He has authored or coauthored seven
books and has published over 72 articles in journals and at conferences. His
research interests primarily include computer technology, software engineer-
ing, electronics, and information.

122810 VOLUME 7, 2019

