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ABSTRACT This paper presents a decentralized zero-sum optimal control method for MRMs with
environmental collisions via an actor-critic-identifier (ACI) structure-based adaptive dynamic programming
(ADP) algorithm. The dynamic model of theMRMs is formulated via a novel collision identification method
that is deployed for each joint module, in which the local position and torque information are used to design
the model compensation controller. A neural network (NN) identifier is developed to compensate the model
uncertainties and then, the optimal control problem of the MRMs with environmental collisions can be
transformed into a two-player zero-sum optimal control one. Based on the ADP algorithm, the Hamilton-
Jacobi-Isaacs (HJI) equation is solved by constructing the actor-critic NNs, thus making the derivation of the
approximate optimal control policy feasible. Based on the Lyapunov theory, the closed-loop robotic system
is proved to be asymptotically stable. Finally, the experiments are conducted to verify the effectiveness and
advantages of the proposed method.

INDEX TERMS Adaptive dynamic programming, collision identification, decentralized optimal control,
modular robot manipulators, zero-sum game.

I. INTRODUCTION
Modular robot manipulators have attracted extensive atten-
tions in robotics community since they have better structural
adaptability and flexibility than conventional robot manipula-
tors. The standardized robotic modules, as the basic element
to constitute an MRM, consist of actuators, speed reducers,
sensors and communication units. These modules can be
assembled to desired configurations via standard mechan-
ical connectors according to the requirements of different
tasks. Profiting from the advantages above,MRMs are always
employed in dangerous and complex environments, such
as space exploration, hazard survey, rescue operation and
sports activities et al., in which the collisions from external
environments may occur at any time. Therefore, we need to
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develop appropriate control systems to guarantee the stability
and precision of MRMs even with external environmental
collisions.

To address the problems of enhancing the stability and
control precision of the robot manipulator systems in the face
of environmental collisions, collision identification, which
aims at obtaining the collision joint torques, is considered
an efficient method to implement the joint torque feedback
and to facilitate the controller design of the robotic sys-
tems with collisions. Several researches [1]–[3] report direct
torque sensing-based techniques, in which the joint torque
information are measured by embedding torque sensors into
the joint modules and thus completing the joint torque
feedback. However, the joint torques may increase signifi-
cantly while unexpected environmental collisions occurred
intensely. Unfortunately, this may cause irreversible damage
to the strain gauges, which are the core components of joint
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torque sensors. Luca et al. propose a sensorless collision iden-
tification method [4], in which the environmental collisions
are considered the faulty behaviors of the robot actuating
systems, and then the research results are further applied to
address the problems of collision detection and safe reac-
tion with lightweight robot manipulators [5]. However, when
the actuator faults and environmental collisions exist at the
same time, these methods can hardly distinguish their effects,
which may leave potential safety hazard for the robotic sys-
tems. Some other feasible solutions of implementing collision
identification include that measure the collision force/torque
information by using the sensing fusion of the tactile together
with exteroceptive information [6]–[8]. Nevertheless, the tac-
tile and exteroceptive sensors are terribly expensive and in
a general view, difficult to be generalized to multiple types
of robotic systems. Some forward-looking researches, which
investigated the synchronization [9] and convergence [10]
of the NNs, are presented for improving the noise tol-
erance [11] of multi-agent systems [12] and robotic
systems [13], but these methods still can hardly complete the
optimal implementation of the controllers. Therefore, an ideal
collision identification method should simultaneously take
into account both the safety, accuracy and economy of robotic
systems, especially, satisfy the requirements of modularity
and reconfiguration of the MRM systems.

Besides the requirement of the reliable collision identifi-
cation, MRM systems also need appropriate optimal con-
trollers, which are with the properties that guarantee the
stability of robotic systems and simultaneously consider the
optimality of composite of error characteristics and output
energy-efficiency. Adaptive dynamic programming method-
ology, which was proposed by Werbos [14], is recognized
as one of the key directions to address the optimal control
problems of complex systems. There are several synonyms
adopted for ADP, including ‘‘approximate dynamic program-
ming’’ [15], ‘‘neural dynamic programming’’ [16], ‘‘adap-
tive critic designs’’ [17] and ‘‘reinforcement learning’’ (RL)
[18], [19] etc. Recently, ADP-based approaches have been
utilized to deal with the optimal control issues of discrete-
time systems [20]–[22], continuous-time systems [23]–[25],
data driven-based systems [26]–[28], two-player zero-sum
games [29]–[31], and further employed to develop the
intractability of nonlinear optimal control with input/output
constraints [32], [33], uncertainties and/or external distur-
bance [34]–[36], and actuator failures [37], etc. Some inves-
tigations report the latest research progress of ADP-based
optimal control methods for robot manipulators systems.
In [38], an adaptive fuzzy NN control method is developed
for constrained robots via ADP-based impedance learning.
An online adaptive tracking control algorithm is proposed
to solve the tracking problem of wheeled mobile robots
with uncertain resistance by using the ADP algorithm [39].
Reference [40] investigated the behaviors of robot manipu-
lators that use an RL-based decentralized control scheme.
Reference [41] presented a deep RL framework to han-
dle the learning control issue in physical human-robot

interaction (pHRI) tasks. An RL optimal control method is
reported in [42] to address the problems of global dynamic
compensation and force tracking control in industrial inter-
action robotics tasks. The mentioned strategies above both
follow the premise that the dynamic models of the robotic
systems are completely unknown, thus the implementation
of these methods are restricted in solving the optimal control
problems of special type of robotic systems without local
dynamic compensation. Dong et al. address the optimal
control problems of MRMs by combining the model-based
compensation control with ADP-based learning control [43],
and their researches are further expanded to deal with the
optimal tracking control issues ofMRMswith uncertain envi-
ronments [44]. However, the existing methods consider the
disturbance torques, which are introduced by environmental
contacts and collisions, a class of dynamic uncertainties,
and ignore the intractability of explicitly compensating the
effects of model uncertainties and environmental collision
disturbance. To the best of the authors’ knowledge, there
is less discussion on ADP-based optimal control for robot
manipulators in the face of environmental collisions with
both the implementation of reliable collision identification
and optimal disturbance compensation, especially, for the
MRM systems with theoretical and experimental
investigation.

In this paper, an ACI structure-based decentralized zero-
sum neuro-optimal control approach is presented for MRMs
with environmental collisions. First, the dynamic model of
the MRM systems is formulated via a novel harmonic drive
compliance model-based collision identification method, and
then a model-based compensation controller is developed by
effectively utilizing the local position and torque information
of each joint module. Second, an NN identifier, which is
established to approximate the dynamics of the model uncer-
tainty, is used to design the learning-based compensation
controller, then, the optimal control problem of environment-
collidedMRM systems is transformed into a two-player zero-
sum optimal control one. The ADP algorithm is employed
to solve the HJI equation, in which the cost function,
optimal control policy and worst collision disturbance can
be approximated by constructing one critic NN and two
actor NNs, and then the decentralized zero-sum neuro-
optimal control is developed. Based on the Lyapunov theory,
the joint position/velocity errors and NN weight approximate
errors are proved to be uniform ultimate bounded (UUB), and
the closed-loop MRM systems are also proved to be asymp-
totically stable. Finally, experiments are performed to clarify
the effectiveness and advantage of the proposed method.

The main contributions of this work are briefly summa-
rized as follows:

1) It is a novel idea that develops the collision identifi-
cation method based on a nonlinear harmonic drive
compliance model. Note that the compliance charac-
teristics of the harmonic drive components, which are
considered the uncertain perturbance in some exist-
ing researches, are effectively utilized in this paper to
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FIGURE 1. Schematic illustration of the harmonic drive device.

estimate the joint torques of the MRM system along
with the environmental collisions.

2) Unlike the existing methods that leave the intractability
of optimal compensation of environmental collision
disturbance out of consideration. In our works, a decen-
tralized optimal control method is developed via a
novel ACI structure-based zero-sum neuro-optimal
control scheme, and the advantages of the proposed
method is verified by using the established experimen-
tal platform.

The remainder of this paper is organized as follows:
Section 2 analyses the collision identification method and
the dynamic model formulation. The decentralized optimal
control method is developed in Section 3. Experiments are
performed in Section 4. Finally, a brief conclusion is derived
in Section 5.

II. COLLISION IDENTIFICATION AND DYNAMIC MODEL
FORMULATION
A. COLLISION IDENTIFICATION
Collision identification aims at estimating the coupled
torques of each robotic joint, while the uncertain environmen-
tal collisions are acting along the robot structure [45]. In this
part, a novel collision identification method is presented
based on a nonlinear harmonic drive compliance model as
well as the position and current measurements of each joint
module.

1) HARMONIC DRIVE COMPLIANCE MODEL
As illustrated in Figure 1, the adopted harmonic drive device
includes a wave generator, a flexspline and a circular spline.
The wave generator consists of an elliptical wave genera-
tor plug, which is assembly inserted into the ball-bearing,
thus providing an elliptical shape for the bearing too. The
flexspline, which is a thin cylindrical cup with external teeth,
is designed with a slightly smaller pitch diameter than the
circular spline with internal teeth. Since the flexspline has
two less teeth than the circular spline, so that this may lead
to a small phase deviation between the corresponding teeth in
engagement. After assembled, the flexspline fits tightly over
the wave generator, accordingly, when the wave generator
plug is rotating, the flexspline deforms and molds into the
shape of the rotating ellipse. When the harmonic drive device

is equipped into a joint module, the wave generator is con-
nected to a motor, the circular spline is fixed with joint shell
and the flexspline, which is sandwiched between the wave
generator and the circular spline, is connected to the joint
output. Then, for the purpose of identifying the coupled joint
torque that using only position and current measurement,
here, we need to formulate a harmonic drive model, in which
the nonlinear compliance features of each harmonic drive
component can be clearly reflected.

According to the kinematic relation and the compliance
behavior of harmonic drive components in [46], [47], one can
represent the torsional angular variables of wave generator
and flexspline, which are given as follows:

1qiF = qiFout − qiFin,

1qiW = qiWout − qiWin, (1)

where the first subscript letter ‘‘i’’ means the ith joint module,
qiWout and qiWin indicate the wave generator angular positions
at the outside part and the center part respectively; qiFout and
qiFin denote the angular positions of load-side and gear-side
of the flexspline respectively. Note that it is impossible to
embed any sensors into a harmonic drive device, so that only
the flexspline output position (joint’s angular position) and
the wave generator input position can be measured by the
link-side andmotor-side encoders respectively. These angular
position measurements can be used to calculate the harmonic
drive torsional angle 1qi with the following relation:

1qi = qiFout −
qiWin
γi

, (2)

where γi denotes the gear ratio of the harmonic drive device.
By adding and subtracting the terms qiFin and qiWout

γi
to (2),

one may get

1qi = qiFout − qiFin

+

(
qiFin −

qiWout
γi

)
+

(
qiWout
γi
−
qiWin
γi

)
. (3)

Assuming that there is no relation displacement between
the flexspline input and the wave generator output, which
means that γiqiFin − qiWout = 0, then, substituting (1)
into (3), one obtains

1qi = 1qiF +
1qiW
γi

. (4)

According to the hysteresis behaviors of a harmonic drive
device that is shown in Figure 2, one may conclude that the
local elastic coefficient eiFl increases along with the increase
of flexspline output torque τiF , so that we can define the local
elastic coefficient eiFl as the form of

eiFl =
dτiF
d1qiF

. (5)

Considering the symmetric property of the harmonic drive
stiffness and using Taylor expansion, the local elastic coeffi-
cient can be approximated as

eiFl = eiFl0
(
1+ (ciFτiF )2

)
, (6)
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FIGURE 2. Typical hysteresis curve of a harmonic drive.

where eiFl0 and ciF are determined position constants.
If eiFl0 6= 0, one can obtain the flexspline torsion which is
expressed as follows:

1qiF =
∫ τiF

0

dτiF
eiFl

. (7)

Substituting (6) into (7), the flexspline torsion can be cal-
culated as

1qiF =
arctan(ciFτiF )

ciFeiFl0
, (8)

where arctan(·) represents the arctangent function. Besides,
from Figure 2, one obtains that the torsional angle 1qiF
may range from −8/2 to 8/2, while τiF equals to zero;
moreover, the torsional angle turns to zero, while τiF reaches
to the nominal torque, where8 represents the hysteresis loss.
To replicate the shape of the hysteresis curve, we formulate
the local elastic coefficient of wave generator as follows:

eiWl = eiWl0eciW |τiF |, (9)

where eiWl0 and ciW are determined positive constants.
If eiWl0 6= 0, one may calculate the torsional angle of wave
generator 1qiW by using the relation

1qiW =
∫ τiW

0

dτiW
eiWl

, (10)

where τiW is the torque at the wave generator location.
By substituting the expression of eiWl in (9) into (10), one
obtains

1qiW =
sgn(τiW )
ciW eiWl0

(1− e−ciW |τiW |), (11)

where sgn(·) is a typical sign function, expressing as

sgn(·) =


1 for · > 0
0 for · = 0
−1 for · < 0.

(12)

2) COLLISION IDENTIFICATION BASED ON THE
HARMONIC DRIVE COMPLIANCE MODEL
Based on the nonlinear harmonic drive compliance model,
in this part, we focus on estimating the coupled joint torque,
which equal to the flexspline output torque, when the envi-
ronmental collision happened.

Combining the flexspline torsional angle (8) with the wave
generator torsional angle (11), the coupled joint torque can be
estimated by:

τiF =
tan (1qiFciFeiFl0)

ciF

=
1
ciF

tan

(
ciFeiFl0

(
1qi−

sgn(τiW)
(
1−e−ciW |τiW|

)
γiciW eiWl0

))
,

(13)

where the torsional angle 1qi is calculated by (2) and the
wave generator torque τiW can be obtain by using the fol-
lowing relation:

τiW = τim − Iimq̈iW , (14)

where τim is the motor output torque that can be calculate
by using the measured motor current; Iim denotes a coupled
moment of inertia including the inertia the inertia of the
motor’s rotor, the shaft and the wave generator. Note that the
magnitude of Iimq̈iW is very small, so that one can approxi-
mately consider the wave generator torque τiW is equal to the
motor output torque τim.
Remark 1: From (13), one obtains that the coupled joint

torque can be estimated by substituting the measurements of
motor-side and link-side position as well as the motor current
into the harmonic drive compliancemodel. Note that the posi-
tion and current information can also be accurately measured,
when he undesired environmental collision happened, so that
the collision identification is realized without the need of
embedding joint torque sensors into joint modules.

In the following part, the coupled joint torque is utilized in
dynamic model formulation of MRMs.

B. DYNAMIC MODEL FORMULATION
We consider an MRM system that is comprised of n joint
modules assembled in series and each module constitute a
direct current (DC)motor as actuator, a harmonic drive device
as speed reducer, a motor-side incremental encoder as well as
a link-side absolute encoder as position and velocity sensors.
Then, by referencing the modeling methods of joint torque
feedback-based robot manipulators withmulti-degree of free-
dom (DOF) [48], [49], the dynamicmodel of theMRMcan be
formulated as an integration of independent joint subsystems
with interconnected dynamic coupling (IDC) effects, where
the ith subsystem model is formulated as:

Iimγiq̈i+
τiF

γi
+fri (qi, q̇i)+hi (q, q̇, q̈)+di (qi) = τi, (15)

where the subscript ‘‘i’’ means the ith subsystem; qi, q̇i,
q̈i represent the joint position, velocity and acceleration
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variables respectively; τiF is the coupled joint torque;
fri (qi, q̇i) indicates the lumped friction torque of the joint
module; hi (q, q̇, q̈) denotes the IDC among the joint subsys-
tems; di (qi) is the disturbance torque and τi is the control
torque.

1) JOINT FRICTION TORQUE
We consider the lumped friction torque fri (qi, q̇i) that
includes the motor friction and the harmonic drive friction
in each joint module. According to [50], [51], a friction
function, which is regarding of the joint position and velocity
information, is defined as follows:

fri(qi, q̇i) = f̂ibq̇i +
(
f̂ise(−f̂iτ q̇

2
i ) + f̂ic

)
sgn(q̇i)

+ fip(qi, q̇i)+ Y (q̇i)F̃i,

Y (q̇i) =
[
q̇i, sgn(q̇i), e(−f̂iτ q̇

2
i ) sgn(q̇i),

−f̂isq̇2i e
(−f̂iτ q̇2i ) sgn(q̇i)

]
F̃i =

[
fib − f̂ib, fic − f̂ic, fis − f̂is, fiτ − f̂iτ

]T
, (16)

where fib denotes the viscous friction parameter, fis is
the static friction coefficient, fiτ indicates the Stribect
effect parameter, fic is the Coulomb friction coefficient and
fip(qi, q̇i) represents the position dependency friction term.
Moreover, f̂ib, f̂is, f̂iτ and f̂ic are estimated parameters of fib,
fis, fiτ and fic respectively.

2) INTERCONNECTED DYNAMIC COUPLING
The IDC term, which is considered a complex nonlinear
function, is defined as:

hi (q, q̇, q̈) = Iim
i−1∑
j=1

zTmizljq̈j+Iim
i−1∑
j=2

j−1∑
k=1

zTmi
(
zlk×zlj

)
q̇k q̇j

= Iim
i−1∑
j=1

Dijq̈j + Iim
i−1∑
j=2

j−1∑
k=1

2i
kjq̇k q̇j, (17)

where zmi, zlj and zlk denote the unity vectors along with
the rotation axis of the ith, jth and kth joint respectively.
Moreover, we also have the relations Dij = zTmizlj and 2

i
kj =

zTmi
(
zlk × zlj

)
. Reformulating (17), one obtains

hi (q, q̇, q̈)=Uiz + Viz,

Uiz=
i−1∑
j=1

[
IimD̂ij Iim

] [
q̈j D̃ijq̈j

]T
,

Viz=
i−1∑
j=2

j−1∑
k=1

[
Iim2̂i

kj Iim
] [
q̇k q̇j 2̃i

kjq̇k q̇j
]T
, (18)

where D̂ij = Dij − D̃ij denotes the dot product of unit vector
zmi and zlj, D̃ij is the alignment error. Similarly, 2̂i

kj = 2
i
kj −

2̃i
kj indicates the dot product of zmi and zlk × zlj, 2̃i

kj is the
alignment error.

3) DISTURBANCE TORQUE
Define the disturbance torque term di (qi) as:

di (qi) = die (qi)+ dic (qi) , (19)

where die (qi) indicates the joint torque estimation error,
dic (qi) represents the unacquirable perturbed torque, which
is caused by undesired environmental collision. According to
the model formulation in (15), (16), (18) and (19), we know
that there exist many uncertainties, which include the friction
modeling error, the IDC effect, the joint torque estimation
error and the unobtainable collision disturbance. It is noted
that the uncertainties are with the following properties.
Property 1: For the frictional model (16), since the friction

coefficients fib, fis, fiτ , fic and their approximate ones are
bounded, the approximation error vector F̃i is also bounded,
where the up-bound can be given as

∣∣∣F̃i∣∣∣ ≤ ρFil , where l =
1, 2, 3, 4 and ρFil is a known positive constant vector. Accord-
ingly, the friction modeling error term Y (q̇i) F̃i is bounded by∣∣∣Y (q̇i) F̃i∣∣∣ ≤ Y (q̇i) ρFil . Moreover, the position dependency

friction term fip (qi, q̇i) is bounded by
∣∣fip (qi,q̇i)∣∣ ≤ ρfip,

where ρfip is a known positive constant.
Property 2: For the IDC terms that represented in (17)

and (18), we know that the vector products among the terms
zmi, zlj and zlk are bounded by

∣∣∣Dij∣∣∣ = ∣∣zTmizlj∣∣ ≤ 1 and∣∣∣2i
kj

∣∣∣ = ∣∣zTmi (zlk × zlj)∣∣ ≤ 1 respectively. Moreover, if the
lower j and k joints (1 < j, k < i− 1) are stabilized, then the
terms Uiz and Viz are bounded, and satisfying the following
relations:

|Uiz| ≤ ρiU
|Viz| ≤ ρiV , (20)

where ρiU and ρiV are known constants.
Property 3: The joint torque estimation error die (qi) is

bounded and the known up-bound |die (qi)| ≤ ρdie can be
calculated by the product of the kinematic error ratio of
harmonic drive transmission and the joint torque. Moreover,
the perturbed torque dic (qi), which is attributed to the unob-
tainable collision disturbance, is also bounded, since the joint
external torque is bounded. Here, the up-bound can be given
by |dic (qi)| ≤ ρdic, where ρdic is a known position constant.

4) STATE SPACE DESCRIPTION
Then, according to the dynamic model of the ith joint sub-
system (15), define the system state xi =

[
xi1 xi2

]T
=[

qi q̇i
]T
∈ R2×1, the control torque ui = τi ∈ R1×1 and the

positive coefficient Bi = (Iimγi)−1 ∈ R+, one can obtain the
state space of the ith subsystem that is formulated as follows:

Si :


ẋi1 = xi2
ẋi2 = φi (xi)+ υi (x)+ pi (xi)+ Biui
y = xi1

, (21)

where φi (xi) represented the accurately modeled and esti-
mated parts of the subsystem dynamics, υi (x) indicates a
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global model uncertainty term of the subsystem and pi (xi)
is the environmental collision disturbance term. Here, we can
represent these terms as follows:

φi (xi) = Bi

−
(
f̂ise

(
−f̂iτ q̇2i

)
+ f̂ic

)
sgn (q̇i)

−f̂ibq̇i −
τiF

γi


υi (x) = Bi

(
−Uiz−Viz− fip (qi, q̇i)−Y (q̇i) F̃i

)
−die (qi)

pi (xi) = Bi (−dic (qi)) . (22)

In the following section, based on ADP algorithm and
ACI structure, a decentralized zero-sum optimal control
method is presented for MRMs in face of environmen-
tal collisions to ensure that both position and velocity of
MRM systems are asymptotically stable.

III. ACI STRUCTURE-BASED DECENTRALIZED ZERO-SUM
OPTIMAL CONTROL VIA ADP ALGORITHM
A. ZERO-SUM OPTIMAL CONTROL AND PROBLEM
TRANSFORMATION
For an MRM system with the dynamic model formula-
tion (15) and state space description (21), we consider the
environmental collision disturbance pi (xi) as a kind of sys-
tem control input, then the optimal control problem can be
transformed into a two-player zero-sum optimal control issue,
in which the continuously differentiable infinite horizon local
performance index function can be defined as follows:

Ji (li0 (ei)) =
∫
∞

0


li(ei (τ ))TQili (ei (τ ))

+ ui(τ )TRiui (τ )

− γ 2
ippi(xi (τ ))

T pi (xi (τ ))

dτ, (23)

where li0 (ei), which indicates a filtered error function with
respect to the joint position and velocity errors, is defined as

li (ei) = ėi + αieei, (24)

where ei = xi1− xid and ėi = xi2− ẋid represent the position
and velocity tracking error of the ith robotic joint respec-
tively; xid , ẋid , ẍid indicate the determined reference joint
variables; QTi = Qi, RTi = Ri are positive constant matrixes
and αie, γip are the positive constants to be determined. Then,
according to the local performance index function Ji (li0)
in (23), we can define the local Hamiltonian as follows:

Hi (li, ui, pi,∇Ji)

= lTi Qili + u
T
i Riui − γ

2
ipp

T
i pi +∇J

T
i (li) l̇i

= lTi Qili + u
T
i Riui − γ

2
ipp

T
i pi

+∇JTi (li) (φi + υi + pi + αieėi + Biui − ẍid ) , (25)

where ∇Ji (li) = ∂Ji (li)/∂li represents the partial derivative
of Ji (li) with respect to li, and l̇i denotes the time derivative
of li. To ensure the existence of the optimal performance
index function, here, we assume that the L2-gain [29] of the
robotic system (21) is less than or equal to γip.

Define the utility function as:

Ui (li, ui, pi) = lTi Qili + u
T
i Riui − γ

2
ipp

T
i pi, (26)

then, according to [52], [53], the optimal performance index
function can be given as:

J∗i (li) = min
ui

max
pi

∫
∞

0

 li(ei (τ ))TQili (ei (τ ))
+ui(τ )TRiui (τ )

−γ 2
ippi(xi (τ ))

T pi (xi (τ ))

 dτ

= min
ui

max
pi

∫
∞

0
Ui (li, ui, pi) dτ

= max
pi

min
ui

∫
∞

0
Ui (li, ui, pi) dτ . (27)

From (25) and (27), we conclude that the optimal control
pair (u∗i , p

∗
i ) satisfies the following HJI equation:

0= ∇J∗Ti (li)
(
φi + υi + p∗i + αieėi + Biu

∗
i − ẍid

)
+ Ui

(
si, u∗i , p

∗
i
)
. (28)

According to the optimality principle, if J∗i (li) is the pos-
itive definite solution of the HJI equation (27), then one can
represent the optimal control pair (u∗i , p

∗
i ) that is given as

follows:

u∗i = −
1
2
R−1i BTi ∇J

∗
i

p∗i =
1

2γ 2
ip

∇J∗i . (29)

In order to deal with the subsystem dynamic term φi, model
uncertainty term υi and the collision disturbance term pi
respectively, here, we can rewrite the optimal control law u∗i
as the form of

u∗i = ui1 + ui2 + u∗i3, (30)

so that the HJI equation can be modified as:

0=∇J∗i

(
φi + υi + p∗i + αieėi − ẍid
+Biui1 + Biui2 + Biu∗i3

)
+ Ui

(
li, u∗i , p

∗
i
)
.

(31)

From (31), we conclude that the optimal control problem
has been transformed into the one of obtaining decentralized
compensation control laws ui1, ui2 and decentralized zero-
sum optimal control law u∗i3, thus, to realize optimal com-
pensation of model uncertainty and collision disturbance of
MRM systems.

In (31), we know that the dynamic model term φi,
the desired joint acceleration term ẍid and the joint velocity
error term ėi are all known. In order to compensate these
accurately modeled and estimated dynamic model terms,
we can design the decentralized compensation control law ui1
as follows:

ui1 = −

−(f̂ise
(
−f̂iτ x2i2

)
+ f̂ic

)
sgn (xi2)−

τiF
γi

−f̂ibxi2 − B
−1
i ẍid + B

−1
i αieėi

 . (32)
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Next, an ACI-structured-based decentralized zero-sum
optimal control method is presented to deal with the optimal
control problem of environmental collided MRM systems via
NN implementation.

B. ACI-STRUCTURE-BASED DECENTRALIZED ZERO-SUM
OPTIMAL CONTROL VIA NN IMPLEMENTATION
Neural networks, which possess of excellent capability for
approximating unknown nonlinearities, are widely used in
community of robotic control. In this part, we employ
RBF-NNs to deal with the decentralized zero-sum optimal
control problem via an actor-critic-identifier structure.

1) IDENTIFIER FOR MODEL UNCERTAINTY
In this part, we establish an RBF-NN identifier to approxi-
mate the model uncertainty. First, the following assumption
should be considered:
Assumption 1 [54]: The NN approximation error ε (·) is

upper-bounded and the NN activation function σ (·) as well
as its derivative with respect of its arguments σ ′ (·) are also
upper-bounded.

According to theAssumption 1, themodel uncertainty term
υi (x) in (22) can be approximated by employing an RBF-NN,
which is given as:

υi = wTiυσiυ (xυ)+ εiυ (xiυ) , (33)

where xiυ denotes a determined NN state; xυ = [xd , xiυ ]T =
[x1d , x2d · · · xmd , xiυ ]T ,m < i is as defined state vector that is
composed of the NN state as well as the known and bounded
reference robotic system states; wiυ is the unknown ideal
NN weight; εiυ (xiυ) represents the finite NN approximation
error; σiυ (xυ) indicates the activation function that is selected
as the following Gaussian function:

σiυ (xυ) = exp

(
−(xυ − γυ)T (xυ − γυ)

βυ

)
, (34)

in which the constant γυ is the center of the activation func-
tion and the positive constant βυ indicates the width of the
activation function. Besides, on the basis of the representa-
tion of model uncertainly in (33), we consider the following
nonlinear dynamic system, with a bounded control input uiυ ,
as follows:

ẋiυ = υi + uiυ = wTiυσiυ (xυ)+ εiυ (xiυ)+ uiυ . (35)

Then, we can define the following NN identifier to approx-
imate (35):

˙̂x iυ = υ̂i + uiυ = ŵTiυσiυ (xυ)+ uiυ + δiυ , (36)

where x̂iυ indicates the identified state of xiυ ; υ̂i denotes the
estimation of υi; ŵiυ is the approximated weight and δiυ
denotes a robust integral of sign of the error (RISE [55])
feedback term, defined as:

δiυ = αiυeiυ +4iυ , (37)

where eiυ is the state identification error that is represented
as eiυ = xiυ − x̂iυ , 4iυ is the generalized solution of

4̇iυ = (αiυβiυ + γiυ) eiυ + ηiυ1 sgn (eiυ) , (38)

in which the terms αiυ , βiυ , γiυ and ηiυ1 are positive control
parameters to be determined. By combining (35) with (36),
the state identification error dynamic can be represented as
follows:

ėiυ = υ̃i = wTiυσiυ − ŵ
T
iυσiυ + εiυ − δiυ , (39)

where υ̃i = υi − υ̂i. On this basis, define the following
identification error function

liυ = ėiυ + βiυeiυ . (40)

Then, one can easily obtain the time derivative of (40),
which is given as:

l̇iυ = wTiυσ
′
iυ ẋiυ − ˙̂wTiυσiυ − ŵ

T
iυσ
′
iυ
˙̂x iυ + ε̇iυ

−αiυ liυ − γiυeiυ − ηiυ1 sgn (eiυ)+ βiυ ėiυ , (41)

in which the weight update law of the NN is given as:

˙̂wiυ = proj
(
Piυσ ′iυ ˙̂x iυeTiυ

)
, (42)

where proj (·) is a smooth projection operation [56],
Piυ indicates a positive constant gain matric. Rewriting (41),
one obtains:

l̇iυ=M̃iυ1
(
eiυ ,wiυ , ŵiυ

)
+Miυ2

(
xiυ ,wiυ , ŵiυ

)
+M̂iυ3

(
x̂iυ , !w̃iυ

)
−αiυ liυ−γiυeiυ−ηiυ1 sgn (eiυ) , (43)

in which M̃iυ1, Miυ2 and M̂iυ3 are defined as follows:

M̃iυ1 = βiυ ėiυ − ˙̂wTiυσiυ +
1
2
wTiυσ

′
iυ ėiυ +

1
2
ŵTiυσ

′
iυ ėiυ

Miυ2 =
1
2
wTiυσ

′
iυ ẋiυ −

1
2
ŵTiυσ

′
iυ ẋiυ + ε̇iυ

M̂iυ3 =
1
2
w̃Tiυσ

′
iυ
˙̂x iυ , (44)

where w̃iυ = wiυ − ŵiυ . Then, define an auxiliary
Miυ3 (xiυ , w̃iυ) that replace ˙̂x iυ in M̂iυ3 with ẋiυ , moreover,
we can also define the relations M̃iυ3 = M̂iυ3 − Miυ3 and
Miυ23 = Miυ2 + Miυ3 to facilitate the subsequent stabil-
ity analysis. Therefore, according to the Assumption 1 and
using (40), (42) and (44), we may have the following bounds:∥∥∥M̃iυ1

∥∥∥ ≤ ϕiυ (‖biυ‖) ‖biυ‖ ,
‖Miυ2‖ ≤ miυ1, ‖Miυ3‖ ≤ miυ2,

‖Miυ23‖ ≤ miυ3 + miυ4ϕiυ2 (‖biυ‖) ‖biυ‖ ,∥∥∥ėTiυM̃iυ3

∥∥∥ ≤ miυ5‖eiυ‖2 + mi6‖liυ‖2, (45)

where biυ =
[
eTiυ l

T
iυ

]T , ϕiυ1 (·), ϕiυ2 (·) are positive, non-
decreasing, globally invertible functions, and miυf , f =
1, . . . , 6, are positive constants. In order to facilitate the
subsequent stability analysis, we define

Tiυ =
[
eTiυ lTiυ

√
Qiυ

√
Riυ
]T
, (46)
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in which the auxiliary functionQiυ is the generalized solution
of the following differential equation:

Q̇iυ = −lTiυ (Miυ2 − ηiυ1 sgn(eiυ ))+ ėTiυMiυ3

− ηiυ2ϕiυ2 (‖biυ‖) ‖biυ‖ ‖eiυ‖ , (47)

where ηiυ1, ηiυ2 can be selected according to the following
conditions to ensure that Qiυ is nonnegative definite:

ϕiυ1 > max
(
miυ1 +

miυ3
βiυ

,miυ1 + miυ2

)
,

ϕiυ2 > ϕiυ4. (48)

Moreover, the auxiliary function Riυ in (46) is defined as:

Riυ =
1
4
βiυ

[
tr
(
w̃TiυP

−1
iυ w̃iυ

)]
, (49)

where tr (·) denotes the trace of matrix.
Theorem 1: Consider the global model uncertainty of an

MRM system that is represented as (33), and the dynamic
system formulated in (35). The RBF-NN identifier presented
in (36) along with the weight update law given in (42) can
ensure the model uncertainty term to be asymptotically iden-
tified, in the sense that

lim
t→∞

‖υ̃i‖ = 0,

afforded the parameters

αiυ > miυ6, γiυ >
miυ5
βiυ

,

in which αiυ , βiυ , γiυ , miυ5 and miυ6 are introduced in (38)
and (45) respectively.
Proof: See Appendix A.
Then, according to (31), (36), (37) and (38), one can

design themodel uncertainty identifier-based learning control
law ui2, which is given as:

ui2 = −B
−1
i

 ŵTiυσiυ + αiυeiυ

+
∫ t
0

(
(αiυβiυ + γiυ )eiυ
+ηiυ1 sgn(eiυ )

)
dt

 , (50)

where the NN weight ŵiυ is updated by (42).
From (32) and (50), we know that the control law ui1 is

developed to address the effect of modeled and estimated part
of the dynamic model, as well as ui2 is designed to deal with
the model uncertainty of the MRM system. Next, we focus
on finding a zero-sum neuro-optimal control u∗i3 to realize
the optimal compensation of the effect of disturbance that is
caused by environmental collisions.

2) CRITIC AND ACTOR NNS
In this part, we employ the critic NN, u−actor NN and
p−actor NN to estimate the performance index function
Ji (li), the zero-sum optimal control law u∗i3 and the worst
environmental collision disturbance p∗i respectively.

a: CRITIC NN
By using RBF NNs, the ideal critic NN can be given as

Ji (li) = wTicσic (li)+ εic, (51)

where wic denotes the unknown ideal NN weight, εic is the
finite estimation error of the critic NN, σic (si) indicates the
activation function that is similar to the form of (34). Then,
the gradient of the estimated performance index function is
given as:

∇Ji (li) = ∇σic(li)Twic +∇εTic, (52)

where∇σic (li) is the activation function gradient that is given
as ∇σic (li) = ∂σic (li)/∂li and ∇εic is the gradient error.
Then, we can rewrite the Hamiltonian in (25) and obtain the
following relation:

Hi (li, ui, pi,wic) =
Ui (li, ui, pi)

+
(
wTic∇σic (li)

)
l̇i − eicH

= 0, (53)

where eicH , which is the estimation error of the critic NN, can
be represented by:

eicH = Ui +
(
wTic∇σic

)
l̇i. (54)

Let ŵic be the approximated weight vector of wic, so that
the actual output of the critic NN can be given as:

Ĵi (li) = ŵTicσic (li) . (55)

Then, one obtains the approximated Hamilton function that
is given as:

Ĥi
(
li, ui, pi, ŵic

)
=Ui (li, ui, pi)+

(
ŵTic∇σic (li)

)
l̇i. (56)

Define the error function for adjusting the critic NN as
eic = Ĥi − Hi, which is in fact eic = Ĥi. Let the weight
estimation error to be w̃ic = wic − ŵic, then, combining (53)
with (56), we obtain that eic = eicH − w̃Tic∇σic (li) l̇i. Then,
based on the gradient descent method, define the residual
error function Eic = 1

2e
2
ic that is minimized to adjust the

critic NN (55), which is updated by

˙̂wic = −αic

(
∂Eic
∂ŵic

)
= −αic

pic
(
pTicŵic + Ui

)(
pTicpic + 1

)2 , (57)

where pic is defined by pic = ∇σic (li) l̇i and αic is a posi-
tive learning rate of the critic NN. Moreover, define mic =
pTicpic + 1 and nic =

pic
mic

, so that the critic NN error dynamic
can be given as:

˙̃wic = −αicnicnTicw̃ic + αicnic
eicH
mic

. (58)

b: ACTOR NNs
Here, we employ the actor NNs that include u-actor NN and
p-actor NN to approximate the optimal control law u∗i3 and
the worst environmental collision disturbance. Consider that
the ideal u− and p− actor NNs are given as:

u∗i3 = wTiaσia (li)+ εia, (59)
p∗i = wTipσip (li)+ εip, (60)
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wherewia,wip are the ideal weight vectors; σia, σip, which are
selected as the similar form of (34), represent the activation
functions and εia, εip denote the finite approximation errors.
Let ŵia and ŵip be the approximated weight vectors of wia
and wip, then, the actual output of the u− and p−actor NNs
are given as:

ûi3 = ŵTiaσia (li) , (61)

p̂i = ŵTipσip (li) . (62)

Substituting (61) and (62) into (56), one obtains the rela-
tions:(
∂Ĥi

(
li, ûi, p̂i, ŵic

)
/∂ ûi

)
= ∂Ĥi

(
li, ûi, p̂i, ŵic

)
/∂ p̂i = 0.

(63)

Therefore, we can rewrite the approximated optimal con-
trol and the worst environmental collision disturbance as
follows:

ûi3 = −
1
2
R−1i BTi ∇σ

T
ic (li) ŵic, (64)

p̂i =
1

2γ 2
ip

∇σ Tic (li) ŵic. (65)

Then, the approximation error of the u− and p− actor
NNs can be expressed as:

eia = ŵTiaσia (li)+
1
2
R−1i BTi ∇σ

T
ic (li) ŵic

eip = ŵTipσip (li)−
1

2γ 2
ip

∇σ Tic (li) ŵic. (66)

We know that the objective of the u− and p− actor NNs
are to select the weight estimation ŵia and ŵip that minimize
the residual error functions Eia = 1

2e
2
ia and Eip =

1
2e

2
ip. Then,

based on the gradient descent rule, the NNweight update laws
can be given as follows:

˙̂wia = −αiaσia (li) ·
(

ŵTiaσia (li)
+

1
2R
−1
i BTi ∇σ

T
ic (li) ŵic

)T
, (67)

˙̂wip = −αipσip (li) ·

(
ŵTipσip (li)

−
1

2γ 2ip
∇σ Tic (li) ŵic

)T
, (68)

where αia and αip are the positive learning rates to be deter-
mined. Define the following weight estimation errors:

w̃ia = wia − ŵia
w̃ip = wip − ŵip. (69)

Then, one can define the error dynamics of the u− and
p− actor NNs, which are given as follows:

˙̃wia = αiaσia (li)·

−w̃
T
iaσia (li)+w

T
iaσia (li)

−
1
2R
−1
i BTi ∇σ

T
ic (li) w̃ic

+
1
2R
−1
i BTi ∇σ

T
ic (li)wic


T

˙̃wip = αipσip (li)·


−w̃Tipσip (li)+w

T
ipσip (li)

+
1

2γ 2ip
∇σ Tic (li) w̃ic

−
1

2γ 2ip
∇σ Tic (li)wic


T

. (70)

Remark 2: According to the Hamiltonian (25) and the HJI
equation (31), we know the fact that Hi

(
li, u∗i , p

∗
i ,∇J

∗
i

)
= 0.

Moreover, from (52), (61) and (62), we also conclude that
∇J∗i , u

∗
i and p∗i can be rewritten with respect to the ideal

weights of critic and actor NNs. In this sense, the Hamil-
tonian (53) can be further expressed as the relation of:
Hi (li, ui, pi,wic) = Hi

(
li,wia,wip,wic

)
= 0.

Theorem 2: Let the performance index function and the
optimal control pair be approximated by the critic NN (51)
and the actor NNs (59), (60) with the ideal weightwic,wia and
wip, respectively. If the estimated performance index function
and optimal control pair are expressed by (55), (61) and (62)
that are built with approximated weight ŵic, ŵia and ŵip
respectively, as well as the NN weights are updated by (57),
(67) and (68) respectively, then, the weight approximation
errors w̃ic, w̃ia and w̃ip are UUB.
Proof: See Appendix B.
By combining (32), (50) with (64), we can formulated

the completed decentralized zero-sum neuro-optimal control
law u∗i that is given as:

u∗i = ui1 + ui2 + u∗i3

= −

 −

(
f̂ise

(
−f̂iτ x2i2

)
+ f̂ic

)
sgn (xi2)

−f̂ibxi2 − B
−1
i ẍid −

τiF

γi
+ B−1i αieėi


−B−1i

 ŵTiυσiυ + αiυeiυ

+

∫ t

0

(
(αiυβiυ + γiυ) eiυ
+ ηiυ1 sgn (eiυ) dt

)
−

1
2
R−1i BTi ∇σ

T
ic ŵic. (71)

C. STABILITY ANALYSIS OF THE CLOSED-LOOP
ROBOTIC SYSTEM
In this part, we focus on investigating the stability problems
of the closed-loop MRM systems under the proposed decen-
tralized control scheme (71). The theorem is given as follows:
Theorem 3: Consider a modular robot manipulator system

that subjects to environmental collisions, with the subsystem
dynamic model formulated in (15), the model uncertainties
and the collision disturbance existed in (22). The closed-loop
robotic system is asymptotically stable under the proposed
decentralized zero-sum neuro-optimal control given in (71).
Proof: See Appendix C.

IV. EXPERIMENTS
Based on the established experimental platform and the col-
lected experimental results, in this section, we present the
experimental verifications to analysis the advantages and
effectiveness of the proposed method.

A. EXPERIMENTAL SETUP
As illustrated in Figure 3, the details of the experimental
setup are given as follows: An MRM is consist of two
modular robotic joints, each joint composing a DC motor,
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FIGURE 3. Experimental setup.

an incremental encoder, an absolute encoder, a harmonic
drive device and a joint torque sensor. The DC motors,
with type no. 218014 from Maxon Inc., possess the nomi-
nal torque 0.2 Nm and nominal voltage 48V. The harmonic
drive devices, which are with the reduction ratio of 100:1,
are coupled with the DC motor. The motor-side position
variables are measured by the 500-line incremental encoder
from Maxon Inc. and the link-side position variables are
obtained by using the absolute encoder with 19-bit resolution
from Netzer Inc.. The joint torque sensors, which are with
nominal torque 20 Nm are equipped at the end of each
joint module, are used to verify the joint torque estimation
performance. A linear power amplifier (LPA) and a QPIDe
data acquisition board from Quanser Inc. are adopted to drive
the motor and to collect the experimental data. The LPA is
seamless embedded into Simulink from MathWorks Inc. by
using QUARC from Quanser Inc., and these softwares are
installed in a host-computer, which can communicate with
the QPIDe data acquisition board to process the experimental
data in Simulink.
Remark 3: It is noted that the proposed control algo-

rithm, which is in the form of continuous time, needs to be
realized discretely, when it is implemented in experiments.

FIGURE 4. Experiments of the MRM system with environmental
collisions, (1)–(6) Collision example.

Fortunately, the control system, which is constructed under
the Simulink environment, may complete the discrete realiza-
tion automatically and adjust the sampling period adaptively.

We consider that the environmental collisions occur at
random place of the MRM links. As illustrated in Figure 4,
the collisions between the collision objects and the MRM
links may create instantaneous contact forces. Note that
the collision external torques are estimated and calculated
in advance to avoid exceeding the instantaneous maximum
range of the joint torque sensors. Moreover, to match up the
nominal values of the DC motors and the torque sensors,
the robotic joints follow the desired trajectories of

q1d =
−30π
180

sin
( π
20

)
t, q2d =

45π
180

sin
( π
20

)
t,

in which 0 ≤ t ≤ 80 s.
The MRM system parameters, which include the model

parameters, the uncertainty up-bound parameters and the
control parameters, are represented in Table 1. Besides,
the activation function for the identifier is selected as a
symmetric sigmoid function, the critic NN is chosen as the
structure of 2-5-1 with 2 input neurons, 5 hidden neurons
and 1 output neuron, and the weight vectors are selected as
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TABLE 1. Parameters setting.

FIGURE 5. Estimated joint torque without environmental collisions,
(a) Joint 1, (b) Joint 2.

ŵc1 =
[
ŵc11 ŵc12 ŵc13 ŵc14 ŵc15

]T for joint 1 and ŵc2 =[
ŵc21 ŵc22 ŵc23 ŵc24 ŵc25

]T for joint 2, with the initial val-
ues ŵc1 = ŵc2 = [0]. Moreover, the NN structures and initial
weight values of the actor NNs are selected as the same of the
critic NNs.

B. EXPERIMENTAL RESULTS
In this part, the experimental results are proposed to analyze
the variations of joint torque estimation performance, tra-
jectory tracking performance, position and velocity tracking
errors, control torques and the network weights. In order
to compare the advantages between the existing methods,
e.g. [57]–[59], and the proposed method, in this paper, two
different control schemes are considered in the experiments,
which include the existing learning-based decentralized con-
trol method and the proposed decentralized zero-sum neuro-
optimal control method. The performance comparisons with
each control method are listed in Table 2.

FIGURE 6. Estimated joint torque with environmental collisions,
(a) Joint 1, (b) Joint 2.

1) JOINT TORQUE ESTIMATION
Figures 5 and 6 illustrate the joint torque curves under the
situation of collision free and uncertain collision environ-
ments by using the torque sensing technique and the proposed
harmonic drive model-based joint torque estimation method,
respectively. In Figure 5, the joint torques are obtained under
the collision free environment and we observe that the torque
estimations are highly consistent with the torque sensing
measurements as well as the torque estimation deviation
keeps in a very small range. Besides, Figure 5 also verifies
that the torque estimation method is suitable for multiple
joint trajectories. Figure 6 illustrates the joint torque curves
under the situation of uncertain collision environment. From
this figure, one observes that there exists significant jump on
the torque curves while the environmental collision occurred.
Fortunately, the proposed joint torque estimation method,
which is rely on the position and current measurements that
are sensitive to the collisions, may effectively capture the
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TABLE 2. Performance comparisons under the existing and the proposed control methods.

FIGURE 7. Trajectory tracking curves by using the existing methods,
(a) Joint 1, (b) Joint 2.

instantaneous changing trend of the joint torque, therefore,
torque estimation deviation still keeps in an acceptable range
when the collision occurred. Note that the proposed joint
torque estimation method is independent of the selected con-
trol methods.

2) TRAJECTORY TRACKING PERFORMANCE
Figures 7 and 8 illustrate the trajectory tracking curves of
the MRM system under the existing and the proposed con-
trol methods with uncertain environmental collisions respec-
tively. In these figures, the desired trajectories are tracked
appropriately by the actual joint trajectories, which means
the trajectory tracking tasks are completed successfully under
both of the two control methods. Besides, the initial joint
positions of the MRM system are equated to the initial loca-
tions of the trajectory tracking tasks, that is attribute to the
effect of the initialization localization programs.

3) POSITION AND VELOCITY TRACKING ERRORS
The position and velocity tracking error curves under
the situation of environmental collisions are shown
in Figures 9–12. In Figures 9 and 10, the steady state position
and velocity errors are less than 4e-3 rad and 2e-3 rad/s
respectively for each joint module under the existing con-
trol methods, and the errors keep in an acceptable range.

FIGURE 8. Trajectory tracking curves by using the proposed method,
(a) Joint 1, (b) Joint 2.

FIGURE 9. Position error curves by using the existing methods, (a) Joint 1,
(b) Joint 2.

Besides, obvious instantaneous increasing of the position
and velocity errors are captured in these figures, which
are due to the effect of collision force. However, since the
dynamic identification and optimal compensation of the
model uncertainties and environmental collision disturbance
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FIGURE 10. Velocity error curves by using the existing methods,
(a) Joint 1, (b) Joint 2.

FIGURE 11. Position error curves by using the proposed method,
(a) Joint 1, (b) Joint 2.

are not implemented in the existing control methods, the error
curves are featured with obvious chattering and noise effects.
In Figures 11 and 12, the steady state position and velocity
errors are less than 2e-3 rad and 1e-3 rad/s respectively, which
are with better performance than the former ones, and the
main reason of this phenomenon is that the proposed control
method has compensated the effects of frictional modeling
error, IDCs and environmental collision disturbance targeted
and effectively. Moreover, we also observe that the instan-
taneous increasing of position and velocity errors, which
are caused by the environmental collisions, return to normal
ranges within very short time periods, which is attributed
to the performance of the proposed zero-sum neuro-optimal
controller that realizes the optimal compensation of uncertain
collision disturbance.

4) CONTROL TORQUE
In Figure 13, the control torque curves, which is plot-
ted under the existing control methods, are with serious

FIGURE 12. Velocity error curves by using the proposed method,
(a) Joint 1, (b) Joint 2.

FIGURE 13. Control torque curves by using the existing methods,
(a) Joint 1, (b) Joint 2.

chattering effect that may decrease the precision of joint
trajectory tracking and affect the durability of DC motors.
Moreover, we observe that the control torques may sharply
increase when the collision contact occurred instantly, note
that this may trigger the circuit break and protect mecha-
nism of the power amplifier and thus making the robotic
system out of control. Smooth and healthy control torque
curves are represented in Figure 14 that profits from the
proposed control method, in which the output torques have
been optimized with an appropriate behavior in accordance
with the output power of motors. Besides, we also observe
that the instant increase of control torques are kept within
safe limits while the collision occurred. This is attribute to
the proposed optimal control that realizes the optimization of
tracking errors and output torques.

5) CRITIC NN WEIGHT ESTIMATIONS
Figure 15 illustrates the variations of the estimated critic
NN weights under the proposed method with environmental

96160 VOLUME 7, 2019



B. Dong et al.: ACI Structure-Based Decentralized Neuro-Optimal Control of Modular Robot Manipulators

FIGURE 14. Control torque curves by using the proposed method,
(a) Joint 1, (b) Joint 2.

FIGURE 15. Estimated critic NN weight adjustment curves by using the
proposed method, (a) Joint 1, (b) Joint 2.

collisions. From this figure, one observes that the weight
estimation curves, which can effectively reflect the influence
of the environmental collisions, are updated regularly within
certain boundaries. Consequently, with the update of the
weight estimations, the critic NN can learn the performance
index function in real time, as well as the HJI equation and the
optimal control law can be solved and derived respectively.
Besides, the weight estimations of the u- and p-actor NNs are
with the same RBF NN structures of the critic NNs.

From the experimental comparative cases, we conclude
that the proposed control method is with better control per-
formance in the aspect of motion control accuracy and power
consumption than the existing ones. Moreover, we can also
conclude that both position and velocity variables of the
MRM systems are asymptotically stable under the proposed
decentralized zero-sum neuro-optimal control method, and
the control torques are smooth and healthy in the tasks with
environmental collisions. All the experiments reported in
this section are repeatable, and the experimental results are
consistent.

V. CONCLUSION
In this paper, we propose a decentralized zero-sum neuro-
optimal control scheme for MRMs with environmental col-
lisions. Based on the collision identification method and the
local dynamic information, we formulate the dynamic model
of the MRM system and then a model-based compensation
controller is designed. An NN identifier, which is established
to approximate the model uncertainties, is adopted to develop
the learning controller, then, we can transform the problem
of optimal control for MRMs with environmental collisions
into a two-player zero-sum optimal control one. Based on
ADP algorithm, the HJI equation is solved by establishing
the actor-critic NNs that include one critic NN and two actor
NNs, and then the decentralized zero-sum neuro-optimal con-
trol is developed. Based on the Lyapunov theory, the closed-
loop robotic system is proved to be asymptotically stable by
the implementation of a set of proposed decentralized con-
trollers. At last, experimental results are illustrated to verify
the effectiveness and advantages of the proposed method.

APPENDIX A
PROOF OF THEOREM 1
We define a Lyapunov function Viυ (Tiυ) : 0iυ → Kiυ as:

Viυ (Tiυ) =
1
2
lTiυ liυ +

1
2
γiυeTiυeiυ + Qiυ + Riυ , (A1)

which satisfies the following relations:

U1 (Tiυ) ≤ Viυ (Tiυ) ≤ U2 (Tiυ) , (A2)

where U1 (Tiυ), U2 (Tiυ) represent continuous positive defi-
nite functions:

U1 (Tiυ) =
1
2
min (1, γiυ) ‖Tiυ‖2,

U2 (Tiυ) = max (1, γiυ) ‖Tiυ‖2. (A3)

Under Filippov’ s framework, we obtain the time derivative
of (A1) as:

V̇iυ < lTiυ

(
M̃iυ1 +Miυ2 + M̂iυ3 − αiυ liυ

−ηiυ1 sgn(eiυ )− γiυeiυ

)
+ γiυeTiυ (liυ − βiυeiυ)

− lTiυ (Miυ2 − ηiυ1 sgn(eiυ ))− ėTiυMiυ3

+ ηiυ2ϕiυ2 (‖biυ‖) ‖biυ‖ ‖eiυ‖

−
1
2
βiυ

[
tr
(
w̃TiυP

−1
iυ
˙̂wiυ
)]
. (A4)

Decomposing for αiυ = αiυ1 + αiυ2 and γiυ = γiυ1 +

γiυ2, using (44) and completing the squares, we obtain the
following upper bound:

V̇iυ ≤−(βiυγiυ1 − miυ5) ‖eiυ‖2 − (αiυ1−miυ6) ‖liυ‖2

+
ϕiυ1(‖biυ‖)2

4αiυ2
‖biυ‖2 +

η2iυ2ϕiυ2(‖biυ‖)
2

4βiυγiυ2
‖biυ‖2.

(A5)
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If the inequality conditions in Theorem 1 can be satisfied,
then (A5) can be rewritten as:

V̇iυ ≤ −λiυ1‖biυ‖2 +
ϕiυ(‖biυ‖)2

4λiυ2
‖biυ‖2 ≤ −Uiυc (Tiυ) ,

∀Tiυ ∈ 0iυ , (A6)

where λiυ1 = min {αiυ1 − miυ6, βiυγiυ1 −miυ5}, λiυ2 =

min
{
βiυγiυ2
η2iυ2

, αiυ2

}
and ϕiυ(‖biυ‖)2 = ϕiυ1(‖biυ‖)2 +

ϕiυ2(‖biυ‖)2. Moreover, Uiυc (Tiυ), which is considered
a continuous positive semidefinite function Uiυc (Tiυ) =
αiυc‖biυ‖2, is defined on the domain 0iυ = {Tiυ | ‖Tiυ‖ ≤
ϕ−1iυ

(
2
√
λiυ1λiυ2

)}
, and αiυc is a positive constant.

Let Kiυ ⊂ 0iυ represents a set, defined as:

Kiυ=
{
Tiυ⊂0iυ|Uiυ2(Tiυ)<

1
2

(
ϕ−1iυ

(
2
√
λiυ1λiυ2

))2}
. (A7)

Then, one can adjust the region of attraction in (A7) to be
arbitrarily large that includes any initial conditions, thus, one
may have αiυc‖biυ‖2→ 0, while ∀Tiυ (0) ∈ Kiυ , t →∞.

Per the definition of biυ , liυ and υi, we conclude that
‖eiυ‖ , ‖ėiυ‖ , ‖liυ‖ → 0, while ∀Tiυ (0) ∈ Kiυ , t → ∞.
Therefore, according to the representation in (39), one obtains
the conclusion that ‖υ̃i‖ → 0 while t →∞. This completes
the proof of the Theorem 1.

APPENDIX B
PROOF OF THEOREM 2
We select the Lyapunov function candidate as:

ViN =
1

2αic
w̃Ticw̃ic +

zia
2αia

tr
(
w̃Tiaw̃ia

)
+

zip
2αip

tr
(
w̃Tipw̃ip

)
,

(B1)

where zia, zip are positive constants to be determined and tr (·)
denotes the trace of a matrix. Then, one can formulate the
time derivative of (B1) that is given as:

V̇iN =
1
αic

w̃Tic ˙̃wic

− ziatr

w̃
T
iaσia


w̃Tiaσia − w

T
iaσia

−
1
2
R−1i BTi ∇σ

T
icwic

+
1
2
R−1i BTi ∇σ

T
ic w̃ic


T

− ziptr

w̃
T
ipσip


w̃Tipσip −

1

2γ 2
ip

∇σ Tic w̃ic

− wTipσip +
1

2γ 2
ip

∇σ Ticwic


T


≤


zia
8

∥∥∥R−1i BTi ∇σ
T
ic

∥∥∥2
+
zip
8γ 2

ip

∥∥∥∇σ Tic∥∥∥2 − nicnTic
 w̃Ticw̃ic

−
1
2
zia
(
w̃Tiaσia

)T (
w̃Tiaσia

)

−
1
2
zip
(
w̃Tipσip

)T (
w̃Tipσip

)
+ w̃Ticnic

eicH
mic

+ zia
(
w̃Tiaσia

)T
·

(
wTiaσia +

1
2
R−1i BTi ∇σ

T
icwic

)
+ zip

(
w̃Tipσip

)T
·

(
wTipσip −

1

2γ 2
ip

∇σ Ticwic

)
. (B2)

Besides, we define the matrices ψN1, ψN2 and ψN3 as:

ψN1 = nicnTic−
zia
8

∥∥∥R−1i BTi ∇σ
T
ic

∥∥∥2− zip
8γ 2

ip

∥∥∥∇σ Tic∥∥∥2,
ψN2 =

1
2
zia, ψN3 =

1
2
zip. (B3)

Define a matrix ψNg as ψNg = diag (ψN1, ψN2, ψN3) and
select the constants zia and zip as the following form to make
sure that ψNg is positive definite:

zia <
4nicnTic∥∥∥R−1i BTi ∇σic

∥∥∥2 , (B4)

zip <
4γ 2

ipnicn
T
ic

‖∇σic‖
2 . (B5)

Consider the vectorsMn and Nn as:

Mn =

[
w̃Tic,

(
w̃Tiaσia

)T
,
(
w̃Tipσip

)T]T
,

Nn =

[(
eicH
mic

)T
, zia

(
wTiaσia +

1
2R
−1
i BTi ∇σ

T
icwic

)
,

zip

(
wTipσip −

1
2γ 2ip
∇σ Ticwic

)]T
.

(B6)

Then, one obtains that (B2) satisfies the following relation:

V̇iN ≤ −MT
n ψNgMn +MT

n Nn
≤ −‖Mn‖

2λmin (kn)+ ‖Mn‖ · ‖Nn‖ , (B7)

where λmin (·) denotes the minimum eigenvalue of a matrix.
According to (B7), let ‖Mn‖ > MnB, in which

MnB =
‖Nn‖

λmin
(
ψNg

) . (B8)

From (B7) and (B8), we know that V̇iN is negative, there-
fore, one can obtain the conclusion that the weigh approxima-
tion errors w̃ic, w̃ia and w̃ip are guaranteed to be UUB. This
concludes the proof of Theorem 2.

APPENDIX C
PROOF OF THEOREM 3
We choose a Lyapunov function candidate as:

VM (t) =
n∑
i=1

ViM (t)

=

n∑
i=1

 ωil lTi li + ωiRJi (li)

+ωip

∫
∞

t
γ 2
ipp

T
i (τ ) pi (τ ) dτ

, (C1)
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where ωil and ωip > ωiR are positive definite constants.
According to (24) and (31), we obtain the time derivative
of (C1) that is given as:

V̇M (t) =
n∑
i=1

2ωil

lTi
φi + υi + p

∗
i + αieėi

−ẍid + Biui1
+Biui2 + Biu∗i3




−

n∑
i=1

ωiR

(
lTi Qili + u

T
i Riui − γ

2
ipp

T
i pi
)

−

n∑
i=1

ωiR

(
γ 2
ipp

T
i pi
)
. (C2)

In (C2), we know that the control law ui1 is proposed
as (32) to compensate the dynamic model term φi, the control
law ui2 is given as (50) to due with the effect of the model
uncertain term υi, in which the asymptotic convergence of
identification error has been proved. Then, by substituting
(32), (50) into (C2), V̇M (t) can be approximated by:

V̇M (t) ≤
n∑
i=1

(
2ωil

(
‖li‖2 +

1
2
‖Bi‖2

∥∥u∗i3∥∥2))

−

n∑
i=1

ωiR

(
λmin (Qi) ‖li‖2+λmin (Ri) ‖ui1‖2

+λmin (Ri) ‖ui2‖2+λmin (Ri)
∥∥u∗i3∥∥2

)

−

n∑
i=1

(
−ωil −

(
ωiR − ωip

)
γ 2
ip

)
‖pi‖2

= −

n∑
i=1

(ωiRλmin (Qi)− 2ωil) ‖li‖2

−

n∑
i=1

(ωiRλmin (Ri)) ‖ui1‖2

−

n∑
i=1

(ωiRλmin (Ri)) ‖ui2‖2

−

n∑
i=1

(
ωiRλmin (Ri)− ωil‖Bi‖2

)∥∥u∗i3∥∥2
−

n∑
i=1

(
−ωil −

(
ωiR − ωip

)
γ 2
ip

)
‖pi‖2. (C3)

From (C3), we obtain that V̇M (t) ≤ 0, when the following
condition satisfied:

λmin (Qi) ≥
2ωil
ωiR

,

λmin (Ri) ≥
ωil

ωiRB2i
,

ωip ≥ ωiR +
ωil

γ 2
ip

.

(C4)

If the conditions in (C4) are all hold, then for any li 6= 0,
one concludes V̇M (t) < 0. So that according to the Lyapunov
theory, the closed-loop robotic systems is asymptotically sta-
ble under the decentralized control law (71). This concludes
the proof of the Theorem 3.
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