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ABSTRACT In recent years, the radical advancement of technologies has given rise to an abundance
of software applications, social media, and smart devices such as smartphone, sensors, and so on. More
extensive use of these applications and tools in various industrial domains has led to data deluge, which
has fostered enormous challenges and opportunities. However, it is not only the volume of the data but also
the speed, variety, and uncertainty, which are promoting a massive challenge for traditional technologies
such as data warehouse. These diverse and unprecedented characteristics have engendered the notion of
“Big Data.” The data-intensive industries have been experiencing a wide variety of challenges in terms of
processing, managing, and analysis of data. For instance, the healthcare sector is confronting difficulties in
respect of integration or fusion of diverse medical data stemming from multiple heterogeneous sources. Data
integration is critically important within the healthcare sector because it enriches data, enhances its value,
and more importantly paves a solid foundation for highly efficient and effective healthcare analytics such
as predicting diseases or an outbreak. Several data integration technologies and tools have been developed
over the last two decades. This paper aims at studying data integration technologies, tools, and applications
within the healthcare domain. Furthermore, this paper discusses future research directions in the integration

of Big healthcare data.

INDEX TERMS Big data, data integration, healthcare data.

I. INTRODUCTION

Healthcare is a highly data-intensive industry [1]. The ever-
increasing trend of healthcare data has already led to a mas-
sive growth of the volume. It was predicted that the data of the
U.S.A healthcare sector alone would soon reach the Zettabyte
scale and, not long after, the Yottabyte [2]. The increased
usage of the term Big Data in healthcare literature is also
an indicator of the emerging importance of large-scale data
sets in healthcare and biomedicine [3], and there is also an
increasing awareness of the role that Big data can play in
scientific and clinical research [4].

The exponential growth in healthcare data has been fore-
casted to continue expanding in various forms, such as
electronic health records (EHR), patient-reported outcomes,
biometric data, medical imaging, biomarker data, wearable
devices, and genomic information. These data are primarily
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stemming from multiple heterogeneous sources. Figure 1
shows some of the primary sources of healthcare data, which
include medical service providers, pharmaceutical industries,
public healthcare organizations, researchers, and medical
insurance efc. The integration of such vast, real world, clinical
data sets from Electronic Medical Record (EMR) with omics
data, as well as targeted biochemical and hormonal analyzes,
makes it possible to discover new diagnostic and therapeutic
tools [5] as well as capture the full complexity of diseases [6].
In one elegant example [7], the integration of continuous
sensing of blood-glucose along with the evaluation of the
gut microbiome, anthropometrics, drugs, dietary habits, and
a variety of lab tests on 800 individuals, as illustrated in
Figure 2, was used to predict postprandial glycemic index,
which has provided accurate information on dietary regimens
to improve metabolic homeostasis.

Feldman et al. [8] presents multiple unintegrated med-
ical data pools controlled by six stakeholders: providers,
payers, researchers, developers, consumers and marketers,
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FIGURE 1. Sources of big data in healthcare.

and government. These sources have been producing health-
care data for many years; consequently, the storage of
healthcare data has become an ever-increasing container.
Furthermore, lately, the social media mainly, the Twitter! has
been explored as a data source that contains many different
types of data of value to healthcare research on many various
diseases [9]. These data are insightful, and therefore, Twit-
ter is becoming a vital source of healthcare data. However,
it is worth noting that Twitter data flow with high velocity
(speed).2

Data stemming from multiple heterogeneous sources
increase data variety and uncertainty. Uncertainty is con-
cerned with the quality of data. The quality of healthcare data
is of critical importance to perform effective data analysis to
extract meaningful intelligence that helps in decision making.
The assessment of the quality of evidence to be derived is cru-
cial; it will depend on the data sources to be integrated such as
social network [11] or public repositories [12], together with
the standard quality indicators as selection bias, sample size,
and measurement noise [13]. Variety is a well-known issue in
Big Data. A wide range of unstructured data is available in
the healthcare sector, including MRI image, surgical video,
text, recorded conversation with patients. Also, there are
structured data, such as EHR data. This essentially means that
the technologies used in healthcare domain must be able to
process data with diverse types.

In the light of the above discussion, we outline that health-
care data has four properties volume, huge velocity, signif-
icant variety, and substantial uncertainty (veracity) which
constitute the notion of Big Healthcare Data. These charac-
teristics foster a wide variety of challenges or barriers for the

ITwitter: https://twitter.com/?lang=en
2Every second, on average, around 6,000 tweets are tweeted on
Twitter [10]
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users of healthcare data and also for the technologies that are
used in the healthcare domain. The major challenges involved
in Big Healthcare Data include: data integration, data pro-
cessing and anlaysis. In fact, for healthcare data, integration is
a huge obstacle, mainly due to the variety and velocity of data.
According to Martin et al. integrating unstructured data is a
huge challenge for the Big Data analyst [4]. Even with large
scale structured EHR data, there are still many integration
issues [14].

Over the last decade, an exhaustive number of Big Data
tools and approaches have been proposed. Many solutions
are available for dealing with significant data issues and
challenges. These solutions have been reviewed in a large
body of literature. For example, Merelli ef al. [15] focus on
technological aspects related to Big Data analysis in biomed-
ical informatics including architectural approaches for big
data, solutions for data annotation, data access measures,
and security for health data. Priyanka and Kulennavar [16]
discuss the definition of big data and characteristics of big
data analytics in healthcare, and describe various sources
and data types. Luo er al. [17] review the recent progress
and breakthroughs of big data applications in four health-
care domains: public health informatics, clinical informatics,
bioinformatics, and imaging informatics. Jee and Kim [18]
explain how reforming the healthcare system based on big
data analytics, could effectively reduce health concerns such
as the selection of appropriate treatment paths, improvement
of health systems, etc. However, big data analytics in health-
care require data integration to be successful. Unfortunately,
the issues of healthcare data integration and utility have been
largely overlooked in the current literature [19].

Lenz et al. [20] review and discuss integration technologies
in healthcare systems, where they identify technological inte-
gration (based on technological infrastructure) and seman-
tic integration (based on the meaning of the data). Authors
propose a document-based approach to support integration
in healthcare networks. Zhang et al. [21] discusses several
approaches proposed for data integration in bioinformat-
ics, which is classified into five groups: data warehousing,
federated databasing, service-oriented integration, semantic
integration, and wiki-based integration. As Big data is often
heterogeneous, noisy, unreliable, and dynamic; in this con-
text, these traditional approaches do not apply to the non-
relational, schema-less dataset.

What we instead aim to provide in this paper is a com-
prehensive survey of Big Data integration from different
standpoints. We will study the developments in advanced
solutions for Big healthcare data integration. We will present
the design and development of varying integration strategies
that are commonly adopted by the research communities.
We will discuss current challenges concerning Big Healthcare
data integration. Furthermore, we will discuss some possible
future research directions in this area.

This remainder of the paper is organized as follows.
In section II, we provide a background of concepts, tools,
and technologies related to Big Healthcare Data integration.
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FIGURE 2. Illustration of various data sources to predict personalized nutrition [7].

In Section III, we put forward our comprehensive survey.
In section IV we discuss our findings followed by research
directions presented in Section V. We conclude in Section VI.

Il. BACKGROUND

In this section, we study different concepts related to Big
Healthcare Data integration and provide extensive details
about these concepts. This will help the readers to understand
the underlying challenges and techniques of data integration.

A. BIG DATA

Over the past two decades, a deluge of data has been brought
with the technological advancements from several fields
(e.g., medical data and scientific sensors, user-generated data,
financial data, and other) [22]. Big Data has been defined in
a large volume of literature. It has been defined as datasets
that could not be perceived, acquired, managed, and pro-
cessed by traditional IT and software/hardware tools within
an acceptable time [23]. However, the concept of Big data
has been presented through the 3V model, which refers
to high-volume, high velocity, and high-variety information
assets [24]. Lately, this notion has been extended to a 5V
model by including two new “Vs.”: Value and Veracity which
are incorporated into the Big data definition [25].

Within the Healthcare sector, various definitions of Big
data are found [26]; this term was introduced in [27] as “Big
data in healthcare encompasses high volume, high diversity in
biological, clinical, environmental, and lifestyle information
collected from single individuals to large cohorts, in rela-
tion to their health and wellness status, at one or several
time points.” Several solutions have been proposed to tackle
these challenges. These solutions rely on the most recent
and advanced technologies: Apache Hadoop framework [28],
NoSQL [29] and Cloud computing [30].

The advent of Big Data has given rise to a new concept
called data lake. A data lake is a repository to store a vast
amount of raw data in its native format. The term data
lake is often associated with Apache Hadoop-oriented object
storage. Hadoop provides these techniques through Apache
Hadoop YARN and HDFS [31]. YARN presents the next
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generation of Hadoop compute platform and offers a plug-
gable architecture and resource management for data process-
ing engines to interact with data in HDFS [32]. Data lake can
be a powerful approach to resolve the problem of accessibility
and integration of Big data [33].

The data lake is different from the traditional Data Ware-
house from various aspects. Even though relational data ware-
houses have led the complex integration and analytics, their
slow-changing data models and rigid field-to-field mappings
are too brittle to support Big data volume and variety. By con-
trast, data lake approach circumvents these problems, because
data lake does not enforce a rigid metadata schema as do
relational data warehouses [34]. Instead, data lake support
a flexible “‘schema-on-read” access to all enterprise data,
through multi-use and multi-workload data processing on the
same sets of data, from batch to real-time [35]. The data flow
in the data lake aims at decoupling the metadata from the
raw data and storing them separately. In this way, end-users
have the potential to query data from multiple perspectives
(see Figure 3).

Make sense of the of metadata

%1\0

0000

sources Data Lake

FIGURE 3. Data flow in the data lake.

However, despite the robustness and availability of Big
data tools, building and deploying Big data solutions is dif-
ficult. Therefore, domain-specific solutions are still needed.
These solutions often depend on different data dimensions as
well as the type of data and the target to be studied.

B. DATA INTEGRATION
The goal of data integration is the provisioning of unified
access to data that requires information from multiple sources
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Phase 2:

FIGURE 4. Traditional data integration process.

and providing users with a unified view of the data [36].
Ziegler and Dittrich [37] explain the reasons behind integrat-
ing multiple data sources, which are twofold:

« Facilitate information access by providing an integrated
view to a set of existing information systems.

« Gain a more comprehensive basis by combining data
from different complementing information systems.

The traditional data integration process is assumed to be
a three-step process (figure 4) where the last step is referred
to, as data fusion. In this step, the duplicate representations
of data are combined and fused into a single image while
inconsistencies are resolved. The two other steps are schema
mapping and duplicate detection [38].

There is a wide variety of challenges regarding data inte-
gration. One of the key challenges is dealing with the prob-
lems emerging from the heterogeneity of data sources [39].
Dong and Naumann [40] introduce several challenges of data
integration:

o heterogeneity at the schema level, where different data
sources often describe the same domain using differ-
ent schemas, as well as heterogeneity at the instance
level, where different sources can represent the same
real-world entity in different ways. Several solutions
proposed to address the heterogeneity challenge, at the
schema level, as well as schema mapping and matching.

o Data conflicts that can arise because of incomplete
data, incorrect data, and out-of-date data. Data fusion
addresses this second challenge by fusing records on the
same real-world entity into a single record and resolving
possible conflicts from different data sources.

To sum up, data integration is the process of linking and
connecting systems and giving users the illusion of interact-
ing with one single information system. This process often
encompasses a fusion step. However, the integration methods
of such a traditional integration process, which focus on
structured data sources, need to be significantly expanded
to integrate a variety of data sources, both structured and
unstructured. In particular, pairwise matching of schemas and
entities is not scalable enough [41].

C. HEALTHCARE STANDARDS FOR DATA INTEGRATION
Interoperability is the ability of two or more components,
applications, or systems to exchange and use information.
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In health care, interoperability is the ability of the tech-
nologies to facilitate the integration of patient data from
different systems. To achieve interoperability, healthcare
organizations (management staff, vendors, service provider
entities, etc.) have created Healthcare standards. Below is
a list of key standards organizations relevant to the health
sector [42]:

o OpenEHR: The objective of the OpenEHR Foundation
is to leverage ICTs, in particular, life-long interoper-
able EHRs to improve the quality of healthcare and
research. The main work of the openEHR Foundation is
performed by four ‘programs’ which respectively focus
on specifications, clinical modeling, software, and edu-
cation.

e Health Level Seven (HL7): It provides a comprehen-
sive framework and related standards for the exchange,
integration, sharing, and retrieval of electronic health
information.

o International Health Terminology Standards Develop-
ment Organisation (IHTSDO): determines global stan-
dards for health terms, an essential part of improving the
health of humankind. It is committed to maintain and
grow its leadership as the global experts in healthcare
terminology, ensuring SNOMED CT, its world-leading
product, is accepted as the universal common language
for health terms.

o World Health Organisation (WHO): The WHO is the
directing and coordinating authority for health within the
United Nations system. It is responsible for providing
leadership on global health matters, shaping the health
research agenda, setting norms and standards, articu-
lating evidence-based policy options, providing techni-
cal support to countries, and monitoring and assessing
health trends.

However, data is one of the most critical aspects of the
healthcare system. Therefore, interoperability of healthcare
systems requires the integration of standard Data Models,
Terminologies, and Messaging standards. [43].

1) HEALTHCARE DATA MODELS

The healthcare data models define the structure of the infor-
mation to be stored in Electronic Health Records (EHRs). The
most popular and recognized clinical data models are:
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o openEHR clinical model [44]: openEHR clinical models
are composed of archetypes and templates. An archetype
is a computable specification of the data points and
groups of a specific clinical topic, such as Fetal heart
rate, ECG result, or diagnosis. Whereas templates are
composed of elements of one or more archetypes, such
as templates created specifically for the Diabetic review’
and Antenatal visit.

e HL7 Clinical Document Architecture (CDA) [45]: It is
an interchange standard for any document classified
as a clinical document such as discharge summaries
and evaluation or operative notes. It defines a clinical
document as having the following six characteristics:
Persistence, Stewardship, Potential for authentication,
Context, Wholeness, and Human readability. This data
model is governed by formalized reference schema
HL7 Reference Information Model (RIM).

o Fast Healthcare Interoperability Resources(FHIR) [46]:
FHIR defines a set of ‘“Resources” representing gran-
ular clinical concepts. Resources can be managed in
isolation, or aggregated into complex documents. Tech-
nically, FHIR is designed for the web. The resources
are based on simple XML or JSON structures, with an
HTTP-based RESTful protocol, in which each resource
has a predictable URL.

2) HEALTHCARE TERMINOLOGY

Healthcare terminology or coding systems are structured list
of terms, which provide specific codes for clinical concepts
such as diseases, operations, allergies, drugs, and diagnoses.
These vocabularies can be used to support the recording
and reporting of patient care at different levels of detail.
Examples of terminology standards are :

o Systematized Nomenclature of Medicine Clinical Terms
(SNOMED CT) [47]: SNOMED CT is a medical termi-
nology that includes terms of all medical domains and
provides the general core terminology for the EHR. The
concepts in SNOMED CT are divided into hierarchies as
diverse as body structure, clinical findings, geographic
location, and pharmaceutical/biological product.

o The International Classification of Diseases (ICD) [48]:
The standard diagnostic tool for epidemiology, health
management, and clinical purposes. It is used to monitor
the incidence and prevalence of diseases and other health
problems. There are two major revisions of ICD in use;
ICD-10 and ICD-9, which are represented as entirely
separate code systems.

o Logical Observation Identifiers Names and Codes
(LOINC) [49]: LOINC is a database and universal stan-
dard for identifying medical laboratory observations.
Since its inception, the database has expanded to include
not just medical and laboratory code names, but also:
nursing diagnosis, nursing interventions, outcomes clas-
sification, and patient care data set.
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3) HEALTHCARE MESSAGES

To provide integrated patient care, the different clinical sys-
tems of a hospital need to communicate with each other.
Message standards provide a consistent data flow among sys-
tems and organizations, specifying the format, data elements,
and structure.

o HL7 messaging standard [50]: It is arguably the most
widely implemented standard for interoperability in
healthcare across the world and allows for the exchange
of clinical data between disparate systems. HL7 is used
for transmitting data related to patient charts, files, and
other associated documents and audio recordings.

o Digital Imaging and Communications in Medicine
(DICOM) [51]: DICOM is the de facto standard for
exchanging medical images. It defines the formats for
medical images that can be exchanged with the data and
quality necessary for clinical use.

Unfortunately, these standards did not solve the problem
of data integration. Brooks [52] pointed out some issues
that organizations confront due to inconsistencies with data
standards. For example, issues related to data exchange arise
because the standards and terminologies are not designed to
serve multiple purposes. Moreover, there are overlaps among
standards; many standards have been named by one or more
authoritative body, for example, HL7 and Accredited Stan-
dards Committee X12 (ASC X12) have some duplication in
standards used for reporting of clinical data associated with
the claims process.

IIl. INTEGRATION OF BIG HEALTHCARE
DATA - THE SURVEY
With current trends in technology, Big data integration is
turning into a complex process. Subsequently, there is no
single methodology to suit all these data formats and require-
ments each provider brings. Effective data integration from
heterogeneous massive amounts of data often requires a com-
plex framework involving various methodologies. Putting
together such a framework would be complicated. There-
fore, we introduce a data integration framework (Fig. 5) a
combination of Approaches, Technologies, Workflow, Tools,
and Privacy, which ultimately helps to combine data from
disparate sources into meaningful and valuable information.
An exhaustive number of methodologies have been
proposed in large bodies of literature. Using the proposed
framework as a blueprint, we studied these methodologies
and reported in the following sections.

A. INTEGRATION METHODOLOGIES FOR
BIG HEALTHCARE DATA
There are two main approaches for data integration: eager and
lazy [53].
o FEager: In the eager or movement approach, the data
from each source that may be of interest is extracted
in advance, translated and iterated as appropriate, fused
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FIGURE 5. The reference framework consists of a set of components. The bottom component is the
Approach component that specifies the integration Approach for combining data from different sources.
The technology component processes data to discover and build links between datasets. An important
component is the workflow component that describes the different stages of data integration. There are
also two cross-cutting components, Big Data Tools and Security, which provide common functions that
span other components in the framework. Application component uses all Framework components to

produce a packaged data integration solution.

with relevant data from other sources, and stored in a
centralized warehouse. When a query is posed, the query
is evaluated directly at the repository, without accessing
the original information sources.

e Lazy: In the lazy or mediated approach, the data is
extracted from the sources only when queries are posed.
First, the query determines the appropriate set of infor-
mation sources to answer the query and generates the
appropriate sub-queries or commands for each informa-
tion source. Second, the query obtains results from the
information sources, performs appropriate translation,
iterating, and merging of the information, and returns the
answer to the user or application.

There are effectively three Approaches of Big Data Inte-

gration. Table 1 introduces these Approaches as follows:

1) DATA CONSOLIDATION

Data consolidation refers to the collection and merging
of data from multiple sources systems into one integrated
place. Data consolidation phases include: (1) analysis of data
models and datasets of the source and target environments;
(2) transformation of the source data set; and, (3) merging of
the data sets [54]. The data warehouse is such an example.
Bill Inmon described a data warehouse as being a subject-
oriented, integrated, time-variant, and nonvolatile collection
of data [55] that is considered a core component of busi-
ness intelligence. Data warehouse was built specifically for
relational databases. However, the complex characteristics
of data, including Volume, Variety, Velocity, Veracity, pro-
mote the need for new technology to handle new demands.
Today, multiple data warehousing techniques rely on Hadoop
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platform to meet the new requirements of Big Data [56], [57].
Figure 6 shows a modern architecture of Big data warehouse
where the raw data stream is stored in the HDFS system
and then loaded into the data warehouse to complement the
information that is already gathered.

Two different approaches could be found in the Big data
consolidation architecture [58], which combine BDW(Big
data warehouse) and EDW(Enterprise data warehouse) to
implement data integration solutions (see Figure 7). In appli-
cation architecture approach A, data ingestion mechanism
is performed by the Hadoop platform, then specialized data
integration tools are used to move data into RDBMS. There-
fore, this approach is flexible in ingesting any data and also
to address scale issues. In architecture B, the data that appear
with Big data characteristics are stored and processed in
the Hadoop platform, whereas RDBMS is used to store and
process small and structured data. In the final stage, the infor-
mation is available from both data stores.

Several Big data warehouse based solutions have been
proposed in the literature, such as specialized disease
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TABLE 1. Various approaches used in integrating big medical data.

Approaches Pros Cons

e The data must be
refreshed  frequently
to ensure users have

e The imported data
may be filtered and

cleaned. access to up-to-date
Data e The retrieved data are content.
consolidation converted and trans- | e structure may not ac-

formed into a more
precise structure.

commodate questions
that arise at any given
time.

e Any changes in the
sources schema re-
quire updates to the
federated schema.

o Data cleansing is diffi-
cult and must be done

e Data remains stored
in the component
data source, instead
of copying a huge

. on-the-fly.
Data amount of data into a y
. N . o Performance can
virtualization single data store. .
be an issue because

e The user can see on-
line information all
the time.

it is dependent
on the query load
capacities of the other
data sources of the
federation.

e Near-real-time updat-
ing of data changes
throughout the data
sources.

e ETL process could be
used with data prop-

Data agation for the real-

propagation time data warehouse.

e Data sources are in-
tegrated with trans-
parency of location,
source, and data struc-
tures.

o To attain high perfor-
mance and to handle
frequent synchroniza-
tion, specialized tools
and technologies are
required.

FIGURE 7. Architecture patterns involving Hadoop and RDBMS [58].

clinics [59], combining clinical and genomics queries [60],
and a semantic warehouse to support the digital cancer
patient [61] (see figure 8).

Apache Hive [63] often regarded as a distributed data
warehouse infrastructure that enables easy data ETL from
HDFS or other data storage like HBase. It provides HiveQL
as a high-level query tool for accessing data. Cloud-based
approach for interoperable EHRs [64], biomedical data inte-
gration [65] and medical Big data processing system [66] are
examples of Hive Data warehouse.
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FIGURE 8. The data access layer of the iManageCancer platform [62].

Data variety is common in healthcare data. Therefore,
the data lake is deemed as a potential solution for integrat-
ing diverse medical data. For instance, the classical data
warehouse was often used to analyze the cost of care. The
advanced cost analysis requires to integrate EHRs data with
claims data. In the classical data warehouse, the process
began with unloading the data in the warehouse then exe-
cute a new extract, transform, and load process. However,
a data lake makes it more simple to enter a new data source
or add advanced operation (queries, algorithms, etc.) [67].
Krause [68] summarized data lake as a matured Big data
consolidation solution.

To sum up, conventional technology data warehouse can
consolidate data with straightforward characteristics such as
being small and structured. However, for Big Healthcare
datasets specifically, data that comes with diversity pose a sig-
nificant challenge on these technologies, and hence advanced
technologies such as data lake for storing data in a scalable
ecosystem and Apache Hive for warehousing data can be
more efficient. However, Hive is a batch style warehousing
solution; similarly, Apache Hadoop that is used in building
scalable warehouse relies on batch style operational mode.

2) DATA VIRTUALIZATION
In the last decade, data sources have increased beyond the
traditional structured world of databases and data warehouses
to the stage of Big data where semi-structured and unstruc-
tured data are more common as well as some of it is stored
outside of the local system. Moreover, the data warehouse
is designed to host structured and mainly internal data from
operational and transactional systems. Besides, building an
enterprise data warehouse is a costly initiative that takes
long to implement, and it is not always practical to move
massive data from one source to another. Therefore, the data
virtualization technique could enhance data integration and
help to adopt new Big data source and modern formats [69].
Data virtualization is a process that federates different data
sources, such as website data sources, relational databases,
file repositories, document files, and data service providers
into a single data access layer. This new abstraction layer
makes all integrated data sources seem as one extensive
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database is being accessed. However, to merge these different
data sources, data virtualization uses several abstractions,
transformation techniques, and data access mechanisms [70].
SAP HANA [71] is a Smart Data Access data-virtualization
approach that enables unified access to heterogeneous data
sources with a massive volume of data in real-time using
in-memory processing. It provides Big data integration,
allowing connection to data stored in Hadoop and NoSQL
systems as SQL tables. Figure 9 illustrates the key compo-
nents of SAP HANA architecture.

FIGURE 9. SAP HANA data virtualization architecture [71].

Data federation is a type of data virtualization where
on-demand integration is used for combining data residing
within different data stores [72]. For instance, Hadoop offers
an HDFS Federation [73] technique to federate different
instances at the HDFS level through a separation of names-
pace and storage, enabling a generic block storage layer.
In the healthcare domain, data federation technique was used
in many research projects such as e-Health Service [74],
BioFed [75], and Genomic Computing [76].

3) DATA PROPAGATION

Traditional batch-oriented ETL processing cannot satisfy the
real-time requirements when data is integrated continuously
and concurrently. Hence, the approach called data propaga-
tion was proposed. Data propagation is usually referred to
as active data integration [77], where a copy of the data
from a data source or multiple data sources to discrete loca-
tions is done, often to make data more accessible to users.
This process usually operates online and with event-driven
architecture(push mode). In general, the process of change
propagation could have multiple stages such as transforma-
tions and filtering of the changed data that is delivered to
the dependent systems [78]. Constantinescu et al. [79] pro-
pose SparkMed as a data integration framework for mobile
healthcare. An automated process (daemon) of the framework
could be attached to applications, collects the multimedia data
(such as the hospital information system, picture archiving,
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and reporting systems) and prepares them to be propagated in
a convenient, reliable manner. SparkMed can integrate a wide
range of different medical software and database systems into
a cloud-like peer-to-peer multimedia data store.

B. INTEGRATION TECHNOLOGIES FOR

BIG HEALTHCARE DATA

The complexity of the variety in Big data is well known,
including complex heterogeneous data types (structured data,
unstructured data, and semi-structured data, etc.), complex
intrinsic semantic associations in data (clinical, genomic,
etc.), and complex relationship networks among data
(relationships between entities) [80]. For instance, integrating
diverse data types such as clinical data, gene expression,
DNA methylation, miRNA expression, and copy number
alterations (CNA) has improved the prognostic prediction of
glioblastoma multiforme [81]. The heterogeneity of different
types of data mentioned above creates a challenge for the
data integration process. The integration process requires a
specific mechanism for aggregating data that develops specif-
ically to deal with the nature of healthcare data to overcome
these complexities. Data integration technologies such as
semantic web, machine learning, information extraction, and
linked data can enhance understanding the context of infor-
mation. In this section, we discuss the existing technologies
for data integration.

FIGURE 10. Semantic web layer cake.

1) SEMANTIC WEB

Semantic web standards are a perfect fit for data integra-
tion capabilities [82], with multiple aspects to integrate data
from globally separate, distributed, and heterogeneous data
sources. Semantic web technology is a robust and extensi-
ble data model used for global naming, with the ability to
reason based on Description Logic [83]. The semantic web
comprises publishing information in languages specifically
designed for data: Resource Description Framework (RDF),
Web Ontology Language (OWL) and SPARQL (a query lan-
guage for semantic web data sources), Figure 10 shows the
different layers of the semantic web framework. According
to this framework, information is represented in statements,
called RDF triples. The three parts of each triple are called
subject, predicate, and object. Besides that, OWL and Linked
Open Data, which use RDF as the data model, have gained
popularity in data integration.
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o Web Ontology Language (OWL): is a W3C stan-
dard [84], that offers great machine interpretability for
the web content. Moreover, OWL is used for the har-
monization of integrated data from diverse sources.
Several ontologies have already been developed in
the disciplines of healthcare. CNTRO [85] A Seman-
tic Web Ontology for Temporal Relation Inferencing
in Clinical Narratives has been created to annotate
and query the temporal information of clinical data
semantically and using inference to expose new tem-
poral features and relations. Open Biomedical Ontolo-
gies (OBO) project [86] aims at creating controlled
vocabularies for shared use across different biological
and medical domains. PCPO [87] integrates multiple
drug resources and maps two well-known drug class
resources, Anatomical Therapeutic Chemical classifica-
tion system (ATC) and National Drug File Reference
Terminology (NDF-RT). SNOMED CT [88], the com-
prehensive, multilingual clinical healthcare terminology
from the International Health Terminology Standards
Development Organization (IHTSDO), has its OWL
ontology. Another favorable development is the ICD-11
standard [89] that was created using OWL and RDF.
In fact, OWL would be a potential solution for Big
data integration [90]-[92], since it has the ability to
merge multiple data sources and publish them onto the
cloud [93].

e Linked Open Data (LOD): describes a method of pub-
lishing and linking structured data coming from differ-
ent data sources that can be interlinked and published
on the web. An increasing number of data providers
have adopted Linked Data principles as a data structure.
Linked data is resulting in the emergence of global data
space on the web containing billions of RDF triples [94].
The linked data paradigm can integrate Big data by the
mean of annotating unstructured data with open linked
data from the cloud, which leads to linking those het-
erogeneous datasets to each other. Linked data is one
of the widely used technologies for data integration in
the healthcare sector. A variety of genomic and drug-
related datasets as Linked data were published by mem-
bers of the W3C Healthcare and Life Sciences Interest
Group (HCLS IG) [95]. LOD datasets have been crawled
by the Semantic Web Search Engine (SWSE) and can
be accessed via a faceted browsing interface. Certain
datasets are interconnected through semantic vocabular-
ies such as “sameAs,” “seeAlso” (see figure 11), where
others remain challenging to define a methodology for
linking them with other Linked Data sources [96].

Described above techniques are capable of addressing

numerous problems of data integration in the healthcare con-
text. Many projects already used OWL and LOD to enhance
data integration such as integrating heterogeneous wearable
data in healthcare [97], support of digital cancer patient [61],
obesity surveillance [98] and in the interoperability of elec-
tronic health records [64].
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FIGURE 11. A graph of some of the LODD datasets (dark grey), related
biomedical datasets (light grey), related general-purpose datasets (white)
and their interconnections [95].

Big linked cancer data [99] presents a scalable Linked
Data-driven solution for the continuous integration of bio-
medical data sources. The integration process relies on three
types of datasets that are loaded into various SPARQL end-
points: Linked data version of TCGA and PubMed metadata
in RDF and a set of mappings between these datasets. The
latter aims at establishing a bridge between the structured
data contained in TCGA and the constant flow of RDF data
generated by analyzing PubMed. The bridging process is
performed by matching the synonyms for every disease and
gene found in Linked TCGA with PubMed article’s abstract.
The scalability of the framework is ensured through the novel
TopFed federated query engine.

Searching and exploring data about medicinal products
and drugs from different data sources are essential require-
ments for physicians, to cover those information require-
ments, Kozak et al. [100] identify drug data sources such as
MeSH, ATC, NDF-RT, NCI DrugBank, CZ-Drugs, and FDA,
to integrate them. The data sources have a different format
with structured and unstructured data. In [96], the authors
provide a solution which enables the analysis of existing
Linked Data representations of each considered data source
then it allows the creation and publishing of new Linked
data for those with no Linked Data representation. Authors
recommend linking the dataset to an accepted reference ter-
minology, allowing anyone else to connect their datasets to
this reference terminology and thus enabling integration with
other datasets.

Accordingly, technical challenges for broader adoption of
the Semantic Web standards for Big Data include large-scale
data reasoning and performance optimization of semantic-
based systems. Another limitation of the Semantic Web tech-
nologies is that they are purely for graph data representation.
Therefore, if the data is unstructured, it would not be enough
to use these techniques alone for building a data integration
solution.

2) MACHINE LEARNING
Automatically learning mappings between two datasets
through machine learning, can remove much of the
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development effort involved in data integration. Machine
learning has been proving itself in many diverse domains
such as image processing, social network mining, finance,
and computer vision [101]. Moreover, using machine learn-
ing to integrate various datasets, such as Medical Imaging,
Electrophysiological monitoring, Clinical Information, has
improved the accuracy of diagnosis and prediction of disease
outcomes [102]-[104]. Generally, Machine learning methods
can be divided into two main classes: supervised learning
(predictive) and unsupervised learning (descriptive):

o Supervised learning takes samples of training data with
known labels as input to learn a general prediction rule
mapping new data samples to existing labels. For exam-
ple, the input data may include affected and unaffected
diabetic patients. Thereby, a model is learned to help
and accelerate the diagnosis of Diabetes disease [105].
Classification and regression are the main methods of
supervised learning: in regression, the output variable is
numeric (or continuous), while the one used for classifi-
cation is categorical (or discrete). Some of the widely
used classification techniques include Support Vector
Machines (SVMs) that are widely applied to large med-
ical datasets [106]. Its main drawback lies in colossal
time and memory complexities, which depends on the
training set size cardinality and heterogeneity [106].
Random Forest is another useful and easy to understand
classifier. Due to its space limitation and overfitting
problem, Random Forest may not be applicable for huge
datasets [107]. Besides, regression algorithms are also
widely used in health applications to model relationships
between objects and targets [108] [109].

o Unsupervised learning includes clustering which takes
as input an unlabeled dataset. A model is learned by
finding the structure of unknown input data and looking
for the similarity between entities. Many algorithms can
be used for clustering purpose, including partitioning,
hierarchical, and density-based [110]. Only the parti-
tioning algorithm is capable of handling large datasets,
while hierarchical and density-based are slow for large
datasets. These methods are often used in pattern discov-
ery in gene expression data and molecular subtyping of
cancer patients.

Artificial Neural Networks ANN is a family of machine learn-
ing approaches whose models are hierarchical representation
of supervised and unsupervised learning models. In a neural
network, associations between result and input variables are
described using multiple combinations of hidden layers of
pre-specified functions. The purpose is to estimate weights
using input data and results to minimize the average error
between the results and their predictions. However, the dis-
advantages of the neural network when dealing with the Big
data are the requirement for constant memory consumption
and the computational time [111]. ANN has been used in var-
ious health care applications, such as diagnose cancer [112],
diagnose Parkinson’s disease [113], etc. A modified version
of ANN called Deep Learning, which builds neural networks
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with a large number of hidden layers. Deep learning architec-
ture (i.e., deep neural networks DNN, convolutional neural
networks CNN, recurrent neural networks RNN) provides
better capabilities for dealing with Big Data issues, such as
volume and velocity [114]. Deep-learning systems can accept
multiple data types as input, an aspect of particular relevance
for heterogeneous healthcare data (figure 12).

FIGURE 12. Deep learning can be trained on a variety of data types
(images, time-series, etc.) [115].

From the beginning, supervised, unsupervised, and hybrid
machine learning approaches have been applied to the data
integration field to support the integration process [116].
Examples include entity resolution that uses Decision trees,
Logistic regression, and SVM [117], as well as applying Deep
learning model (e.g., Word2Vec, Par2Vec) to compare a long
biomedical text [118]. At the same time, schema alignment
adopted machine learning algorithms such as Naive Bayes
and stacking to match types and attributes [119].

Since there is no single traditional machine learning tech-
nique which can perform well for healthcare data integra-
tion, one application often employs a combination of several
methods.

In [120], a variety of data integration techniques from a
machine learning view have been reviewed. It has concluded
the following:

« Feature concatenation: With the modern high dimen-
sionality of data and rich structural information, feature
concatenation is often impracticable.

« Bayesian models: In general, these models can use prior
information and model measurements with various dis-
tributions.

o Tree-based methods: These models can be applied in two
strategies, 1) build a tree with all features, 2) collectively
make a final decision based on trees learned from each
view.

o Kernel methods: In a first step, Metric learning aims
at fusing the similarity matrices learned from personal
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views together, then a final Kernel learning model com-
bines similarity between results.

« Network-based fusion methods: they can infer direct and
indirect connections in a heterogeneous network.

e Multi-view matrix factorization models: the model
begins by extracting new features from each data view
first and then incorporate these new features together.
Finally, a classification or clustering algorithm can be
applied to the combined features. These models have
the potential to learn interactions among features from
different views.

o Deep learning: Different deep learning models can be
applied to individual data views, and then the result is
integrated with multi-modal learning for capturing the
complex mechanism of systems.

Moreover, this study has emphasized the importance of
methods such as multi-view matrix factorizations and multi-
modal deep learning for data integration in the Bioinformatics
domain.

Zolfaghar et al. [121] used machine learning techniques
to study the 30-day risk of readmission for congestive heart
failure patients. In this study, the income factor represents
the primary predictor variable for risk of readmission (RoR).
The first step is to map income value which is available
in National Inpatient Sample (NIS) dataset (with 8 million
records and more than 100 features) to the MultiCare Health
Systems (MHS) data. However, due to privacy restrictions,
it is not possible to link patients in NIS to patients in MHS
data. To achieve this, K-means is used to cluster the NIS
dataset by relying on three variables; age, gender, and elective
hospitalization. Then the average income is calculated for
each cluster, and the computed value is used to map each
record of data in MHS to the closest cluster based on the
Euclidian distance function.

A hybrid machine learning method was applied to classify
schizophrenia and control individuals by integrating fMRI
and single nucleotide polymorphism (SNP) data. Two SVMs
were used, one on fMRI data and one on SNP data, and then
the results were combined into a single module using majority
voting [102].

Napolitano et al. [122] have combined drug and protein
structures, disease states, and drug toxicity using a kernel-
based (KB) method. Each data is represented by a kernel
matrix in a drug-centered feature space. After combining
these kernel matrices into a single kernel matrix, the authors
applied SVM for classification. The result was used for repur-
posing and sensitivity prediction.

In [123], three independent deep neural networks (DNN)
were trained in clinical data, gene expression, and copy
number for predicting the prognosis of breast cancer. The
final multi-modal deep network was obtained by joining the
predictive scores of each independent model.

However, the characteristics of Big data create scalability
challenges for traditional techniques [124]. For example, esti-
mating model parameters through iterative procedures used
by various machine learning methods, including ANN, SVM,
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and DT, could not be easily scaled across large data sets.
Therefore, non-iterative training algorithms are increasingly
used by Big data applications [125]. As well, the volume
challenge can be reduced using dimensionality reduction.
Methods such as principal component analysis (PCA), Multi-
modal deep learning, Isomap have proven their effectiveness
in dimensionality reduction [126].

3) INFORMATION EXTRACTION

In Big Data, Variety problem refers to different types of
data collected via different data sources, such as text, videos,
images, data logs, audio, and so on. Therefore, this data
will not be in a format ready for integration. Thus, the need
for a process that gets information from the underlying data
sources and explores the relations between entities. The
term ‘Information Extraction’ refers to the process by which
structured, useful information such as entities, relation-
ships between entities, and attributes describing entities are
automatically derived from unstructured or semi-structured
raw data. Moreover, information extraction prepares and
facilitates different types of sources to be integrated and
queried [127]. Subsequently, information extraction must be
incorporated into the data integration workflow to make use
of the extracted knowledge [128].

Information extraction is interdisciplinary, involving data
mining, statistics, computing linguistics, and machine learn-
ing. Several methods have been introduced for the extraction
of information. Sarawagi et al. [127] categorized extraction
methods along two dimensions:

« Hand-coded or Learning-based: A hand-coded system
needs experts to determine the appropriate rules or reg-
ular expressions or program snippets to perform the
extraction. Conversely, learning-based extraction relies
on unstructured data labeled to train machine learning
models.

« Rule-based or Statistical: Rule-based methods are driven
by hard predicates (rules), while statistical learning
methods make decisions based on a weighted sum of rule
firings.

The EHRs contain text dictations from several physicians,
structured data from sensors and measurements, and unstruc-
tured data from video and image (MRI, X-RAY). These
resources require the development of strategies to transform
unstructured data in a structured form suitable for integra-
tion. Several methods of information extraction have been
applied in textual parts of EHRs. Information extraction was
used to detect drug safety signals by transforming clinical
notes into a feature matrix encoded using medical terminolo-
gies [129]. Furthermore, i/n conjunction with the warning
of increased cardiovascular mortality resulting from Cilosta-
zol medication, Leeper et al. [130] employed a novel text-
analytics pipeline to quantify the adverse events associated
with Cilostazol use in a clinical setting.

Information extraction approaches for image data are dif-
ferent from textual data. For instance, a method was designed
and implemented in [131] to manipulate 240GB of brain
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FIGURE 13. Generic workflow for Big data integration: Huge data from heterogeneous sources are received as input and valuable and manageable data
are output. During the workflow, various processing stages are applied to reduce the size of data on the one hand, on the other hand, extract structured
data from semi-structured and unstructured data. Each stage could benefit from techniques such as entity extraction and enrichment with semantic web
technologies, and dimensionality reduction and classification with machine learning technologies. Under certain circumstances, some Big Data

integration problems could be readily solved in such way.

image data for 1200 patients stored by the Alzheimer’s
Disease Neuroimaging Initiative (ADNI), to predict to
what degree a patient has Alzheimer’s. Different steps are
executed, which include spatial normalization, extraction
of features, feature selection, and patient classification.
The proposed filter features selection method is based on
mutual information as relevance measure and redundancy
between the features through minimal-redundancy-maximal-
relevance criterion (MRMR).

Accuracy is the biggest challenge in healthcare information
extraction. Precisely, we mean that when the information is
extracted, it should be extracted correctly, with acceptable
accuracy for clinical staff that should be approximately 95%.
This adds a performance overhead over current treatment
capabilities.

C. INTEGRATION WORKFLOW FOR BIG

HEALTHCARE DATA

Organizations need data in a consumable format to assist
analysts in the decision-making process. The main challenges
are the following:

o how to convert the raw data from multiple sources
affected by heterogeneity format into clear and coherent
information?

« which workflow is enough to take structured and
unstructured ones and convert them into insight?

o how the data will be stored in the cluster?

« what tools to use to process and integrate the data?

« how to provide access to the end consumer?

To an extent, the technologies used for Big medical data
integration are similar to that of traditional Big data integra-
tion projects. The main difference lies in how integration is
performed [22]. Several frameworks are being developed for
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medical Big data integration and fusion, as mentioned in sub-
section III-A. However, the majority of existing frameworks
cannot cope with those challenges, which require multiple
processing steps during integration. Therefore, we provide a
generic workflow, depicted in figure 13, that summarizes the
stages of Big data integration process.

At each step, there is work to be done [132], and there
are Big data tools and technologies to be used [133]. The
workflow process begins with data ingestion from data-
sources, followed by data storing, data filtering and cleaning,
data annotation and labeling, metadata extraction, informa-
tion summarization, and aggregation, and ends in the Data
Warehousing step where the information is ready to ana-
lyze or visualize.

1) DATA INGESTION

The first step involves loading data from different sources in
various formats into a single or clustered store. Data ingestion
is modeled as a pipeline consisting of several incremental
steps with clearly defined interactions. Services for data
ingestion must be compatible with standards such as HL7,
CDA, DICOM, and IHE XDS. Through this pipeline, all
patient identifying data may be anonymized to ensure data
privacy. Moreover, much of this data is of no interest, and so,
can be filtered and compressed by orders of magnitude. For
instance, a Big Data platform [134] was implemented for the
analysis of medical data in the Mayo Clinic. The platform can
ingest and store 62 + 4 million HL7 messages per day. The
data ingested by the platform can be of any medical data type,
be it structured, semi-structured, or unstructured data.

2) DATA STORE
After the ingestion phase, the raw data is pooled into a central-
ized and scalable storage location(the data lake), which is an
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intermediate storage area and working environment for data
that typically represents source data in its original format.
Due to the different data formats, Data Lake will consist
of various systems, such as relational database for storing
and managing structured data(demographic information, vital
signs, etc.), NoSQL for semi-structured data(medical device
reports) and file system for unstructured data(clinical nar-
ratives, notes, letters, reports, images and omics data). For
instance, CancerLinQ [135] (Cancer Learning Intelligence
Network for Quality) is designed as an oncology rapid-
learning health care system. CancerLinQ accepts all data in
any format that a practice chooses to send, then stores and
maintains the original data in a data lake.

3) DATA FILTERING AND CLEANING

EMR illustrates well the need for data cleaning as it may
provide noisy data containing incomplete information [136].
Processing raw data without preparation routines may require
additional computing resources that are not affordable in the
context of Big data. Data filtering is achieved by removing
unnecessary information for health care monitoring based
on a defined criterion, while data cleaning is accomplished
using several components such as noise reduction, missing
data management, and normalization. In [137], k Nearest
Neighbour and K-means are used to remove the noise from
diabetes dataset and thereby improving the quality of data.

4) DATA ANNOTATION AND LABELING

At this stage, the workflow has to explore the different data
formats like clinical notes, images, and scientific publications
and must be able to discover, extract and annotate them with
actual labels such as the name of the entity, relations between
them, etc. Ontologies are applied to clarify the meaning of
the concepts by using standardized terms across various data
sources. A typical step in medical data processing that aggre-
gates unstructured clinical notes is the identification of these
medical concepts from UMLS using MetaMap [138]. UMLS
uses as well, the notion of a Concept Unique Identifier (CUI)
to map terms with similar meaning in different terminolo-
gies [139]. The difficulty with current labeling techniques
is that they do not understand model relationships between
classes. Ayala et al. [140] proposed a two-phase machine
learning approach that computes novel features that take into
account the relationships.

5) METADATA EXTRACTION

At the heart of Big data integration process is Metadata.
The lack of well-defined schemas characterizes big data.
Besides, data integration in such an environment is subject to
frequently changing requirements. Therefore, this step should
extract structural information describing the schema of the
data and clarifying the semantics of metadata. The result of
this stage will help the end user to query over structured
and semi-structured data, and to discover associated schema
between various datasets [141].
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6) INFORMATION SUMMARIZATION AND AGGREGATION

Frequently, health data have volumes of hundreds of mil-
lions or billions of records per day and are not in size ready
for analysis. Thus, it is essential for business intelligence to
summarize and aggregate the required information from the
heterogeneous sources and express them in a structured form
appropriate for analysis. Summarized and aggregated data
and their associated metadata are then used to create abstrac-
tions or pattern representations. For instance, summarization
of an extensive medical record, allows a set of events within a
facet to be recursively aggregated and replaced with summary
events, such as a series of atenolol and propanolol prescrip-
tions can be aggregated into the beta-blockers category [142].

7) DATA WAREHOUSING
Data lake tend to be complicated to navigate for users unused
to working with unprocessed data. Furthermore, researchers
and clinicians tend to favor data warehouses. Conversely, data
scientists could apply dimensionality modeling from the data
lake to prepare the datasets and then feed them back into a
traditional data warehouse for decision analysis. This final
step facilitates the integration of different data sources and
reduces data movement and latency. For instance, supporting
critical precision medicine use cases, an automated workflow
has been implemented for incorporating sequencing results
from both structured and unstructured sources into a research-
centric clinical data warehouse [143].

The successful completion of the workflow enables the
users to use the data for analysis.

D. INTEGRATION TOOLS FOR BIG HEALTHCARE DATA
Scalability, Reliability, and Maintainability are a vital consid-
eration when it comes to Big data integration tools. While the
available tools are mostly open source and wrapped around
Hadoop and related platforms, there are many trade-offs that
developers and users of Big data analytics in healthcare must
consider. While the development costs may be lower since
these tools are open source and free of charge, the downsides
are the lack of technical support and minimal security [2].

Various frameworks and tools have been implemented to
meet the management of the ever-growing size of complex
heterogeneous data, from data ingestion to data visualization.
So far, most Big data tools do not provide a complete process
for data integration, but they can be a part of an integration
architecture to store and process data.

1) INGESTION TOOLS

Since data are collected from a variety of sources and for-
mats, ingestion tools need to take into account the volume
and velocity of structured and unstructured data. Flume? is
a reliable and distributed service for efficiently collecting
large amounts of log data. Sqoop* is a tool that imports struc-
tured data from traditional RDBMS database and provides

3 https://flume.apache.org/
4https://sqoop.apache.org/
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methods for transferring data to HDFS or Hive. Apache NiFi’
is a reliable and scalable tool to load and collect data from
different sources then dump it into other sources. NiFi is
highly configurable and includes an easy to use user interface.

For instance, Tilve et al. [144] proposed a tool to integrate
information from research processes from different fields.
Notably, the information generated in the areas of proteomics,
genomics, cell cultures, and histomorphology. The data is
collected by acquiring a wide range of gross information
from different local databases using the Sqoop tool and stored
inside the data storage system HDFS.

2) STORAGE TOOLS

The complicated nature of health data means that today’s
healthcare sector cannot rely solely on traditional data stor-
age methods. Data storage should continue to be innovated
to accommodate data nature and growth. Methods must
be scalable while maintaining high performance in data
access.

o File System: HDFS is a highly fault-tolerant distributed
file system that stores data on the clusters, it can handle
large amounts of data, regardless of format [145]. Ama-
zon S3° (Simple Storage Service) is an online service
that allows storing large amounts of data. S3 is free to
join and is a pay-as-you-go service.

e NoSQL: The traditional relational database has faced
many challenges to store and process Big data effec-
tively. Therefore, to solve these challenges, a variety of
“NoSQL” databases appeared with many aspects such
as reading and writing data quickly, supporting mass
storage, ease of expansion, and low cost. Furthermore,
NoSQL Databases are classified into three basic cate-
gories: Key-value (HBase,7 Redisg), Column-oriented
(Cassandra,’ Hypertable'?) and Document database
(MongoDB,!! CouchDB!?) [146]. As one of NoSQL
data stores, Graph databases (Neo4J,'3 AllegroGraph,'*
Openlink Virtuoso ') provide an enterprise-grade RDF
triple store [147].

o Data Warehouse: Apache Hive'© is a data warehousing
infrastructure that provides a SQL-like interface: Hive
QL [148]. It enables easy data ETL from HDFS or other
data storage like HBase. Teradata'’ is one of the
well-known RDMS, best suited for database warehous-
ing application dealing with a considerable amount

5 https://nifi.apache.org/
6https://aws.amazon.com/
7https://hbase.apache.org/
8Redis: https://redis.io/
9http://cassandra.apache.org/

1 Ohttp://Www.hypertable.org/
1 lhttps://Www.mongodb.com/
12http://couchdb.apache.org/
13 https://neo4j.com/
14https://allegro graph.com/

15 https://virtuoso.openlinksw.com/
16https ://hive.apache.org/
171'1ttps://WWW.teradata.com/
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of data. Teradata has a patented PDE (Parallel database
extension) software that enables parallel processing and
allows faster processing with a large margin over tradi-
tional databases.

For example, HMBDPS [66] is a distributed Hadoop-based
Medical Big Data Processing System which aims at inte-
grating and processing Big medical data(structured, semi-
structured and unstructured data that are produced by HISs)
to study some features of user behaviors and provide person-
alized recommendations based on public behavior for each
user. Figure 14 shows the data access layer of HMBDPS,
where the physical unit of storage is built based on the
Hadoop cluster and the logical unit of storage is implemented
using Hive. This logical unit could be accessed by Hive
QL (HQL) and user-defined functions (UDF) to store and
manage data efficiently.

FIGURE 14. Architecture of the Big Data Warehouse in HMBDPS [66].

3) PROCESSING TOOLS

Scalable data processing is essential for Big data integration
that involves a complex sequence of processing steps with
different medical data formats. Various types of processing
tools are employed in Big Data integration:

o Batch Processing: To process Big Data, MapReduce
is a well-accepted method to perform parallel comput-
ing and distributed storage [145]. MapReduce is a pro-
gramming model and an associated implementation for
processing and generating large datasets, and is suit-
able for semi-structured or unstructured data. Around
MapReduce, many projects, such as Pig,'® use a high-
level language that spends less time writing mapper and
reducer programs. Spark'® project introduced a cluster
computing engine for Big data applications that offers
scalability, flexibility, and speed to deal with Big Data
challenges. Spark has the power to process and hold data
in memory across the cluster. Spark SQL?° is a module
for structured and semi-structured data processing, it is
used to query data, both inside a Spark program and from
an external repository [149].

o Stream Processing: Real-time or near-real-time data
processing requires a different processing paradigm than

1 8https://pi g.apache.org/

19https://spark.apache.org/

2Ohttps://spa.rk.apache.org/sql/
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the batch mode. Stream processing operates each entity
data item as soon as it enters the system. In this respect,
several distributed computing systems can manage and
process Big Data in near real-time. Storm?' is a low
latency distributed stream processing framework that
could handle very high stream data rates and deliver
results with less latency than other solutions [150].
Spark Streaming”? is a distributed batch processing
framework (over a sliding window) with stream pro-
cessing capabilities that speeds up batch processing
workloads by offering full in-memory computation and
processing optimization [151]. Kafka®® is a real-time
message publish-subscribe system that combines the
benefits of traditional log aggregators and messaging
systems. It is designed as a kernel for data stream archi-
tecture. A Kafka Streams library that provides a stream
processing capability has been added to the Kafka client
library. Kafka is built to be high-throughput, horizon-
tally scalable, fault-tolerant, and allows geographic dis-
tribution of data streams and processing [152]. Flink?*
is a fully-fledged and efficient batch processor that lies
on top of a streaming runtime. Flink follows a paradigm
that encompasses data flow processing as a unifying
model for real-time analysis, continuous streams, and
batch processing, both in the programming model and
in the execution engine [153].

e Machine Learning: Scalability, speed, coverage, usabil-
ity and extensibility are the main factors to evaluate
when choosing machine learning tools, with the note that
the prioritization of these factors largely depends on the
applications they are being used for [124]. For exam-
ple, Mahout> enables the distributed implementation
of machine learning algorithms for Big data, providing
scalable feature selection, data sampling, and classi-
fication. MLIib®® from Spark provides a scalable and
distributed implementation of popular machine learning
methods such as k-means clustering, regression models,
SVM, Naive Bayes. Google’s TensorFlow?’ is another
tool successfully used for deepening approaches, includ-
ing long short-term memory (LSTM) algorithms, convo-
lutional neural networks (CNN), etc. TensorFlow allows
distributed implementation of Deep learning model on
many CPUs or GPUs for large scale analysis.

As a case in point, Panahiazar et al. [154] discussed how
to store multiple datasets from different resources including
EHRs, Medical, and Genomics Images into the Hortonwork
repository [155] and then used Pig to clean and prepare data.
The authors performed a simple operation like AVERAGE to
compare the performance of Pig with other tools like SQL.

21 https://storm.apache.org/

2 https://spark.apache.org/streaming/
&) https://kafka.apache.org/

b https://flink.apache.org/

25 https://mahout.apache.org/

26 https://spark.apache.org/mllib/

27 https://www.tensorflow.org/
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SQL took 18 minutes to run, but Pig ran in less than two
minutes on two nodes. In this respect, Ding et al. [156]
proposed a Shared Nearest-Neighbor Quantum Game-based
Attribute Reduction (SNNQGAR) algorithm for perform-
ing consistent segmentations of cerebral cortical surfaces of
the complex neonatal brain regions. SNNQGAR is paral-
lelized using a new hierarchical coevolutionary Spark model
combined with an improved MapReduce. This architecture
provides improved attribute reduction solutions for big data
processing.

E. PRIVACY AND SECURITY FOR BIG HEALTHCARE DATA
The integration of Big data raises many privacy concerns,
particularly in the health care sector, due to the promulgation
of the Health Insurance Portability and Accountability Act
(HIPAA). Because the data integration process aggregates
data into a centralized repository, it is extremely vulnerable
to attack. Therefore, security and privacy policies should
be considered as part of the design of the health data inte-
gration platform. Besides, legislation and regulation should
often be regarded as re-evaluate emerging technologies and
capabilities [157].

Traditional security and privacy mechanisms are insuffi-
cient to protect Big data. Nevertheless, new technologies also
host unknown back doors. Therefore, integrity, confidential-
ity, and availability of data must be carefully considered.

1) SECURITY

Security is defined as protection against unauthorized access.
Therefore, for providing secure access to clinical data, health-
care information systems must provide the following poli-
cies: authentication, access control, confidentiality, integrity,
attribution/non-repudiation [158]. However, the diversity of
data sources, data formats, streaming, and infrastructure can
lead to unique security vulnerabilities. In this regard, Alsh-
boul et al. [159] proposed a Big data security lifecycle model,
designed to take into account the phases of the Big data
lifecycle and correlate threats and attacks that face Big data
environment within four phases:

« Data collection phase: It is essential to collect data from
reliable sources and to use specific security measures,
such as the encryption of individual data fields (patient
identifier).

« Data storage phase: the collected data may contain sen-
sitive information. Thus, some security measures can be
used, such as the data anonymization approach, the per-
mutation, and partitioning of data to ensure the safety of
the collected data.

o Data analytics phase: In this phase, machine learn-
ing methods such as clustering, classification, and
association rule are used for link extraction and feature
selection, which can extract sensitive data. Therefore,
this phase needs to be protected while making sure only
authorized staff can be engaged in this phase.

o Knowledge creation phase: The created knowledge
is treated as sensitive information, especially in the
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health sector. Therefore, organizations must ensure that
this information (e.g., patient information) is not to be
publicly released.

2) PRIVACY

Health care data sharing allows early detection of epidemics,
but without evident privacy protection, it is difficult to
extend these surveillance measures nationally or internation-
ally [160]. Privacy is often defined as the ability to protect
sensitive information about personally identifiable health-
care information. Various traditional methods guarantee some
degree of privacy in Big Data, but their disadvantages have
led to the emergence of newer methods [161].

o De-identification is a traditional method for privacy-
preserving, in which, data must first be sanitized with
generalization and suppression before the publishing for
data processing to protect patient privacy. K-anonymity,
L-diversity, and T-closeness are three traditional meth-
ods of De-identification. Many scalable anonymization
solutions within the MapReduce framework have been
proposed to improve these traditional techniques of pro-
tecting Big data privacy.

o Hybrid execution model is used for guaranteeing pri-
vacy in cloud computing. It utilizes public clouds only
for an organization’s non-sensitive data, whereas for an
organization’s sensitive, private data and computation,
the model executes within their private cloud.

o Privacy-preserving aggregation is built on homomor-
phic encryption as a widespread data collecting tech-
nique for event statistics. These encrypted texts can be
aggregated, and the aggregated result can be retrieved
with the corresponding private key. Thus, privacy-
preserving aggregation can protect the privacy of the
patient during the Big data collection and storage
phases.

To address the scalability problem of big data privacy,
Gheid and Challal [162] presented a general architecture of
Big data analytics for multi-source Big data. The architec-
ture introduced an efficient and privacy-preserving cosine
similarity computing protocol in response to the efficiency
and privacy requirements of data mining in the Big data era.
Moreover, Zhang et al. [163] proposed a scalable two-phase
top-down specialization approach for the anonymization of
large data sets using the Map Reduce framework in the cloud.

F. INTEGRATION APPLICATIONS AND PLATFORMS

FOR BIG HEALTHCARE DATA

The integration of Big data presents new opportunities to cre-
ate novel applications in the field of healthcare, which provide
many benefits to clinicians who can seamlessly search across
healthcare systems to get the complete picture of a patient.
In this section, we discuss these applications.

1) DIABETICS DATA INTEGRATION

MOSAIC system [164] has been designed to be potentially
used in any context dealing with Type 2 Diabetes Melli-
tus (T2DM) patients. In MOSAIC system, the i2b2 [164]
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Data Warehouse (DW) allows integrating clinical information
coming from hospital EHRs, administrative data from the
local health care agencies, and environmental data collected
from satellites. A common data model was defined and imple-
mented using the i2b2 technology to query and integrate these
heterogeneous huge data, [165]:

« A query engine, implemented as back-end service, relies
on a MongoDB and provides a logical layer between the
user and the data.

o A Temporal Abstraction module takes raw quantitative
data stored in the i2b2 DW, analyzes the evolution of
diabetes by taking advantage of different datasets, and
then stores the integrated result in the DW.

2) DATA INTEGRATION IN DISEASES PREDICTION SOLUTION
IManageCancer project [61] aims to provide a cancer-
specific self-management platform, with particular emphasis
on avoidance, early detection, and management of adverse
events of cancer. The high-level architecture of iManageCan-
cer (shown in figure 8) is based on the Data Lake concept
to store and manage heterogeneous, structured, and unstruc-
tured data sources. This Data Lake includes various databases
such as PostgreSQL for storing patient information, Cassan-
dra DBs for staging Big data available (e.g., activity monitor-
ing data, sensor data, etc.). The data is queried, transformed
into triples, and loaded into a semantic data warehouse where
it is available for further analysis. This architecture can
specify which of the available data have to be semantically
linked and integrated by selecting the suitable mappings to
a modular ontology. Furthermore, The Semantic Warehouse
provides a ‘semantically enriched’ and ‘search-optimized’
index to fill the limited flexibility of query mechanisms for
unstructured content of data lake. Based on this approach,
the data warehouse has the flexibility to be created from
scratch at any time.

Fang et al. [59] demonstrated how medical Big data inte-
gration and analysis could be used to construct early pre-
diction and intervention models. A data center based on the
Hadoop platform has been built to integrate healthcare data
acquired from existing patient-related information systems,
such as HIS, LIS, PACS, EMR, ECG, into a data ware-
house. Data standardization and consistency are achieved
using extract-transform-load (ETL) technology to integrate
the vast amount of unstructured data. The main difference is
that methods, such as MapReduce [166], can be applied in
each processing link to carry out parallel processing in those
Big data.

3) DATA INTEGRATION IN PUBLIC HEALTHCARE

Obesity is a public health problem that has raised concern
worldwide, and this problem requires the systematic col-
lection, analysis, and interpretation of all factors affecting
weight gain to drive health policy and promote a lifestyle,
environmental and socioeconomic changes. Figure 15 shows
a ‘semantic ETL service proposed in [98] which connects
multiple information retrieved from different data sources:
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FIGURE 15. The main modules in the semantic ETL service [98].

a) IHE-based documents with patient information from the
IHE repository, b) CCD-based documents with patient infor-
mation from patient PHR, c) stream data from sensing devices
and d) messages from various web sources. The retrieved data
is stored to NoSQL databases (a combination of MongoDB
and HBase) in a schema-less format to provide flexibility.
Finally, the data transformation module transforms data into
RDF documents, and through ontology reasoning, high-level
context data is derived and transformed into documents com-
pliant with the integration schema. RDF documents are then
exported from the ontologies and stored in the data repository
module.

4) DATA INTEGRATION IN WEARABLE HEALTHCARE
Mezghani et al. [97] proposed a collaborative semantic web
platform that copes with heterogeneous Big data analysis
which comes from different wearable devices, based on the
Knowledge as a Service (KaaS) approach. This architecture
extended NIST Big data model with a Semantic Knowl-
edge Layer that offers a common understanding of data. The
platform produces more accurate and valuable information
by fusing Big heterogeneous medical data. The proposed
Wearable Healthcare Ontology (WH_Ontology) is designed
to deal with the heterogeneity of wearable data to ensure
semantic interoperability and to allow creating more accurate
knowledge about the patient, such as detecting and predicting
anomalies.

5) DATA INTEGRATION IN INTEROPERABLE EHR SYSTEMS

Most medical information systems store clinical information
about patients in proprietary formats. Therefore, Bahga and
Madisetti [64] presents a Cloud-based approach to integrat-
ing electronic health record systems named Cloud Health
Information System Technology Architecture (CHISTAR).
CHISTAR reference model extends and adapts the OpenEHR
and HL7 v3.0 data types. Data integration is performed to
throw a data integration engine and achieved in two steps.
In the first step, a source connector connects to an external
system where a meta-data lookup is performed to discover the
semantics of the data elements in the source file. In the next
step, semantic matching is done with the meta-data repository
of the destination to find and retrieve a list of candidate
mappings in an intermediate file. The data loaded by the
integration engine is stored as a flat file in HDFS distributed
storage; therefore, a MapReduce based bulk loader loads the
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data from flat files into HBase. This work has been extended
by a cloud-based information integration and informatics (III)
framework to facilitate the collection and analysis of hetero-
geneous and distributed healthcare systems within a scalable
cloud infrastructure [167].

6) DATA INTEGRATION IN ADVANCED PRECISION MEDICINE
Many questions for clinical research (such as how can-
cer arises, how much complex diseases are dependent on
personal genomic traits or environmental factors) could be
answered by modern genomics. Moreover, a vast, intricate
and incompatible raw data (Encyclopedia of DNA elements
(ENCODE), Cancer Genome Atlas (TCGA), 1000 Genomes
Project, etc.) have been produced by computational efforts
in primary and secondary genomic data management cou-
pled with the progress of RNA sequencing technology.
Ceri et al. [76] proposed a data model that ensures the inter-
operability between different produced formats and allows
merging datasets with different schemas. They also defined
a new federated query language GMQL that has the ability of
computing distance-related queries along the genome, seen
as a sequence of positions. The defined query is executed
based on simple interaction protocol, such as 1)requesting
information about remote datasets, 2)transmitting a query
in high-level format and obtain data about its compilation,
3) launching query execution and then controlling the trans-
mission of results, so as to be in control of staging resources
and communication load.

A processing method is used in [65] for complex biolog-
ical data processing operations to understand gene-disease
associations. Both structured and unstructured data are loaded
onto HDFS, and they are queried and integrated using both
a commodity hardware-software cluster and a commercial
Big Data System to find the records that match the given
query. The data that were acquired consisted of 20 million
literature abstracts obtained from PubMed in XML format,
mRNA expression data and miRNA expression data from a
single Glioblastoma patient downloaded from TCGA, along
with a gene and disease lexicon, using EntrezGene and NCI
Thesaurus, respectively. The result suggests that available
technologies within the Big Data domain can reduce the time
and effort needed to utilize and apply distributed queries
over large datasets in practical clinical applications in the life
sciences domain.

G-DOC Plus [168] is used to integrate multiple datasets
such as health data selected from private and public resources,
Cancer Genome Atlas (TCGA) and recently added datasets
from REpository for Molecular BRAin Neoplasia DaTa
(REMBRANDT), caArray studies of lung and colon cancer,
ImmPort and the 1000 genomes data sets. G-DOC Plus aims
to support physician, scientists and researchers to under-
stand the mechanisms of cancer and non-cancer diseases to
drive new hypothesis for precision medicine. G-DOC Plus
uses MongoDB to store variant data from sequencing stud-
ies. Images are stored in a DICOM Clinical Data Manager
“Dcmdchee” system, and metadata are stored in a MySQL
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database. All engines are hosted on an EC2 server instance
on the Amazon cloud.

7) DATA INTEGRATION IN MENTAL HEALTH CARE

Brain and mental health research from Big brain data have
grown as an emerging area for both data analyst and neuro-
science community. Electroencephalography (EEG) is by far
the most commonly used technique to study brain function.
It has proven its usefulness with advanced sensing tech-
nology and signal processing algorithms to support people
with healthcare needs, such as identifying ketamine responses
in treatment-resistant depression using a wearable forehead
EEG [169], exploring resting-state EEG complexity before
migraine attacks [170], indexing brain cortical dynamics and
detecting driving fatigue and drowsiness [171]. Alternatively,
functional magnetic resonance imaging (fMRI) is used exten-
sively to identify regions linked to critical functions such
as speaking, moving, sensing, or planning. Clinicians also
use fMRI to further understand neurobehavioral disorders,
such as Alzheimer’s disease, epilepsy, brain tumors, stroke,
traumatic brain injury, and multiple sclerosis [172].

Since EEG and fMRI are the two most commonly
used noninvasive functional neuroimaging techniques, and
because they exhibit highly complementary characteristics,
their multimodal integration has been actively sought [173].
Hosseini et al. [174] introduce a new method for epilepto-
genic network definition and prediction of the seizure (ictal)
onset, by integrating multimodal fMRI and EEG Big data.
A deep-learning approach was developed to extract high order
features for identification of interictal epileptic discharge
(IED) and nonlED time intervals in electrographic data,
leveraging the emerging mobile-edge computing platform.
Figure 16 illustrates the pipeline of this integration.

FIGURE 16. Integration workflow of the approach for the analysis of
independently acquired EEG and RS-fMRI data to locate the
epileptogenic site.

IV. DISCUSSION

In the previous section, We have extensively studied existing
solutions found in the literature related to Big Healthcare
Data integration. We investigated the ins and outs of these
solutions from different perspectives including the mode of
operations (real-time or batch style or both), what specific
problems it solves, which of the Big Data characteristics it
deals with (volume or velocity), does it tackle the quality
problems, etc. We summarize our findings in Table 2. In what
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follows, we will assess the weaknesses and challenges of Big
Healthcare Data Integration solutions:

A. WEAKNESSES

We found some powerful solutions which can integrate data
(section III-F). However, we found a few critical problems
which are unsolved in existing technologies:

o Lack of powerful solution: There is no ready to use
solution (similar to commercial off the shelf) for medical
data integration. The existing solutions were developed,
aiming at building a solution for a specific area of the
healthcare domain. For instance, the integration of can-
cer data. Such solutions can integrate some particular
types of data such as image and text but cannot integrate
surgical videos. Also, some solutions integrate a kind of
data that relies on a specific data model such as RDF.

o Lack of solution for Integrating Medical Data Streams:
In our study, we have not found an efficient solution
which can be used to integrate medical data streaming
from sources such as social media and sensors. Such a
solution is enormously useful for performing a critical
analysis on the fly.

o Lack of solution for integration with data quality consid-
eration: Medical data integration faces a quality chal-
lenge. Integration of heterogeneous data may produce
messy data or data that are not meaningful. This is why
integration solutions must solve quality issues. Unfortu-
nately, we did not find any solution which can address
both issues effectively.

o Lack of solution for integration with real-time responses:
Many of the existing solutions are built on the Hadoop-
MapReduce framework, which mostly solved the data
volume challenge. However, due to the extravagant sort-
ing algorithm that Hadoop relies heavily on for per-
forming reduce function, the performance can be a
bottleneck.

B. CHALLENGES

Our survey found several challenges regarding processing
Big Data [132], [175], and specifically for healthcare Big
data [1], [13], [176]. Integrating Big healthcare data has its
challenges. Recent studies show that Big healthcare data
could not be efficiently integrated using traditional tech-
niques, technologies, and tools. Therefore, many issues have
not been addressed and need to be answered. The most impor-
tant challenges are briefly presented below:

o Heterogeneous data: Data integration and fusion of
the noisy, heterogeneous and longitudinal data gener-
ated by different technologies such as medical imaging,
physiological signal, genomic data [177], and social
media [178] constitute the Big challenge for health-
care informatics. These data may be diverse in terms
of Data types, file formats, data encoding, the data
model (syntactic heterogeneity) as well as they may have
differences in meanings and interpretations (semantic
heterogeneity).
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TABLE 2. Summary of data integration applications in Healthcare context.

. The Big Data char- .
Name of the solution Type of datz} integrated acteristics it deals :I‘ype of operations Main strength Major Weakness
by the solution with it performs
Big Data Technologies: ﬁlfl(l)l;;ﬁaﬁon };3[1121 ca(r)e; Gathering and stor- I/I:)[lii ?&I;t}? fd;;lfrég: Use data warehouse
New Opportunities for " volume, variety, ve- | ing data in multidi- technique, that could

the FSM diabetes unit,

ent types of data:

Diabetes Management . locity mensional data star . have a limitation with
[165] Environmental data from schema environmental, and Bic data
satellite Landsat. medical g
iManageCancer: The data is . . .
. . Semantic data | Using semantic layer ap-
Developing a Platform stored in Data . S
. . . . warehouse has | proach with a static build
for Empowering Patients | EHR, Serious games, | volume, variety, ve- | Lake and loaded - .
; . . . ! the flexibility to | phase is too slow to
and Strengthening Self- | Sensors. locity, veracity into a semantic

Management in Cancer
Diseases [61]

warehouse as a
batch process

be created from
scratch at any time

keep up activity monitor-
ing and sensor data

A study on specialist
or special disease clinics
based on Big data [59]

HIS, LIS, PACS, EMR,
ECG, ultrasound.

volume, variety

ETL batch process-
ing

MapReduce is used
in the ETL process
to deal with the vol-
ume of data

Multidimensional —cube
used to store data has
a limitation concerning
scalability

A health analytics se-

IHE-based documents,
CCD-based documents,

volume, variety, ve-

Semantic ETL ser-

Use the semantic

The proposed semantic

mantic ETL service for | sensing devices, text locity. veracit vice on the cloud web to handle the | ETL services do not han-

obesity surveillance [98] | from  various  web ¥, Y data quality dle the volume issue
sources.

fA cloud—bas'ed approach | EHR ) from A cloud-based dis- Semantic interoperabil-

or interoperable | heterogeneous, and . . supports advanced | . .

. - volume, variety tributed batch pro- . ity could have many lim-
electronic health records, | distributed  healthcare cessin security features itations with huee data
(EHRs) [64] systems ssing ; ge data.
Data Managemgnl Encyclopedia of DNA, Use federate tech- | Define a new feder- lY[ergmg lhev {ransmis-
for Next Generation . . . sion of results from mul-

. . TCGA, 1000 Genomes | volume, variety nique to integrate | ated query language .

Genomic Computing X tiple data sources could
Project data GMQL L

[76] be an issue

g?s(iv(:\llidge airrlgssTh\efén | PubMed, Hybrid solution The proposed extraction

Ty act ™Y | mRNA and volume, variety, ve- | with  distributed | Map-reduce based prop ¢
Large Biological Data . . . . method could have an is-

. o miRNA from racity queries and batch | software .

Sets,Using  Distributed . sue with huge data
. Glioblastoma processing
Queries [65]
Adopt the NIST | Wearable
A Semantic Bie Data Big Data reference | Healthcare
g Wearable data from mul- . architecture and | Ontology The proposed SPARQL
Platform for Integrating . . . volume, variety, ve- oS .
tiple sources, with multi- . store wearable | facilitating the | endpoint could become a
Heterogeneous Wearable locity . s .
. ple formats data in distributed | aggregation bottleneck
Data in Healthcare [97] . 3 .
clusters deployed in | of distributed

the cloud

heterogeneous data

G-DOC Plus:
an integrative
bioinformatics platform
for precision medicine
[168]

Patients data,

Gene Expression Omnibus|
Cancer Genome Atlas,
Brain Neoplasia Data,
1000 genomes data sets

volume, variety

Researchers

explore, search
and link data as a
cohort of samples
and save results in
G-DOC Plus for
further downstream

Offers  advanced
computational

tools to integrate
a variety of
biomedical Big
data

The integration of pa-
tients data in the systems
requires transformation,
not only of the format but
of the model as well.

analysis.
. . Deep learning The integration method
Deep  Learning W,lth structures use . does not take advantage
Edge Computing a hierarchical Autonomic  edge- of the patient’s medi-
for  Localization of | Clinical dataset of fMRI | volume, variety, ve- . . computing platform € p .
Epileptogenicity using | and EEG locity multilevel learning that supports deep cal history, which could
§ approach to ) ) affect the evaluation of

Multimodal rs-fMRI and
EEG Big Data [174]

extract meaningful
features.

learning

epilepsy

o Unstructured data: Clinical context produces unstruc-
tured data (or at least in a semi-structured form) such
as handwritten doctor notes, images, audio, and video o
streams. These unstructured resources contain a richness
of information relevant to understanding human

standards, and multiple data standards development
organizations [52].

Health-monitoring data: Real-time integration of
health-monitoring data such as vital signs monitoring
devices, environmental exposure, and pharmacological

health [8]. profiles, into the existing medical data poses several
o Problems with data standards: Medical data usually technical challenges [179].
lack consistent data standards and are often fragmented o Patient privacy and data security: There is a growing

or generated in legacy IT systems with an incompat-
ible structure, which exacerbates the inconsistency of
medical terminology. Integration problems in health-
care include gaps in data standards, overlapping

interest in the security of electronic medical informa-
tion that is distributed in confidential silos owned by a
multitude of stakeholders [8]. The patient has the right
to determine when, how, and to what extent his health
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information is shared with others. That is, during data
integration processes, essential factors related to patient
privacy and consent and other legal issues related to
these data need to be considered [180]. These statutory
and regulatory aspects could create a potential barrier
to the proper implementation of the data integration
process.

o Non-expert users: Data integration should be an auto-
matic process. Due to the scale and heterogeneity of
medical data, automatic integration is not completely
accurate. End-users of integrated data are generally
physicians, nurses, and health professionals with limited
informatics training [181]. It would, therefore, be diffi-
cult to help non-expert users access heterogeneous data
sources via data integration systems.

V. RESEARCH DIRECTIONS

We discovered some promising research directions related to
the integration of Big Healthcare Data. We briefly explain
these directions in the following:

A. BIG HEALTHCARE DATA FUSION

The advent of Big Data has given rise to a new notion called
Data Fusion, which is an extended concept of data inte-
gration. In data integration, data are gleaned from multiple
heterogeneous sources, whereas fusion consists of data inte-
gration followed by data reduction or replacement operations.
Fusion adds different levels of uncertainty to support a more
narrow set of application workloads, which is critical specif-
ically to perform analysis efficiently. Therefore, Big data
fusion has become an important issue to healthcare industry
practitioners and researchers and is gaining popularity as a
concept for building efficient solutions. According to our
study, Big Healthcare data fusion is an open and critical
issue which can be dealt with by producing novel fusion
techniques.

B. INFORMATION EXTRACTION

Data annotation technique aids data integration process to
understand and fuse medical data such as images (MRI,
radiology image, CT scan, molecular image), text (medical
report, academic article), EHRs. These different types of data
formats, make the annotation process of medical data very
difficult compared to other domains. Moreover, the evolu-
tion of medical data has created a large heterogeneity of
data sources and increased complexity to extract the needed
information [182]. Therefore, hot opportunities have been
arising in developing new information extraction and labeling
methods.

C. DEVELOPING EFFICIENT INTEGRATION TECHNIQUES

Machine learning is a possibly feasible way to improve tra-
ditional data reduction techniques to process or even pre-
process Big data. These emerging techniques may help to
understand the trends of data, classify Big data, and detect
similarities [175]. Recent developments in deep learning and
artificial neural networks emerged as the preferred machine
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learning approach in machine perception such as computer
vision, speech recognition, and natural language processing.
Therefore, combining these models will open new chances to
address many of the challenges of integrating structured and
unstructured data, making better leverage of the information-
rich yet unstructured data in EHRs [183].

D. REAL-TIME INTEGRATION OF DATA STREAMS

The increasing trend of using smart devices in the healthcare
sector for carrying out several tasks such as change detection
in real-time monitoring of EEG signals [184] and using smart
equipment in surgical procedures [185], requires integration
of data streams on the fly. The wearable device technology
is becoming popular and is gaining importance for long-term
health monitoring [186]. The integration of patient-generated
fitness data with Big medical data such as EMR can be
compelling and robust. This integration can help clinicians in
making more informed decisions about patient health [187].
Therefore, real-time data capturing from wearable medical
devices regardless of the data format and the integration of
all these new formats with medical data is a newly emerging
research domain.

E. ADVANCED INTEGRATION TECHNOLOGIES

In recent years, in addition to acquiring healthcare data,
it became possible to obtain data from various data sources
(social networks, monitoring, IoT devices, etc.). This per-
spective raises new questions about the quality of the data.
Therefore, the ADR-PRISM project [188] identified 21 crite-
ria for evaluating social media to select the most informative
data elements to support medical domain research.

Thereby, the need for new integration technologies to ben-
efit from the methodology of Big data integration to obtain
a fully integrated picture of disease causality and help in
effective early detection [189]. The following are some of the
research works that can be done.

« Precision Medicine: Combining genetic data with dis-
eases, therapies, and outcomes can help to improve the
selection of the best treatment. Also, integrating histori-
cal patient data about lifestyle and environmental expo-
sure has the potential to determine the causes triggering
the onset of a disease state.

« Infectious diseases early detection: Combining data
from web-based searches, social information, travel,
trade, climate changes, etc., with syndromic surveil-
lance and diagnostic data including the next generation
sequencing, can improve the detection of early signs of
disease outbreaks (e.g. influenza, bacterial-caused food
poisoning) and coordinate quarantine and vaccination
responses.

o Chronic diseases detection: Combining data from
social and physical behaviors, nutrition, genetic fac-
tors, environmental factors and the development of
mental/physical diseases, can help to better understand
the triggers of chronic diseases for effective early
detection.
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TABLE 3. Definitions of all acronyms used in the paper.

ADNI Alzheimer’s Disease Neuroimaging Initiative

ANN Artificial Neural Networks

ASC X12 Accredited Standards Committee X12

ATC Therapeutic Chemical classification system

BDW Big Data Warehouse

CCD Continuity of Care Document

CDA Clinical Document Architecture

CNA Copy Number Alterations

CNN Convolutional Neural Networks

CUI Concept Unique Identifier

CZ-DRUGS Medicinal products registered in the Czech Republic

DICOM Digital Imaging and Communications in Medicine

DNA Deoxyribonucleic Acid

DT Decision Tree

DW Data Warehouse

ECG electrocardiogram

EDW Enterprise Data Warehouse

EMR Electronic Medical Record

ETL Extract, Transform, Load

FDA Food and Drug Administration

FHIR Fast Healthcare Interoperability Resources

fMRI Functional Magnetic Resonance Imaging

HCLS Semantic Web Health Care and Life Sciences

HDFS Hadoop Distributed File System

HER Electronic Health Record

HIS Hospital Information System

HiveQL Hive Query Language

HL7 Health Level Seven

HWO World Health Organisation

i2b2 Informatics for Integrating Biology and the Bedside

ICD The International Classification of Diseases

ICT Information and communications technology

IHE Integrating the Healthcare Enterprise

IHTSDO International Health -Terminology Standards
Development Organization

KaaS Knowledge as a Service

LIS laboratory information system

LOD Linked Open Data

LOINC Logical Observation Identifiers Names and Codes

LSTM Long Short-term Memory

MeSH Medical Subject Headings

MHS Multicare Health Systems

miRNA microRNA

MRI Magnetic resonance imaging

mRMR minimal-redundancy-maximalrelevance criterion

mRNA Messenger Ribonucleic Acid

NCI National Cancer Institute

NDF-RT National Drug File - Reference Terminology

NIS National Inpatient Sample

OBO Open Biomedical Ontologies

OWL Web Ontology Language

PACS Picture Archive and Communication System

PDE Parallel database extension

PHR personal health records

RDF Resource Description Framework

RIM Reference Information Model

RNN Recurrent Neural Networks

RoR Risk of Readmission

S3 Simple Storage Service

SNOMED CT | Systematized Nomenclature of Medicine Clinical Terms

SNP Single Nucleotide Polymorphism

SPARQL Simple Protocol and Rdf Query Language

SVM Support Vector Machines

SWSE Semantic Web Ssearch Engine

T2DM Type 2 Diabetes Mellitus

TCGA The Cancer Genome Atlas

UDF User-defined Functions

UMLS Unified Medical Language System

XDS Cross Enterprise Document Sharing

Yarn Yet Another Resource Negotiator
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F. SCALABLE DATA INTEGRATION PLATFORM

Since medical data hold the characteristics of Big data [176],
there is a need for a scalable solution that is based on the
Hadoop framework. The platform should have the ability to
store a huge amount of heterogeneous data and deliver a
wide range of automated data integration processors like data
filtering, cleaning, summarizing and link discovery, as well
as it should provide a fusion solution that supports healthcare
standards such as HL7, OpenEHR and others. It must also be
able to merge data from internal and external sources. The
main idea behind this platform is to summarize and integrate
data graphically and interactively, enabling domain experts
to find key information for supporting decision making
interactively.

VI. CONCLUSION

The rapid growth of healthcare data has given rise to
the notion of Big Healthcare Data. A wide variety of
data are available in the healthcare sector, including text
(e.g., prescriptions), images (e.g., MRI scanning reports),
video (recorded operations in a surgical room), etc. Further-
more, in recent years, sensors and social media data are
heavily used within the healthcare sector for various pur-
poses. These data flow with high-speed. Uncertainty is a
common issue of data when it flows from outside of the well-
known and reliable internal repositories. The complex nature
of data, which include volume, variety, speed, and uncer-
tainty raised a massive challenge for traditional technologies,
e.g., spreadsheet-based tool, relational database, and single
machine programming. The advent of Big Data promoted
the growth of Big Data technologies for various operations,
including collection, integration, processing, analysis, and
visualization, over the years. In this paper, we studied existing
technologies extensively. Our study focused on finding the
strength and weaknesses of these technologies.

In our survey, We found limitations in existing model
technologies that are based on the Hadoop platform, NoSQL,
parallel programming. We reported these limitations in this
paper. We analyzed our findings concerning different param-
eters such as the ability of current integration technologies
to deal with variety, speed, uncertainty. Furthermore, We dis-
cussed a few promising research directions. We planned to
conduct an experimental study with some of the potential
solutions for integrating Big Healthcare Data.

APPENDIX
All the acronyms used in the paper are enlisted in Table 3.
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