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ABSTRACT The regular replacement of lubricating oil plays a key role in improving machine reliability and
reducing unexpected failures of an oil lubricated system. This paper proposes a condition-based maintenance
problem with selected oil field data to determine the optimal time of the lubricating oil replacement. The
selected oil field data contain health information about the lubricating oil, so the degradation state of the oil
can be predicted and the future health condition can be evaluated. The proposed lubricating oil replacement
problem ismodeled with the evaluated oil health condition in aMarkov decision process framework and then,
a method for constructing a health index for the lubricating oil is proposed based on information theory to
fuse the multiple oil field data and build a degradation progression prediction model. Finally, the proposed
method for condition-based lubricating oil replacement is illustrated in a practical case study. The possible
applications of an optimal policy for lubricating oil replacement are much wider. For instance, the method
can be used as an input to optimize an operational plan and further reduce the maintenance costs.

INDEX TERMS Lubricating oil, replacement, material wear and system degradation, system degradation
model, health index, prognostics, oil field data.

I. INTRODUCTION
Lubricating oil is used to reduce wear in friction cou-
plings, improve machine reliability and reduce the economic
costs associated with possible future unplanned maintenance.
Therefore, an oil lubrication system should be monitored
regularly, and the oil should be replaced in time to extend the
period over which the machine operates in a healthy state [1].
Recently, condition monitoring (CM) of lubricating oil has
become an important research field and has played a vital
role in industry, see, e.g., [2]–[9] and the references therein.
Oil field information has been utilized to estimate the health
condition of the lubricating oil, but to our knowledge, an opti-
mal oil replacement policy that use such oil field information
to prevent unexpected failures has not been developed in the
literature. The paper aims to address an optimal replacement
problem for oil lubrication systemswith selected oil field data
to determine the optimal lubricating oil replacement time.

As a machine operates, wear debris spalling from each
wear component is uniformly mixed in lubricating oil, and
the level of wear debris is one of the most common types
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of degradation features that can be used to estimate the
severity of the underlying oil degradation [5], [6]. The con-
centration of wear debris has been observed from spectral
oil analysis during the inspection epoch [10]. Moreover,
metal wear debris accumulates in the lubricating oil, and
the concentration increases, which leads to lubricating oil
degradation [7], [8]. Using wear debris, many researchers
have presented indicators that can characterize the severity
of the underlying degradation process, where the lubricat-
ing oil considered to have failed when these spectral oil
data cross a predetermined threshold [11], [12]. With the
degradation state assessed, timely lubricating oil replacement
will essentially avoid severe operation conditions and enable
a predictive maintenance strategy, which can lead to fewer
unexpected failures [13].

Although spectral oil data have been used in practice for
many years to evaluate lubricating oil degradation and predict
its residual life (RL), see, e.g., [5], [9] and the reference
therein, little work has been done using spectral oil data to
build a degradation model for the purpose of modeling the oil
replacement problem. In the prognostics and health manage-
ment (PHM) area, degradation modeling and RL prediction
were applied to lubricating oil contaminated with debris by
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applying a stochastic model using a Wiener process (WP)
[8], [9] and, extracting a composite health index (HI) based
on multiple selected spectral oil data [10], [14]. A compre-
hensive review of the application of different approaches in
oil-based PHM can be found in [15] and the references
therein. To our knowledge, no oil replacement decision mod-
els have been developed in the literature that can be utilized
for the determination of the optimal oil replacement time.

In this paper, we present a condition-based maintenance
(CBM) problem to determine the optimal lubricating oil
replacement time by proposing a new HI-based degradation
modeling framework using selected spectral oil data. In the
proposed framework, a WP-based degradation process is
established to model the constructed HI of the lubricating
oil. The HI is constructed using a weighted average of selec-
tion of degradation data with allocation steps for the weight
coefficients that ensure the accuracy of the degradation state
evaluation and reduce the difficulties of the parameter esti-
mation. This is of practical significance for the evaluation of
the degradation state of lubricating oil and determining the
optimal oil replacement time and, thus, is one contribution
of this paper. Based on the evaluated oil health condition,
the lubricating oil replacement problem is then modeled in
a Markov decision process (MDP) framework and a control
limit of the replacement threshold can be determined, which
is another contribution of this paper. To illustrate the proposed
method in this paper, a case study is provided for oil lubri-
cation systems in power shift steering transmission (PSST)
systems.

The framework of the optimal lubricating oil replacement
methodology is shown in Figure 1. The rest of this paper
is organized as follows. Section II describes the motivation
of the lubricating oil replacement problem. In section III,
a method for constructing the HI for lubricating oil is
developed and the oil degradation modeling framework is
presented based on the constructed HI. Section IV pro-
vides an illustrative case study for several PSST systems.
In section V, the conclusions of this work and some future
research is provided.

II. MOTIVATION OF THE LUBRICATING OIL
REPLACEMENT PROBLEM
A description of the lubricating oil replacement problem
consider in this paper is first provided in this section. This
paper considers an oil lubrication system that is monitored
using regular oil spectral analysis. Lubricating oil deteriorates
over time in severe and various working conditions and the
associated degradation process {L (t) , t ≥ 0} is periodically
analyzed to evaluate the severity of the lubricating oil degra-
dation. The degradation process {L (t) , t ≥ 0} is assumed
to have an increasing but not necessarily monotonic trend.
The lubricating oil is regarded as having reached a failure
state if the degradation process reaches a failure threshold
ξ
′

that is usually predetermined by practitioners. Once the
failure is revealed, the oil lubrication system is considered
to be operating in an abnormal working state and cannot

FIGURE 1. HI-based degradation modeling framework for oil
replacement.

function as required. The failure of the lubricating oil is not
self-evident and can only be detected by oil analysis. For each
oil sampling, if the degradation process reaches the prede-
termined threshold ξ

′

, corrective maintenance is performed
immediately. Alternatively, the maintenance decision must
be made based on the current degradation level to determine
whether to preventively replace the lubricating oil or let it
operate until the next oil sampling. It is assumed that all
lubricating oil replacement actions are perform immediately
and that preventive replacement and corrective replacement
are perfect, which can restore the oil lubrication system to an
undegraded state. Considering that the oil sampling interval
is fixed in practical applications, the oil sampling interval
will not be optimized [16]. Thus, the aim of this research
is to find the optimal policy for lubricating oil replacement
to minimize the total operating cost of the monitored oil
lubrication system.

Based on the mentioned description of the lubricating
oil replacement problem, when the machine is operating,
the associated spectral oil data are utilized to measure the
lubricating oil degradation level {L (t) , t ≥ 0} at time tk , k =
0, 1, . . . in a near-real-time manner, with tk = k1t and 1t
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being the oil sampling epoch.Without loss of generality, each
oil sampling and the corresponding oil analysis process has
a cost of c3. If the degradation level at each tk = k1t does
not reach the failure threshold ξ ′, the maintenance decision
is twofold. One decision is to replace the lubricating oil,
which is a preventive maintenance (PM) action on the oil
lubrication system, with an immediate cost c1, which will
restore the lubricating oil to an undegraded state. The other
decision is to do nothing until the next oil sampling time.
If the oil lubrication system operates continuously, the risk of
a machine failure in the next oil sampling epoch may occur
where the degradation level is above the threshold, the system
failure rate will increase sharply and the system will soon fail
such that it no longer functions [5], [8]. The PSST system
presented in this paper, which is a key component in military
armored vehicles, has high reliability requirements because
of the severe operation conditions and special applications.
In this case, it is necessary to perform corrective mainte-
nance, including a system-dismantling inspection, lubricating
oil replacement and a possible component replacement, with
a failure cost c2(c2 > c1), which makes the lubricating
oil return to an undegraded state. Above all, the concerned
lubricating oil replacement problem can be formulated in the
MDP framework based on the above description.

The state space of the MDP is defined as W = (K,R),
where K = {0, 1, . . . , } denotes the oil sampling epoch set
andR is a set of real numbers. Let Lk ∈ R) be the stochastic
spectral oil data of the oil lubrication system at tk , where
tk = k1t and k ∈ K. Furthermore, the realization of Lk is
represented as lk , which refers to the observed spectral oil
data. To formulate the lubricating oil replacement problem,
0 < λ < 1 is set as a discount factor and V (k, lk ) is set as
the total expected discounted cost function starting from the
operation state (k, lk ) ∈ W. Then, in the MDP framework,
the optimality equations of the lubricating oil replacement
problem are formulated for all states (k, lk ) ∈W as

V (k, lk) =


c2 + V (0, l0) lk > ξ

′

min {c1 + V (0, l0) ,
λ (c3 + E [V (k + 1,L)])} , lk ≤ ξ

′

(1)

where l0 is the initial inspection, L is a random degradation
variable representing the stochastic spectral oil data at the
next inspection time, i.e.,L = Lk+1. E [V (k + 1,L)] is the
expected cost-to-go, which is given as

E [V (k + 1,L)] =
∫
x∈R

(V (k + 1, x))fL(x)dx

=

∫
x∈R

(V (k + 1, x))dFL(x) (2)

where fL(x) is the probability density function (PDF) of L and
FL(x) is the cumulative distribution function (CDF) of L.
The logic of equation (1) is given as follows: If the current

degradation state lk at the sampling time k crosses the thresh-
old ξ

′

, corrective maintenance will carry out with cost c2 and
the lubricating oil renews to the undegraded state; otherwise,

if lk is below the failure threshold, PM can either be per-
formed or themachine can be allowed to operate until the next
inspection time, depending on the associated minimal cost.
In this case, if PM is performed, a cost c1 is incurred to renew
the lubricating oil. Otherwise, we have E [V (k + 1,L)] with
an additional inspection cost of c3. Then, a control limit of
the threshold should be specified for maintenance.

Equation (1) can be numerically solved using a value iter-
ation algorithm. From the description of equation (1), it is
concluded that the optimal lubricating oil replacement policy
is heavily dependent on the oil future degradation state L,
which can be predicted by oil degradation modeling. Thus,
in the following, a new degradation modeling framework is
proposed based on multiple selected spectral oil data to pre-
dict L and formulate the PDF fL(x) and the CDF FL(x). The
aim is to estimate themean degradation levelE [V (k + 1,L)]
of the lubricating oil and obtain the optimal oil replacement
policy.

III. NEWLY DEVELOPED DEGRADATION
MODELING FRAMEWORK
In recent years, stochastic processes have been used in prac-
tice to model the evolution of lubricating oil degradation
and its relationship with oil spectral analysis [17], [18].
In this paper, the degradation process of the lubricating oil
is represented as {L (t) , t ≥ 0}, where L (t) denotes the
degradation state of the lubricating oil at time t . This type
of model has been widely used to model the degradation
process of lubricating oil (see, e.g., [16]–[19]). However, for
an oil lubrication system that is monitored using oil spec-
tral analysis, the main limitation of these studies is that the
developed models only consider single elements (e.g., Fe, Cu
andMo, [19]) in the wear debris concentration data in spectral
oil analysis. In reality, various types of wear debris produced
from different friction couplings are uniformly mixed in the
lubricating oil. In this sense, single-element concentration
data alone are insufficient for representing the lubricating oil
degradation process, causing inaccuracy in the degradation
modeling and prognostics [20], [21]. Therefore, a composite
HI must be constructed to characterize the degradation of the
lubricating oil through a fusion of multiple CM data, which
can be used for degradation modeling and RL prediction.

A. HI CONSTRUCTION METHODOLOGY
With the newly developed optimal lubricating oil replace-
ment framework, we present a method to constructed the HI
to better characterize the degree of the degradation of the
lubricating oil through a fusion of multiple spectral oil data.
Compared to relying solely on spectral oil data, this HI con-
struction method can lead to a reasonable degradation model
and an accurate RL prediction. The HI is constructed using a
weighted average function with a selection of spectral oil data
with allocation steps for the weight parameters, represented
as

dj = X i,jω
′ (3)
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where X i,j represents the vector for the selected spectral oil
data i in the sampling epoch j, ω ∈ RN×1 is a vector of the
weight parameters used to measure the relative importance
of each selected spectral oil datum and N is the number of
selected spectral oil data; ω’M’1 = 1, where M ∈ RN×N

is a diagonal matrix representing the degradation trend of
the lubricating oil, and the diagonal element is 1 when the
corresponding selected spectral oil data are increasing as the
system operates and vice versa.
Remark 1: It is observed from equation (3) that the HI

is a weighted average of all selected spectral oil data using
the vector ω to measure the relative contribution rate of
each spectral oil datum to the lubricating oil degradation.
The assumption of linearity is not suitable for all cases, and
nonlinear functions may have to be used in other cases.

With the above construction, degradation data should be
selected as the input to construct a composite HI. To do this,
a degradation data selection method is developed based on
source entropy. It is assumed that the spectral oil datum of the
ith element at tj inspection time is denoted as yi,j, which repre-
sents the measurement of the target degradation data xi,j with
noise. All of the spectral oil data from CM are represented
by Y i,j = {yi,j|i = 1, 2, . . . ,N ; j = 1, 2, . . . ,M}. Then,
the target degradation dataset X i can be characterized by the
probability distribution pi(X i) estimated from the spectral oil
dataset Y i. Then, the information volume of the spectral oil
dataset is measured using the Shannon entropy, represented
as

H = −
∑N

i=1
pi(x)logpi(x) (4)

where pi(x) is the probability of the ith condition and N is the
number of conditions of the process X i.
Remark 2: It is noted that 15 types of main element

concentrations are obtained from oil spectral analysis, and
different element concentrations have different physical
meanings [19], [22]. In engineering, degradation data series
that contain more information during system operation are of
interest. Based on this criterion, the source entropy, which can
describe the information volume in each set of a data series,
is used to select the appropriate degradation data [23], [24].
The objective is to quantitatively select degradation data that
contain more health information.

Based on the selected degradation data, the relative impor-
tance of different spectral oil data from various sources
should then be measured. To do this, a weight allocation
method is developed based on permutation entropy. In infor-
mation theory, the data series Xi hasM ! possible permutation
order types. Then, the relative frequency of each possible
permutation type π is represented as

p (π) =
#{t|0 ≤ j ≤ M − n,

(
xj+1, . . . , xj+n

)
has type π}

M − n+ 1
(5)

where n is the number of possible order types.When the order
is n ≥ 2, the permutation entropy is represented as

H (n) = −
∑

p(π )logp(π ) (6)

Among these permutation entropies, the permutation entropy
2! is widely used in engineering for its useful mathematical
properties and clear concept, represented as

H (2) = −plogp− (1− p)log(1− p) (7)

where p is the monotonic probability of order n = 2. If p
represents a probability with increasing trend, then 1 − p
represents a probability with a decreasing trend. Thus, the
increasing or decreasing trend of the degradation data is
measured using the 2! permutation entropy [10], [25].
Remark 3: In engineering, different metal wear debris have

different weights contributing to the lubricating oil degrada-
tion. In the area of PHM, degradation signals that have a clear
increasing or decreasing trend are strongly related to the sys-
tem degradation and fault occurrence, while others may not
be so strongly related. Based on this criterion, the permutation
entropy, which can measure the degree of the monotonic
in each set of data series [10], [22], is used to allocate the
weights in the HI construction. The objective is to determine
the weight parameter of each set of degradation data by
measuring the relative scale of the permutation entropy from
the selected spectral oil data.

It can be clearly concluded from equation (7) that 0 ≤
H (2) ≤ 1, where the lower bound is obtained for an
increasing or decreasing degradation data series. Specifically,
the smaller permutation entropyH (2) of the selected spectral
oil data has a better monotonic characteristic. In addition,
theremay bemore contributions to lubricating oil degradation
[21], [26]. Therefore, the weight of each selected degradation
datum in the framework of the HI construction is defined
based on the proportion of the permutation entropy, repre-
sented as

wi =
1− Hi

N −
∑N

i=1 Hi
(8)

Remark 4: The weight of each selected degradation datum
is determined according to the degradation trend represented
by the permutation entropy. The basic starting point for the HI
construction is that if a degradation datum exhibits a larger
degradation trend, this degradation datum contributes more
to the system degradation. That is, a smaller permutation
entropy means a greater weight

Figure 2 shows a flow chart of the HI construction method-
ology, which includes spectral oil data selection, weight
parameter allocation and degradation data fusion steps. Using
the method, a degradation model of the lubricating oil can be
established and the condition of the oil can be evaluated based
on the constructed HI from multiple spectral oil data.

B. WP-BASED DEGRADATION MODEL
In engineering, the WP-based model is extensively applied
in modeling degradation processes due to its clear concept,
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FIGURE 2. Flowchart of the HI construction methodology.

in which the associated drift coefficient is to model the degra-
dation rate of the system [27]. Therefore, this paper considers
aWP to represent the degradation model of the lubricating oil
{L (t) , t ≥ 0}, represented as

L (t) = L (0)+ θ t + σB (t) (9)

where L (0) is the initial degradation state, θ represents the
unknown drift coefficient that characterizes the degradation
rate of the lubricating oil, B (t) is a standard Brownian move-
ment (BM), σB (t) ∼ N (0, σ 2t), and σ represents the diffu-
sion coefficient. This BM part is used to denote the dynamics
of the lubricating oil degradation process.

The basic mechanism behind the degradation process
{L (t) , t ≥ 0} is that the degradation of the lubricating oil
can increase or decrease gradually with the operation of the
oil lubrication system. The degradation increments within
a small-time interval, behaving similarly to a random walk
of small particles in air or a fluid. Therefore, utilizing a
WP-based degradation model means that the system degra-
dation process is nonmonotonic, in accordance with the char-
acteristics of the variation of the wear debris concentration
in lubricating oil. In addition, the WP-based degradation
model implies that the degradation path is linear in time,
i.e., EL (t) = L (0)+ θ t . Therefore, the drift coefficient θ is
closely related to the degradation progression. For nonlinear
cases, a logarithm transformation or time-scale transforma-
tion can be used to transform the nonlinear processes to linear
processes, and then, the linear WP in equation (9) is used.

We know from equation (9) that the mean degradation level
is governed by θ , while the diffusion parameter σ partially
represents the uncertainty in the degradation process. Thus,
σ is assumed be determined by the degradation histories and
is not updated once it is estimated, and θ is updated using the
constructed HI up to the current time. Admittedly, σ can be
updated in theory, but this is not the focus of this research.

With the above description, the parameter θ in the degra-
dation model can be estimated and updated using the con-
structed HI up to the current time. The constructed HIs
l0, l1, . . . , lk up to the sampling epoch k have been obtained
using the method in the last section (denoted by l0:k =
{l0, l1, . . . , lk}, e.g., with the constructed HI lk for Lk and lk >
l0. Based on the obtained HI l0:k up to the sampling epoch k ,
the maximum likelihood estimation (MLE) θ̂

′

ML (k, lk) of θ
at each sampling epoch k can be obtained, represented as

θ̂
′

ML (k, lk) =
lk − l0
k1t

(10)

which is also unbiased. See article [28] for more details on
the estimation steps of the MLE method.

Based on the constructed HI l0:k up to the sampling epoch
k conditional on the MLE estimator θ = θ̂

′

ML (k, lk), the
estimated conditional distribution of the degradation level
L at the next inspection time is normally distributed with

the PDF fL|l0:k ,θ = θ̂
′

ML (k, lk)
(X ) and the CDF FL|l0:k ,θ =

θ̂
′

ML (k, lk)
(X ) as

fL|l0:k ,θ = θ̂
′

ML (k, lk)
(X )

=
1

σ̃
√
2π

exp

(
−
(x − ũ(k, lk ))

2

2σ̃ 2

)
, x ∈ R (11)

FL|l0:k ,θ = θ̂
′

ML (k, lk)
(X) = 8(

x − ũ(k, lk )
σ̃

) (12)

where the mean and the variance are given as follows,
respectively:

ũ (k, lk) = lk + θ̂
′

ML (k, lk)1t = lk +
lk − l0
k

(13)

σ̃ 2
= σ 21t (14)

It is observed from equations (10-14) that the predicted distri-
bution of the degradation level L in the next sampling epoch is
updated at each time when new spectral oil data are obtained.
When the drift coefficient θ is estimated, the associated HI
L at the next inspection time can be derived according to the
properties of the WP, and is given by

L = lk + θ̂
′

ML (k, lk) (tk+1 − tk)+ σ̂B (tk+1)− σ̂B (tk) (15)

Based on the formulation of L in equation (15), the opti-
mal replacement policy of the oil lubrication system can be
established.

IV. A CASE STUDY
A practical case study for an oil lubrication system of a
PSST system is provided in this section to illustrate the entire
procedure of the proposed optimal lubricating oil replace-
ment method and to investigate the results and application
of the proposed method. The power transmission system is
a key device in tracked armored vehicles and large engi-
neering machinery, and PSST plays a crucial role in the
system [9], [10]. PSST operates under cyclic multigear, load-
varying and multispeed conditions, and contamination in the
lubricating oil causes approximately 70% of operation faults,
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TABLE 1. Data of the oil spectral analysis for one PSST test (unit: ppm).

TABLE 2. Source entropies of the element concentration data (unit: bits).

FIGURE 3. Life-cycle test bed of the PSST 1: Diesel engine. 2, 4, 5: Torque
and speed sensors.3: PSST. 6, 7: Inertia discs. 8, 9: Loading piston pump.

of which more than 50% are related to metal wear debris [8].
Hence, routine CM enabling PSST operate must be carried
out to monitor the system health. As such, it is concluded that
wear debris in lubricating oil is difficult to directly observe
and can be indirectly assessed via lubricant condition mon-
itoring (LCM). During the operation of PSST, metal wear
debris accumulates in the lubricating oil, which accelerates
the wear of the friction couplings and leads to degradation of
the lubricating oil. Therefore, the element concentration data
from LCM is often used as an indicator to evaluate the health
status of the lubricating oil and make a replacement decision
based on the current health state.

A. ORIGIN OF THE DATA
In this case, the element concentration data in [20] is used
for an illustration. The associated oil field data were obtained
for the reliability analysis from a test of the PSST system
(Figure 3 and Figure 4). All of the tested PSST units were
tested under cyclic multigear, load-varying and multispeed
conditions that were prescribed by the manufacturer and

FIGURE 4. Sketch of the PSST 1: Hydraulic torque convertor. 2: CV clutch.3:
CH clutch. 4: First shaft. 5: Steering pump. 6: Second shaft. 7: C1C2 clutch.
8: Third shaft. 9: Steering motor. 10: C3 clutch. 11: CLCR clutch.

defined by the owner. A detailed description of the procedure
for the sampling and analysis processes can be found in [9].

We possess oil field data consisting of more than one thou-
sand samples collected over a period of more than 10 years.
The associated dataset used in this paper consists of 2 training
units and 1 testing unit. Due to space restrictions, the spectral
oil data of one PSST system are shown in Table 1.

Using these element concentration data, the degradation
model can be established and then the degradation level of
the lubricating oil can be determined. However, not all the
elements can have the same contribution to oil degradation.
Thus, in the next section, the element concentration data will
be fused to construct a composite HI that can be used to
characterize the degradation level of the lubricating oil.

B. HI CONSTRUCTION
Using the abovementioned element concentration data,
the degradation data are selected based on the fact that the
element concentration contains more health information. The
source entropies of the measured element concentration data
sets are shown in Table 2.

The greater source entropy values of the time series data
contain more information, as illustrated in Remark 2. Based
on this criterion, 6 (i.e., N = 6) spectral oil data samples are
selected, namely, Fe, Cr, Ni, Cu, Mn and Mo. Correspond-
ingly, the diagonal elements ofM are set as [1, 1, 1, 1, 1, 1],

based on the degradation trend. The selected 6 degradation
data samples are shown in Figure 5.

The rationality of our selection can also be verified
using a material analysis of the wear components (Table 3).
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FIGURE 5. Curves for the degradation data.

TABLE 3. Metal element of the friction pair in PSST system.

TABLE 4. Permutation entropies (2!) of the selected degradation data
(unit: bits).

Clearly, the 6 selected element concentration data samples
contain the main material of the moving components of the
PSST system considered in this paper. Thus, the degradation
of the Lubrication oil is assumed to be governed by the oil
spectral data, and this assumption is valid for every PSST
system tested, as we (and other researchers) analyzed in [5],
[7], [9]. Thus, the selected degradation will be used to build
the degradation model of the oil lubrication system.

The degradation data with a clear increasing or decreasing
trend are strongly related to the Lubrication oil degradation,
as illustrated in Remark 3. Based on this criterion, the 2!
permutation entropy values are calculated with equation (7),
and the weight of each degradation dataset for data fusion is
further calculated by equation (8), as shown in Table 4.

In the proposed HI constructionmethod, the weight param-
eters of each degradation dataset report are measured based
on the 2! permutation entropy, and at present, the selected
multiple oil spectra can be fused with (equation 1) to

TABLE 5. HI of PSST.

FIGURE 6. Constructed HI and the predicted degradation level.

construct a composite HI. The HIs at each sampling time
point are shown in Table 5.

The Lubrication oil is considered to have failed if the HI
reaches a predetermined threshold ξ

′

, which in this case is 0.8.
This setting is predetermined by using statistical analysis of
historical failure data [29], [30].

C. PREDICTION RESULTS
Based on the constructed HI of the Lubrication oil, the
parameters in the model can be estimated based on the MLE
method. To do so, we use the associated HI of PSST 1 and
PSST 2 to initialize the degradation model, while the con-
structed HI of the PSST 3 is used for the validation of the
established model. As such, the estimated parameters of the
degradation model are θ0 = 3.185×10−3 and σ 2

= 9.532×
10−4, which will be used as the initialization of the vali-
dation case. Conditional on the initialized model parameter,
the estimated parameters θ̂

′

ML (k, lk) at each sampling epoch
k(k > 0) and the predicted degradation level L at the next
epoch is obtained. Figure 6 shows the predicted mean HI
ũ (k, lk). The predicted mean degradation curve fits well to
the actual constructed HI.

Using the predicted degradation level of the Lubrication
oil, an optimal control limit of the Lubrication oil replacement
policy can be calculated. Based on some real engineering
considerations, we set c1 = 3000RMB, c2 = 5000RMB,
c3 = 50RMB, and the discount factor to be λ = 0.99. Then,
by using a monotonic value iteration algorithm, the optimal
control limit for a preventive Lubrication oil replacement
decision is determined with the estimated model parameters
and cost parameters. Figure 7 shows the optimal Lubrication
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FIGURE 7. Control limit of the Lubrication oil replacement.

oil replacement policy with an optimal maintenance cost of
V ∗ (0, l0) = 26338.67RMB. Figure 7 shows that the optimal
control limit monotonically increases with the PSST opera-
tion. In addition, the optimal control limits only change little
at different operation time points. These characteristics make
the preventive Lubrication oil replacement east to implement
in practice and are consistent with typical solutions of the
MDP.

In Figure 7, the step line is the optimal control limit of
the predictive replacement for the HIs of the Lubrication oil
for different ages of the PSST. If the constructed HI does not
cross this control limit, the optimal maintenance decision is
to continue the PSST operation and not replace the Lubri-
cation oil; otherwise, the optimal maintenance decision is to
preventively renew the Lubrication oil with a replacement.

In Figures 6 and 7, the estimation of the model param-
eters updates with the machine operation since the pro-
posed methodology resolves at each sampling epoch and
thus the Lubrication oil replacement policy with the newly
constructed HI. It is noted that the stochastic model is only
utilized to approximate the actual constructed HI and does
not completely replicate the actual Lubrication oil degrada-
tion levels. As a result, the parameters of the established
degradationmodel are updated dynamically with the machine
operation and the corresponding Lubrication oil replacement
policy will also be updated but will not converge for different
oil sampling epochs, as shown in Figure 7. However, accord-
ing to the theory of the MDP, if the constructed HIs can be
modeled well by a WP and the model parameters change
little, the replacement policy of the Lubrication oil converges
to an optimal value [31]. This phenomenon is reflected by
the parameter estimations and the prediction results, since
Figure 6 shows the convergence of the degradation rate, while
Figure 7 indicates the convergence of the optimal replacement
of the Lubrication oil after 105 Mh. The logic in these find-
ings is that the output rate and the filtration rate of the wear
debris are balanced after 105 Mh and can be reproduced very
well through the proposed WP model, as shown in Figure 6.

Thus, the process of updating the parameters of the optimal
oil replacement policy could be stopped when the model
parameter estimation converges in the practical applications.

V. DISCUSSIONS AND CONCLUSION
The regular replacement of Lubrication oil plays a key role
in improving machine reliability and reducing unexpected
failures of an oil lubricated system. This paper studies a CBM
problem with selected oil field information, namely, spectral
oil data, for the determination of the optimal Lubrication
oil replacement time. The selected spectral oil data contain
health information about the Lubrication oil, so the condi-
tion of the oil can be estimated and the future degradation
progression can be predicted. Using the observed spectral oil
data, a new HI construction method for Lubrication oil based
on information theory is proposed and then a Lubrication oil
replacement problem is formulated in the MDP framework.
To illustrate the proposed method in this paper, a case study
is provided for oil lubrication systems in PSST systems.

The presented results are of practical significance to deter-
mining optimal Lubrication oil replacement decisions and
thus, constitute one of the main contributions of this paper.
The proposed HI-based degradation model ensures the accu-
racy of the degradation state evaluation and reduces the dif-
ficulties of the parameter estimation. which is another main
contribution of this paper. In addition, the possible applica-
tions of the proposed optimal Lubrication oil replacement
policy are much wider. For instance, the method can be used
as an input in the optimization of a mission plan and further
reduce the maintenance costs. The obtained outcomes also
complement the approaches of CBM involving indirect CM
of the technical condition of a system, for example in the
works of Yan et al. [14], Zheng et al. [8], and Zhu et al. [4].
Following the conclusions presented in this paper, previous
approaches might be improved when they are used for wear
fault detection, inspection interval optimization, and other
applications in the area of PHM.

The main contribution of this paper not only establishes
a new direction in the CM and predictive maintenance of
oil lubricated systems by using selected oil field data but
also opens up possibilities for the analysis of other important
diagnostic information. There are several important direc-
tions deserving future research. First, other constraints such
as the system reliability may have to be considered in optimal
replacement policies. Second, a nonlinear degradation model
may have to be used when addressing other cases. Third,
the measurement errors of the oil analysis process should be
introduced in future research.

REFERENCES

[1] D. Wang, K.-L. Tsui, and Q. Miao, ‘‘Prognostics and health management:
A review of vibration based bearing and gear health indicators,’’ IEEE
Access, vol. 6, pp. 665–676, 2018.

[2] J. Zhu, J. Yoon, D. He, B. Qiu, and E. Bechhoefer, ‘‘Online condition
monitoring and remaining useful life prediction of particle contaminated
lubrication oil,’’ in Proc. IEEE Conf. Prognostics Health Manage. (PHM),
Gaithersburg, MD, USA, Jun. 2013, pp. 1–14.

VOLUME 7, 2019 92117



S. Yan et al.: Optimal Lubrication Oil Replacement Method Based on Selected Oil Field Data

[3] W. Wang, B. Hussin, and T. Jefferis, ‘‘A case study of condition based
maintenance modelling based upon the oil analysis data of marine diesel
engines using stochastic filtering,’’ Int. J. Prod. Econ., vol. 136, no. 1,
pp. 84–92, 2012.

[4] J. Zhu, J. M. Yoon, D. He, and E. Bechhoefer, ‘‘Online particle-
contaminated lubrication oil condition monitoring and remaining use-
ful life prediction for wind turbines,’’ Wind Energy, vol. 18, no. 6,
pp. 1131–1149, 2015.

[5] D. Vališ, L. Žák, O. Pokora, and P. Lánský, ‘‘Perspective analysis outcomes
of selected tribodiagnostic data used as input for condition based mainte-
nance,’’ Reliab. Eng. Syst. Saf., vol. 145, pp. 231–242, Jan. 2016.

[6] S. Sheng, ‘‘Monitoring of wind turbine gearbox condition through oil
and wear debris analysis: A full-scale testing perspective,’’ Tribol. Trans.,
vol. 59, no. 1, pp. 149–162, 2016.

[7] Y. Du, T. Wu, and V. Makis, ‘‘Parameter estimation and remaining
useful life prediction of lubricating oil with HMM,’’ Wear, vol. 376,
pp. 1227–1233, Apr. 2017.

[8] C. Zheng, P. Liu, Y. Liu, and Z. Zhang, ‘‘Oil-based maintenance interval
optimization for power-shift steering transmission,’’ Adv. Mech. Eng.,
vol. 10, no. 2, 2018, Art. no. 1687814018760921.

[9] S. Yan, B. Ma, and C. Zheng, ‘‘A unified system residual life prediction
method based on selected tribodiagnostic data,’’ IEEE Access, vol. 7,
pp. 44087–44096, 2019.

[10] S. F. Yan, B. Ma, and C. S. Zheng, ‘‘Health index extracting methodology
for degradation modelling and prognosis of mechanical transmissions,’’
Eksploat Niezawodn, vol. 21, no. 1, pp. 137–144, 2019.

[11] A. Ghasemi, S. Yacout, and M.-S. Ouali, ‘‘Parameter estimation methods
for condition-based maintenance with indirect observations,’’ IEEE Trans.
Rel., vol. 59, no. 2, pp. 426–439, Jun. 2010.

[12] S.-F. Yan, B. Ma, C.-S. Zheng, L.-A. Zhu, J.-W. Chen, and H.-Z. Li,
‘‘Remaining useful life prediction of power-shift steering transmission
based on uncertain oil spectral data,’’ Spectrosc. Spect. Anal., vol. 39, no. 2,
pp. 553–558, 2019.

[13] S. Foulard, M. Ichchou, S. Rinderknecht, and J. Perret-Liaudet, ‘‘Online
and real-time monitoring system for remaining service life estimation of
automotive transmissions–Application to a manual transmission,’’Mecha-
tronics, vol. 30, pp. 140–157, Sep. 2015.

[14] S. Yan, B. Ma, and C. Zheng, ‘‘Degradation index construction methodol-
ogy for mechanical transmission based on fusion of multispectral oil data,’’
Ind. Lubrication Tribol., vol. 71, no. 2, pp. 278–283, 2019.

[15] J. M. Wakiru, L. Pintelon, P. N. Muchiri, and P. K. Chemweno, ‘‘A review
on lubricant condition monitoring information analysis for maintenance
decision support,’’ Mech. Syst. Signal Process., vol. 118, pp. 108–132,
Mar. 2019.

[16] N. Chen, Z. Ye, Y. Xiang, and L. Zhang, ‘‘Condition-based maintenance
using the inverse Gaussian degradationmodel,’’Eur. J. Oper. Res., vol. 243,
no. 1, pp. 190–199, 2015.

[17] J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao, and D. Siegel, ‘‘Prognostics
and health management design for rotary machinery systems—Reviews,
methodology and applications,’’ Mech. Syst. Signal Process., vol. 42,
pp. 314–334, Jan. 2014.

[18] D. Vališ, L. Žák, and O. Pokora, ‘‘Failure prediction of diesel engine based
on occurrence of selected wear particles in oil,’’ Eng. Failure Anal., vol. 56,
pp. 501–511, Oct. 2015.

[19] Y. Liu, B. Ma, C. S. Zheng, and S. Y. Xie, ‘‘Failure prediction of power-
shift steering transmission based on oil spectral analysis with Wiener
process,’’ Spectrosc. Spect. Anal., vol. 35, no. 9, pp. 2620–2624, 2015.

[20] S.-F. Yan, B. Ma, and C.-S. Zheng, ‘‘Remaining useful life prediction for
power-shift steering transmission based on fusion of multiple oil spectra,’’
Adv. Mech. Eng., vol. 10, no. 6, 2018, Art. no. 1687814018784201.

[21] K. Liu, N. Z. Gebraeel, and J. Shi, ‘‘A data-level fusion model for devel-
oping composite health indices for degradation modeling and prognostic
analysis,’’ IEEE Trans. Autom. Sci. Eng., vol. 10, no. 3, pp. 652–664,
Jul. 2013.

[22] L. Liu, S. Wang, D. Liu, Y. Zhang, and Y. Peng, ‘‘Entropy-based sensor
selection for condition monitoring and prognostics of aircraft engine,’’
Microelectron. Rel., vol. 55, nos. 9–10, pp. 2092–2096, 2015.

[23] P. Luukka, ‘‘Feature selection using fuzzy entropymeasures with similarity
classifier,’’ Expert Syst. Appl., vol. 38, no. 4, pp. 4600–4607, 2011.

[24] J. Wu, J. Sun, L. Liang, and Y. Zha, ‘‘Determination of weights for ultimate
cross efficiency using Shannon entropy,’’ Expert Syst. Appl., vol. 38, no. 5,
pp. 5162–5165, 2011.

[25] Y. Tang, D. Zhou, S. Xu, and Z. He, ‘‘A weighted belief entropy-based
uncertainty measure for multi-sensor data fusion,’’ Sensors, vol. 17, no. 4,
p. 928, 2017.

[26] W. Jiang, B. Wei, C. Xie, and D. Zhou, ‘‘An evidential sensor fusion
method in fault diagnosis,’’ Adv. Mech. Eng., vol. 8, no. 3, 2016,
Art. no. 1687814016641820.

[27] D. Wang and K.-L. Tsui, ‘‘Brownian motion with adaptive drift for
remaining useful life prediction: Revisited,’’ Mech. Syst. Signal., vol. 99,
pp. 691–701, Jan. 2018.

[28] X. Si, T. Li, Q. Zhang, and X. Hu, ‘‘An optimal condition-based replace-
ment method for systems with observed degradation signals,’’ IEEE Trans.
Rel., vol. 67, no. 3, pp. 1281–1293, Sep. 2018.

[29] Y.Q.Wan, C. S. Zheng, andB.Ma, ‘‘Threshold problems on fault diagnosis
of the atomic emission spectrometer oil analysis,’’ J. Mech. Strength,
vol. 28, pp. 485–488, Apr. 2006.

[30] Y. Liu, B. Ma, C. S. Zheng, and S. Y. Xie, ‘‘Oil contaminant statistical fea-
tures within life-cycle of power shift steering transmission,’’ Lubrication
Eng., vol. 40, no. 7, pp. 29–34, 2015.

[31] M. L. Puterman,MarkovDecision Processes: Discrete Stochastic Dynamic
Programming. Hoboken, NJ, USA: Wiley, 2014.

SHUFA YAN received the B.S. and M.S. degrees
in vehicle engineering from the China Univer-
sity of Petroleum, Qingdao, China, in 2013 and
2016, respectively. He is currently pursuing the
Ph.D. degree with the School of Mechanical Engi-
neering, Beijing Institute of Technology, Beijing,
China. His research interests include condition
monitoring, fault diagnostics, and prognostics for
mechanical transmissions.

BIAO MA received the Ph.D. degree in vehicle
engineering from the Beijing Institute of Technol-
ogy (BIT), Beijing, China, in 1999, where he is
currently a Professor with the School of Mechan-
ical Engineering. His research interests include
vehicle transmission theory and technology, vehi-
cle structure strength, and fault diagnosis.

CHANGSONG ZHENG received the Ph.D. degree
in vehicle engineering from the Beijing Institute of
Technology (BIT), Beijing, China, in 2006, where
he is currently an Associate Professor with the
School of Mechanical Engineering. His research
interests include the vehicle transmission technol-
ogy, vehicle fault diagnosis, and online monitoring
technology.

JIANHUA CHEN received the M.S. degree in
vehicle engineering from the Beijing Institute
of Technology (BIT), Beijing, China, in 2006,
where he is currently pursuing the Ph.D. degree
with the School of Mechanical Engineering. His
research interests include the vehicle technology
and theory, fault diagnosis, and online monitoring
technology.

92118 VOLUME 7, 2019


	INTRODUCTION
	MOTIVATION OF THE LUBRICATING OIL REPLACEMENT PROBLEM
	NEWLY DEVELOPED DEGRADATION MODELING FRAMEWORK
	HI CONSTRUCTION METHODOLOGY
	WP-BASED DEGRADATION MODEL

	A CASE STUDY
	ORIGIN OF THE DATA
	HI CONSTRUCTION
	PREDICTION RESULTS

	DISCUSSIONS AND CONCLUSION
	REFERENCES
	Biographies
	SHUFA YAN
	BIAO MA
	CHANGSONG ZHENG
	JIANHUA CHEN


