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ABSTRACT With the availability of 5G, multi-dimensional signals’ characteristic analysis becomes more
challenging. Minor component analysis (MCA) is a useful data analysis approach to estimate the important
features of multi-dimensional signals. MCA neural network approaches can extract minor components from
real-time data streams not only adaptively but also online. The rapid convergence of MCA neural network
approaches is valuable in practical applications. We propose a deterministic discrete time-based method to
analyze the convergence performance of MCA neural network algorithms and reveal the effects of initial
weight vectors’ norm in MCA algorithms on convergence speed. Then, based on the convergence analysis,
a new MCA algorithm is proposed to achieve faster convergence than existing MCA algorithms, which are
proven by both the theoretical analysis and simulation results.

INDEX TERMS 5G, minor component analysis (MCA), neural networks, Eigen value, deterministic discrete
time (DDT) method.

I. INTRODUCTION
5G technology brings drastic improvements as well as
challenges almost everywhere. With much higher net-
work speed and wider bandwidth, one of the main chal-
lenge exists in multi-dimensional signals’ characteristic
analysis since signals are far more complicated. Minor
component analysis (MCA) is a powerful data analysis
method and widely adopted in many practical applica-
tions, as shown in Fig. 1 for 5G. It is crucial for 5G
multi-dimensional signals that minor component should be
paid more attention even than principal components. Neu-
ral networks can be exploited to achieve online estimation
of the minor components of a dataset [1]–[3]. Compared
with matrix approaches (e.g., eigenvalue decomposition),
the neural network approach possesses lower computational
complexity.

The associate editor coordinating the review of this manuscript and
approving it for publication was Muhammad Imran.

FIGURE 1. 5G Architecture with signal characteristic analysis (MCA).

Many minor component analysis (MCA) algorithms based
on neural networks have been developed in [6], [8], [11],
[13], [21], [25], [26], [48]. For example, [8] used a simple
linear neuron and the anti-Hebbian rule to perform MCA.
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Xu et al. [6] proposed a normalized MCA neural network
learning algorithm called OJAn and applied it to curve
and surface fitting. Douglas et al. [11] presented an MCA
learning algorithm with a self-stabilizing property, which
can guarantee that the weight vector approaches the minor
component with the unit norm. Several MCA learning
algorithms were recently proposed by Ouyang et al. [13],
Cirrincione et al. [21] and Feng et al. [25], [26]. Evidently,
interest in the dynamic analysis of MCA learning algorithms
is increasing [21], [27], [29], [30], [47].

As a powerful tool for data analysis, neural networks has
been successfully used in many practical applications [4], [5],
[7], [9], [10], [12], [14]–[20], [22]–[24], [28], [33], [36], [37],
[40], [43]–[45], in which neural network learning algorithms
play an essential role. MCA neural network algorithms are
usually represented as Stochastic Discrete Time (SDT) sys-
tems. However, studying the dynamics of these SDT systems
is difficult. To analyze indirectly the dynamics of stochastic
learning algorithms, [31], [32], [34], [35], [38], [39], [46]
used a so-called Deterministic Discrete Time (DDT) method.
The method transforms the original versions of SDT algo-
rithms into corresponding DDT systems, and the dynamical
properties of the original SDT systems are indirectly obtained
by analyzing these DDT systems.

The fast convergence of MCA neural network algorithms
is valuable to practical applications. Hence, analyzing the
performance of MCA algorithms and improving their con-
vergence speeds are two important and interesting topics.
In adaptive MCA learning algorithms, the initial weight vec-
tor and the learning rate are two important parameters that
affect algorithm performance. Generally, a high learning rate
accelerates the convergence of algorithms, and a low learn-
ing rate improves the numerical stability of adaptive algo-
rithms. However, the relations between convergence speed
and initial weight vector have not been fully studied in exist-
ing research. Therefore, we propose a convergence analysis
method based on DDT and disclose relations between con-
vergence performance of MCA algorithms and initial weight
vectors of these algorithms. This theoretical finding can
establish useful guidelines for selecting initial weight vectors
to achieve fast convergence of MCA algorithms. Then, based
on such convergence analysis, we propose an improvedMCA
algorithm with fast convergence.

This paper is organized as follows. Section 2 presents an
analysis of the convergence speeds of MCA learning algo-
rithms. Section 3 provides a comparison of the convergence
speeds of different MCA algorithms. Section 4 presents the
improvedMCA algorithm based on convergence analysis and
Section 5 comes the conclusion.

II. ANALYSIS OF CONVERGENCE SPEEDS
Since the pioneering work of [8] on MCA neural net-
work algorithms, many adaptive MCA neural network learn-
ing algorithms have been developed [11], [26]. Almost
all of these MCA algorithms share the following unified

form

z(t)=2T (t)y(t) (1a)

2(t+1)=2(t)−µ[f(2(t)) · z(t)y(t)− g(2(t)) ·2(t)] (2a)

where µ > 0 denotes the learning rate. In (1a), y(t) ∈ Rm,
2(t) ∈ Rm, and z(t) stands for the input vector, weight vector,
and output of the neurons, respectively. In (1b), both f (2(t))
and g(2(t)) are two scalar functions of theweight vector2(t).

By incorporating conditional expectation operatorE{2(t)/
2(0), y(i), i < t} on (1b) and using the conditional expected
value in next iteration [34], we obtain a DDT system as
follows:

2(t + 1) = 2(t)− µ[f (2(t)) · R ·2(t)− g(2(t)) ·2(t)],

(2)

where R = E[y(t)yT (t)] is the correlated matrix of inputs.
Correlation matrix R is usually non-negative and definite.

Without loss of generality, we let σ1, . . . , σm be all the eigen-
values of R ordered as σ1 > . . . > σm ≥ 0. We let aj(j = 1,
2, . . . ., m) stand for a unit eigenvector of correlation matrix R
associated with eigenvalue σj. Given that R is a symmetric
matrix, {aj|j = 1, . . . ,m} is an orthonormal basis of Rm.
Thus, for all t ≥ 0, 2(t) can be described as:

2(t) =
m∑
j=1

φj(t)aj (3)

where φj(t) (j = 1, 2, . . . ,m) are constants.
Evidently,

R2(t) =
m∑
j=1

σjφj(t)aj· (4)

By substituting (3) and (4) in (2), we obtain
m∑
j=1

φ(t + 1)aj =
m∑
j=1

φj(t)aj

−µ

f (2(t))
m∑
j=1

σjφj(t)aj − g(2(t))
m∑
j=1

φj(t)aj


where {a1, a2, . . . , am} are mutually orthogonal.
So we have:

φj(t + 1) = [1− µf (2(t)) · σj + µg (2(t)) · φj(t),

(j = 1, 2, . . . ,m)] (5)

for all t ≥ 0.
To ensure the convergence of algorithms, learning rate µ is

regarded as a small constant inMCA learning algorithms. For
analysis convenience, we assume that in (2), learning step µ
is sufficiently small to satisfy the conditions below:

µσ1 ≤ 1 and µ · [σ1f (2(t))− g(2(t))] < 1, (6)

for all t ≥ 0. Then,

1− µσjf (2(t))+ µg(2(t)) > 0, (j = 1, 2, . . . ,m), (7)
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for all t ≥ 0.
We establish

qj(t)=
1−µf (2(t)) · σj+µg(2(t))
1−µf (2(t)) · σm+µg(2(t))

, (j=1, 2, . . . ,m− 1).

(8)

From (7), we have

0 < q1(t) < q2(t) . . . < qm−1(t) < 1, (9)

for all t ≥ 0. Then, from (5) and (9), we have

φ2j (t + 1)

φ2m(t + 1)
=

[
1− µf (2(t)) · σj + µg(2(t))
1−µf (2(t)) · σm+µg(2(t))

]2
·
φ2j (t)

φ2m(t)

= q2j (t)·
φ2j (t)

φ2m(t)
≥ q21(t)·

φ2j (t)

φ2m(t)
≥

t∏
i=0

q21(i) ·
φ2j (0)

φ2m(0)
,

(j = 1, 2, . . . ,m− 1), (10)

for all t ≥ 0.
To evaluate the convergence speeds of MCA neural net-

work algorithms, we define direction cosine 2(t) as

θ (t) =

∣∣2T (t)am
∣∣

‖2(t)‖
,

where am is the minor component, i.e., the unit eigenvector
corresponding to the minimum eigenvalue of the correlation
matrix of the dataset. If and only if θ (t) approaches 1 as
t → ∞, weight vector 2(t) converges to the direction
of minor component am. Subsequently, we examine which
factors affect the convergence speed on direction cosine θ (t).
From (3) and (10), we have

θ (t) =

∣∣2T (t)am
∣∣

‖2(t)‖

=
|φm(t)|√

φ21 (t)+ . . .+ φ
2
m(t)

=

[
φ21 (t)

φ2m(t)
+ . . .+

φ2m−1(t)

φ2m(t)
+ 1

]−1/2

≤

t−1∏
i=0

q21(i) ·
m−1∑
j=1

φ2j (0)

φ2m(0)
+ 1

−1/2 (11)

for all t ≥ 0.
The speed at which direction cosine θ (t) converges to

1 depends on
∏t−1

i=0 q
2
1(i). From (9) and (11), we find that a

small q1(i)(i = 0, 1, . . . , t − 1) can accelerate the conver-
gence of θ (t). In differentMCA learning algorithms, q1(i) has
different forms. We study the convergence speeds of different
MCA learning algorithms by analyzing the value of q1(t) and
illustrate the relations between convergence speed and initial
weight vector.

A. CONVERGENCE SPEED OF THE OJAN MCA ALGORITHM
Xu et al. [6] proposed a normalized Oja’s MCA learning
algorithm called OJAn, which has the following form.

2(t + 1) = 2(t)− µ
[
R2(t)−

2T (t)R2(t)
2T (t)2(t)

]
· (12)

In OJAn algorithm,

q1(t) =
1− µσ1 + µ ·

2T (t)R2(t)
2T (t)2(t)

1− µσm + µ ·
2T (t)R2(t)
2T (t)2(t)

= 1−
σ1 − σm

1
µ
+

2T (t)R2(t)
2T (t)2(t) − σm

.

The value of q1(t) depends on
2T (t)R2(t)
2T (t)2(t) , which is indepen-

dent of the norm of 2(t) and depends only on the direction
of 2(t). Considering that the direction of initial weight vec-
tor 2(0) is random, the selection of 2(0) does not signifi-
cantly affect the convergence speed of the OJAnMCA neural
network algorithm.

Next, we use the OJAnMCA algorithm (12) to estimate the
minor component of a symmetric matrix as follows:

R1 =


0.4182 0.2625 0.1948 0.0106
0.2625 0.4731 0.1483 0.0661
0.1948 0.1483 0.3856 0.3885
0.0106 0.0661 0.3885 0.5331

 . (13)

In the simulation, learning stepµ= 0.01 and four different
initial weight vectors2j(0)(j = 1, 2, 3, 4) are selected. These
initial weight vectors 2j(0)(j = 1, 2, 3, 4) are in the same
direction as the vector

2∗ =
[
0.8056 0.3709 0.1486 0.4373

]T (14)

but have different norms, i.e.,

||21(0)||=0.001, ||22(0)||=0.1, ||23(0)||=1, ||24(0)||=100

The simulation result shows that whichever initial weight
vector is selected, we obtain the same convergence result as
follows:

i. After 100 iterations, direction cosine θ (t) equals
0.7151;

ii. After 500 iterations, direction cosine θ (t) equals
0.9791; and

iii. After 1600 iterations, direction cosine θ (t) equals
0.9997.

B. CONVERGENCE SPEED OF FENG’S MCA ALGORITHM
Feng et al. [25] developed an MCA neural network learning
algorithm to solve the problem of least squares. Feng’s MCA
algorithm has the following form:

2(t + 1) = 2(t)− µ
[
2T (t)2(t)R2(t)−2(t)

]
. (15)
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On the one hand, Feng’s MCA algorithm indicates that

q1(t) =
1− µσ12T (t)2(t)+ µ
1− µσm2T (t)2(t)+ µ

= 1−
µ2T (t)2(t)(σ1 − σm)
1− µσm2T (t)2(t)+ µ

= 1−
σ1 − σm

1
µ2T (t)2(t) +

1
2T (t)2(t) − σm

.

Evidently, 2(t) with a small norm can make q1(t) large and
cause the direction cosine θ (t) in (11) to converge slowly to 1.
On the other hand, from (5), (7) and (15) the algorithm holds
that

φj(t + 1)=
[
1+µ−µσj ‖2(t)‖2

]
· φj(t), (j = 1, 2, . . . ,m),

(16)

and

1− µσj ‖2(t)‖2 + µ > 0, (j = 1, 2, . . . ,m), (17)

for all t ≥ 0. From (16) and (17), we have

‖2(t + 1)‖2 =
m∑
j=1

φ2j

=

m∑
j=1

[
1+ µ− µσj ‖2(t)‖2

]2
· φ2j (t)

≤

[
1+ µ− µσm ‖2(t)‖2

]2
· ‖2(t)‖2

≤ (1+ µ)2 · ‖2(t)‖2 , (18)
for all t ≥ 0.
Given that learning step µ is a small positive constant to

guarantee convergence, according to (18), if2(0) has a small
norm, the increments in ||2(t)|| will be very limited after
a small number of iterations. Therefore, selecting an initial
weight vector with a large normwill increase the convergence
speed of Feng’s MCA neural network algorithm.

Next, Feng’s MCA neural networks algorithm (15) is used
to estimate theminor component ofR1 in (13). Given learning
step µ = 0.01 and four different initial weight vectors
2j(0)(j = 1, 2, 3, 4) are selected; all 2j(0)(j = 1, 2, 3, 4) are
in the same direction as2∗ and ||21(0)|| = 0.01, ||22(0)|| =
0.1, ||23(0)|| = 1, ||24(0)|| = 10. Fig. 2(a) shows the itera-
tions of direction cosine θ (t) with different initial weight vec-
tors.We then consider a general case in which autocorrelation
matrix R are randomly generated, and their dimensions are
50 × 50. Fig. 2(b) illustrates the simulation results averaged
over 100 independent runs. The results show that the initial
weight vector with a large norm results in rapid convergence.

C. CONVERGENCE SPEED OF DOUGLAS’
MCA ALGORITHM
Douglas et al. [11] presented self-stabilizing MCA learning
algorithm as follows:

2(t + 1) = 2(t)− µ
[
2T (t)2(t)2T (t)2(t)R2(t)

−2T (t)R2(t)2(t)
]
. (19)

FIGURE 2. Convergence of direction cosine 2(t) in Feng’s MCA algorithm.
(a) Convergence results with 5× 5 deterministic matrix R; (b)
Convergence results with 50× 50 randomly-generated matrix R.

In Douglas’ MCA algorithm (19), q1(t) is in the form:

q1(t) =
1− µσ1 ‖2(t)‖4 + µ2T (t)R2(t)

1− µσm ‖2(t)‖4 + µ2T (t)R2(t)

= 1−
µσ1 ‖2(t)‖4 − µσm ‖2(t)‖4

1− µσm ‖2(t)‖4 + µ2T (t)R2(t)

= 1−
σ1 − σm

1
µ‖2(t)‖4

+
2T (t)R2(t)
2T (t)2(t) ·

1
‖2(t)‖2

− σm

Considering the properties of the Rayleigh quotient, we find
that

σm ≤
2T (t)R2(t)
2T (t)2(t)

≤ σ1 (20)

for all t ≥ 0.
Obviously,

1−
σ1 − σm

1
µ‖2(t)‖4

+
σm
‖2(t)‖2

− σm
≤ q1(t)

≤ 1−
σ1 − σm

1
µ‖2(t)‖4

+
σ1

‖2(t)‖2
− σm

, (21)

for all t ≥ 0.
From (11) and (21), we find that a large ||2(t)|| results

in a small q1(t) and makes direction cosine θ (t) converge to
1 quickly.

Meanwhile, from (5), (7) and (19) of Douglas algorithm,
we have

φj(t + 1) =
[
1 = µσj ‖2(t)‖4 + µ2T (t)R2(t)

]
· φj(t),

(j = 1, 2, . . . ,m), (22)

And

1−µσj ‖2(t)‖4+µ2T (t)R2(t)>0, (j=1, 2, . . . ,m), (23)

for all t ≥ 0.
Therefore, (6), (20), (22) and (23) indicate that

‖2(t + 1)‖2=
m∑
j=1

φ2j (t + 1)

=

m∑
j=1

φ2j (t) ·
[
1−µσj ‖2(t)‖4+µ2T (t)R2(t)

]2
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≤

m∑
j=1

φ2j (t) ·
[
1+ µ2T (t)R2(t)

]2
=

[
1+ µ2T(t)R2(t)

]2
· ‖2(t)‖2

≤

[
1+ µσ1 ‖2(t)‖2

]2
· ‖2(t)‖2

≤

[
1+ ‖2(t)‖2

]2
· ‖2(t)‖2 ,

i. e.,

‖2(t + 1)‖ ≤
[
1+ ‖2(t)‖2

]
· ‖2(t)‖ , (24)

for all t ≥ 0.
Clearly, (24) means that if ||2(0)|| is small, the norm of

the weight vector 2(t) will increase slowly. Selecting an
initial weight vector with a large norm will thus accelerate
the convergence of Douglas MCA algorithm.

Next, we use Douglas MCA algorithm (19) to extract the
minor component of R1 with learning stepµ = 0.001 and
four different initial weight vectors 2j(0)(j = 1, 2, 3, 4),
where 21(0) = 0.012∗,22(0) = 0.52∗,23(0) = 2∗,

24(0) = 52∗. The simulation result illustrated in Fig. 3(a)
shows how initial weight vectors with different norms affect
the convergence speeds of DouglasMCA algorithm. Fig. 3(b)
provides the simulation results averaged over 100 indepen-
dent runswith the 50×50 randomly generated autocorrelation
matrices. The results show that an initial weight vector with
a large norm results in rapid convergence.

FIGURE 3. Convergence of direction cosine 2(t) in Douglas’ MCA
algorithm. (a) Convergence results with 5× 5 deterministic matrix R;
(b) Convergence results with 50× 50 randomly-generated matrix R.

D. CONVERGENCE SPEED OF THE AMEX
MCA ALGORITHM
Ouyang et al. [13] proposed an adaptive MCA algorithm
called AMEX with the following form.

2(t + 1) = 2(t)− µ
[
R2(t)−

2(t)
2T (t)2(t)

]
. (25)

From (5), we have

φj(t + 1) = φj(t) ·
[
1− µσj +

µ

2T (t)2(t)

]
,

(j = 1, 2, . . . ,m), (26)

for all t ≥ 0.

In the AMEX MCA algorithm, q1(t) is regarded as:

q1(t) =
1− µσ1 +

µ

2T (t)2(t)

1− µσm +
µ

2T (t)2(t)

= 1−
σ1 − σm

1
µ
− σm +

1
2T (t)2(t)

·

From (11), we find that a small ||2(t)|| can produce a large
q1(t) and result in slow convergence of direction cosine θ (t).
Meanwhile, (6) and (26) indicate that

‖2(t + 1)‖2 =
m∑
j=1

φ2j (t) ·
[
1− µσj +

µ

2T (t)2(t)

]2

≥

m∑
j=1

φ2j (t) ·
[

µ

2T (t)2(t)

]2
≥

µ2

‖2(t)‖2
(27)

for all t ≥ 0.
Evidently, (27) means that if ||2(0)|| is small, ||2(t)||

will increase rapidly. Therefore, ||2(0)|| does not affect the
convergence speed of the AMEX algorithm significantly.

Next, we use the AMEX algorithm (25) to extract the
minor component of R1.In this simulation, learning step
µ = 0.1 and four different initial weight vectors wj(0)(j =
1, 2, 3, 4) are selected, where w1(0) = 0.0012∗,w2(0) =
0.12∗,w3(0) = 2∗, and w4(0) = 1002∗. 2∗ is defined in
(14). Fig. 4(a) illustrates the convergence of direction cosine
θ (t) of the weight vector2(t) in theAMEX algorithm starting
from the different initial weight vectors. Fig. 4(b) shows the
simulation results averaged over 100 independent runs with
the 50 × 50 randomly generated autocorrelation matrices.
The simulation results in Fig. 4 indicates that the conver-
gence speed of the AMEX algorithm is basically independent
of ||2(0)||.

FIGURE 4. Convergence of direction cosine 2(t) in AMEX algorithm.
(a) Convergence results with 5× 5 deterministic matrix R; (b)
Convergence results with 50× 50 randomly-generated matrix R.

The DDT based convergence analysis indicates that MCA
learning algorithms based on neural networks can be divided
into two classes according to the relation between conver-
gence speed and initial weight vector’s norm ||2(0)||. In the
first class of MCA algorithms (e.g., OJAn and AMEX algo-
rithms), ||2(0)|| does not significantly affect the convergence
speed. In the second class of MCA algorithms (e.g., Douglas’
algorithm and Feng’s algorithm), the convergence speed

91864 VOLUME 7, 2019
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depends on ||2(0)|| and a large ||2(0)|| can accelerate the
convergence of learning algorithms. However, MCA learning
algorithms belonging to the second class are usually locally
convergent, and a large ||2(0)|| may result in the divergence
problem. Finding an upper bound of ||2(0)|| that can guar-
antee convergence is therefore interesting. Several related
analyses are provided in [35], [39].

Based on the analysis results, we present the following
guidelines for selecting initial weight vectors to improve
convergence performance of algorithms.
(1) For OJAn and AMEX algorithms, an initial weight

vector with a small norm does not negatively affect con-
vergence speed and helps guarantee the convergence of
algorithms.

(2) For Douglas algorithm and Feng’s algorithm, the selec-
tion of an initial weight vector that possesses a large
norm and satisfies convergence conditions will effec-
tively improve algorithm performance.

III. COMPARISON OF CONVERGENCE SPEEDS
We compare the convergence speeds of different MCA
learning algorithms. From (2) and (5), we easily find that
when weight vector 2(t) approaches minor component am,
i.e., the learning is close to convergence, then

1− µσmf (2(t))+ µg(2(t)) ≈ 1. (28)

With (8) and (28) we get:

q1(t) ≈ 1− µf (2(t)) · (σ1 − σm), (29)

A. OJAn, AMEX, and OJAm MCA ALGORITHMS
Reference [26] developed a modified MCA learning algo-
rithm called OJAm, which has the following form.

2(t + 1)=2(t)−µ
[
R2(t)−

2T (t)R2(t)
2T (t)2(t)2T (t)2(t)

·2(t)
]
.

(30)

In the OJAn (12), AMEX (25) and OJAm (30) algorithms,

f (2(t)) = 1, for all t ≥ 0.

(29) indicates that in OJAn, AMEX, and OJAm algorithms,

q1(t) ≈ 1− µ · (σ1 − σm), (31)

for all t ≥ t0, where t0 is a sufficiently large constant.
Thus, (11) and (31) show that OJAn, AMEX, and OJAm

algorithms possess approximately the same convergence
speed.

A simulation is conducted to illustrate the convergence
speeds of OJAn, AMEX, and OJAm algorithms. In this simu-
lation, the three MCA learning algorithms are used to extract
the minor component of correlated matrix R1. The same
learning stepµ = 0.5 and the same initial weight vector

2(0) = [1.7518 0.7390 0.3884 0.3626]T

are selected. Fig. 5 shows the iterations of the direction cosine
θ (t) in OJAn, AMEX, and OJAm algorithms. These MCA

FIGURE 5. Comparison of the convergence speeds of OJAn, AMEX, and
OJAm Algorithms.

learning algorithms have approximately equal convergence
speeds.

B. DOUGLAS’ MCA ALGORITHM
In Douglas’ MCA algorithm (19),

f (2(t)) = 2T (t)2(t)2T (t)2(t)

for all t ≥0. From (29), we have

q1(t) ≈ 1− µ ‖2(t)‖4 · (σ1 − σm), (32)

for all t ≥ 0, where t0 is a sufficiently large constant.
From (11), (31) and (32), we can draw the following

conclusions.
When ||2(t)|| > 1, Douglas’MCA algorithm has a smaller

q1(t) and higher convergence speed compared with OJAn,
OJAm, and AMEX MCA algorithms. When ||2(t)|| < 1,
Douglas’MCA algorithm has a larger q1(t) and lower conver-
gence speed compared with OJAn, OJAm, and AMEXMCA
algorithms.

Fig. 6 and Fig. 7 show comparisons of the convergence
speeds of Douglas algorithm,OJAn, OJAm, andAMEXwhen
||2(0)|| is equal to 0.5 and 2, respectively. The experimental
results shown in the two figures are identical to the analysis
result.

C. FENG’S MCA ALGORITHM
References [25] and [39] prove that in Feng’s MCA
algorithm,

lim
t→∞
‖2(t)‖2 =

1
σm
,

where σm stands for the minimal eigenvalue of the correlated
matrix of inputs. Thus, from and (29), we have

q1(t)≈1−µ ‖2(t)‖2 · (σ1−σm)≈1−
µ

σm
· (σ1−σm), (33)

for all t ≥ t0, where t0 is a sufficiently large constant.
In practical applications, the minimum eigenvalue σm is

usually a very small positive due to the existence of noise.
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FIGURE 6. Comparison of the convergence speeds of Douglas’ algorithm,
OJAn, AMEX and OJAm when

∥∥2(0)
∥∥ = 0.5.

FIGURE 7. Comparison of the convergence speeds of Douglas’ algorithm,
OJAn, AMEX and OJAm when

∥∥2(0)
∥∥ = 2.

Thus, (11), (31) and (33) indicate that when the learning
process is close to convergence, Feng’s MCA neural network
algorithm has a smaller q1(t) and higher convergence speed
compared with OJAn, AMEX, and OJAm algorithms. In the
initial phase of learning, the convergence speed of Feng’s
MCA neural network algorithm depends on the norm of the
initial weight vector 2(0). Fig. 8 and Fig. 9 show compar-
isons of the convergence speeds of Feng‘s algorithm, OJAn,
OJAm, and AMEX when ||2(0)|| = 0.5 and ||2(0)|| = 2,
respectively. The simulation result is identical to the analysis
result.

IV. IMPROVED MCA ALGORITHM WITH
FAST CONVERGENCE
In previous section, convergence performance of MCA algo-
rithm, especially the convergence speed, was studied and
factors affecting convergence performance were revealed.

Based on above analysis, we proposes a new MCA
algorithm with fast convergence. Then we use determining

FIGURE 8. Comparison of the convergence speeds of Feng’s algorithm,
OJAn, AMEX and OJAm when

∥∥2(0)
∥∥ = 0.5.

FIGURE 9. Comparison of the convergence speeds of Feng’s algorithm,
OJAn, AMEX and OJAm when

∥∥2(0)
∥∥ = 2.

discrete time method to prove theoretically its convergence
and also provide simulation results.

The proposed MCA algorithm is as follows:

θ (t+ 1) = θ (t)− µ[z(t)y(t)− (0.5− ‖θ (t) ‖) · θ (t)] (34)

where θ (t) is the network connection weight vector at inter-
val t, µ is the learning factor, z(t) is the output value, and y(t)
is the signal vector.

We will prove that this learning algorithm iteratively
updates the weight vector θ (t) which will finally converge
to its minor component am with the constraint: the minimum
eigenvalue σm of the autocorrelation matrix

R = E[y(t)yT (t)] of y(t)(t = 1, 2, . . .)

is less than 0.5.
In practical engineering applications with multi-

dimensional data, minimum eigenvalues of the autocorrelation
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matrix of the signal vector are usually close to zero. There-
fore, above constraint we have proposed

σm < 0.5 (35)

is easy to be satisfied.
Next, we need to prove the convergence of the algo-

rithm (34), that is, to prove that θ (t) will converge to am.
We still use deterministic discrete method that takes the con-
ditional expectation E {θ (t+ 1)/θ (0),y(i),i < t} on both sides
of (34), which can get discrete time (DDT) system as follows:

θ (t+1) = θ (t)−µ[Rθ (t)− (0.5− ‖θ (t)‖) · θ (t)]. (36)

By substituting (3) into (36), we can get:

φj(t+1) = [1−µσj+µ(0.5−‖θ (t)‖)] · φj(t),

(j = 1, 2, . . . ,m). (37)

In order to complete the convergence analysis of the dis-
crete time system (36), we first introduce necessary lemmas
and theorems as follows.
Lemma 1: If ‖θ (t)‖ ≤ 1− 2σm and

µ ≤ min
{
2,

1
σ1 + |2σm − 0.5|

}
Then

1− µσ1 + µ(0.5− ‖θ (t)‖) ≥ 0

and

1− µσj + µ(0.5− ‖θ (t)‖) > 0, (2 ≤ j ≤ m).

Proof: Since

µ ≤ min
{
2,

1
σ1 + |2σm − 0.5|

}
So, we have

µσ1 + µ |2σm − 0.5| ≤ 1 (38)

Next, we continue our proving by dividing into two situations.
Situation 1: ‖θ (t)‖ ≤ 0.5− σm
According to (38), it can be found that for all ‖θ (t)‖ ≤

0.5− σm, there is

1− µσ1 + µ(0.5− ‖θ (t)‖) ≥ 1− µσ1 + µσm
≥ 1− µσ1
≥ 0

Situation 2: 0.5− σm < ‖θ (t)‖ ≤ 1− 2σm
Because ‖θ (t)‖ ≤ 1− 2σm, obviously,

0.5− ‖θ (t)‖ ≥ 2σm − 0.5 (39)

According to (38) and (39), following conclusion can be
drawn:

1− µσ1 + µ(0.5− ‖θ (t)‖) ≥ 1− µσ1 + µ(2σm − 0.5)

≥ 1− µσ1 + µ |2σm − 0.5|

≥ 0

Combining above two cases, we can see that for all
‖θ (t)‖ ≤ 1− 2σm, there is

1− µσ1 + µ(0.5− ‖θ (t)‖) ≥ 0

Simultaneously,

1− µσj + µ(0.5− ‖θ (t)‖) > 1− µσ1
+µ(0.5− ‖θ (t)‖) > 0, (2 ≤ j ≤ m)

Therefore, the proof is completed.
Next, we will introduce an important theorem that will lead

to boundedness of the learning algorithm and ensure that the
algorithm does not diverge.
Theorem 1: If ‖θ (0)‖ ≤ 1− 2σm and

µ ≤ min
{
2,

1
σ1 + |2σm − 0.5|

}
Then for all t ≥ 0,

‖θ (t)‖ ≤ 1− 2σm

Proof: Let t0 ≥ 0, assuming:

‖θ (t0)‖ ≤ 1− 2σm (40)

According to Lemma 1,

1− µσj + µ(0.5− ‖θ (t0)‖) ≥ 0, (j = 1, 2, . . . ,m) (41)

Situation 1: ‖θ (t0)‖ ≤ 0.5− σm
Obviously,

0.5 ≥ 0.5− ‖θ (t0)‖ ≥ σm (42)

Since

µ ≤ min
{
2,

1
σ1 + |2σm − 0.5|

}
from (37), (41), (42), we can get

‖θ (t0 + 1)‖2 =
m∑
j=1

φ2j (t0 + 1)

=

m∑
j=1

[
1−µσj + µ (0.5−‖θ (t0)‖)

]2
· φ2j (t0)

≤

m∑
j=1

[1+ µ (0.5− ‖θ (t0)‖)]2 · φ2j (t0)

= [1+ µ (0.5− ‖θ (t0)‖)]2 · ‖θ (t0)‖2

≤ (1+ 0.5µ)2 · ‖θ (t0)‖2

≤ (1+ 0.5µ)2 · (0.5− σm)2

≤ 4 (0.5− σm)2

That is, ‖θ (t0 + 1)‖ ≤ 1− 2σm.
Situation 2: 0.5− σm < ‖θ (t0)‖ ≤ 1− 2σm
Since 0.5− σm < ‖θ (t0)‖, so

1− µσm + µ (0.5− ‖θ (t0)‖) ≤ 1− µσm + µσm = 1 (43)
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According to (37), (41), (42) and (43), we can get

‖θ (t0 + 1)‖2 =
m∑
j=1

φ2j (t0 + 1)

=

m∑
j=1

[
1− µσj+µ (0.5− ‖θ (t0)‖)

]2
· φ2j (t0)

≤

m∑
j=1

[1− µσm+µ (0.5− ‖θ (t0)‖)]2 · φ2j (t0)

≤ ‖θ (t0)‖2

≤ (1− 2σm)2

That is, ‖θ (t0 + 1)‖ ≤ 1− 2σm
Then it can be known that if ‖θ (0)‖ ≤ 1 − 2σm, then for

all t ≥ 0, have ‖θ (t)‖ ≤ 1− 2σm.
Theorem 1 shows the boundedness of the weight vector

θ (t) in the system (36). By selecting the initial weight vector
θ (0) with a norm which is less than 1− 2σm, it is guaranteed
that the weight vector θ (t) is confined to a finite set through-
out the learning process, which fundamentally prevents the
divergence of the algorithm.

Next, we will carry out further convergence analysis
on (36), and prove that the weight vector θ (t) can converge
to the eigenvector corresponding to the minimum eigenvalue
σm of the autocorrelation matrix.
Theorem 2; If ‖θ (0)‖ ≤ 1− 2σm, θT (0)am 6= 0, and

µ ≤ min
{
2,

1
σ1 + |2σm − 0.5|

}
Then,

lim
t→∞

θ (t)
‖θ (t)‖

= ±am.

Proof: Since ‖θ (0)‖ ≤ 1 − 2σm, according to Theorem 1,
it can be seen that for all t ≥ 0, ‖θ (t)‖ ≤ 1 − 2σm.
By Lemma 1, we know,

1−µσj+µ(0.5−‖θ (t)‖) ≥ 0, (j = 1, 2, . . . ,m− 1) (44)

and

1− µσm + µ (0.5− ‖θ (t)‖) > 0 (45)

According to (35) and (45), it can be known that for all t≥ 0,
there are
1− µσj + µ (0.5− ‖θ (t)‖)
1− µσm + µ (0.5− ‖θ (t)‖)

= 1−
µσj − µσm

1− µσm + µ (0.5− ‖θ (t)‖)

≤ 1−
µσm−1 − µσm

1− µσm + 0.5µ
, (j = 1, 2, . . . ,m− 1).

Define:

β = 1−
µ(σm−1 − σm)
1− µ(σm − 0.5)

From (44) and (45), it is known

1 > β ≥ 0 (46)

Since θT (0)am 6= 0, φm(0) 6= 0. So according to (37)
and (45), obviously for all t ≥ 0, there are∣∣φj (t + 1)

∣∣
|φm (t + 1)|

=
1− µσj + µ (0.5− ‖θ (t)‖)
1− µσm + µ (0.5− ‖θ (t)‖)

·

∣∣∣∣ φj (t)φm (t)

∣∣∣∣
≤ β ·

∣∣∣∣ φj (t)φm (t)

∣∣∣∣
≤ β t+1 ·

∣∣∣∣ φj (0)φm (0)

∣∣∣∣ , (j = 1, 2, . . . ,m− 1).

According to (46), obviously

lim
t→∞

∣∣∣∣ φj (t)φm (t)

∣∣∣∣ = 0, (j = 1, 2, . . . ,m− 1).

According to Theorem 1, it can be known that |φm (t)| must
be bounded. Therefore

lim
t→∞

φj (t) = 0, (j = 1, 2, . . . ,m− 1)

From the above formula and (37), wou can get

lim
t→∞

θ (t)
‖θ (t)‖

= lim
t→∞

φm (t)
|φm (t)|

· am = ±am.

Theorem 3: If

µ ≤ min
{
2,

1
σ1 + |2σm − 0.5|

,
1

0.5− σm

}
and ‖θ (0)‖ ≤ 1− 2σm, θT (0)am 6= 0,then

lim
t→∞

θ (t) = ±(0.5− σm) · am.

Proof: According to Theorem 2, we know that when t→∞,
the weight vector θ (t) will converge to the direction of the
minor component am. Suppose that after the t0 iteration, θ (t)
has approached the am direction:

θ (t) ≈ φm(t) · am, (t ≥ t0) (47)

Then, the system (36) can be simplified to the following form:

θ (t + 1) = θ (t)− µσmθ (t)+ µ (0.5− ‖θ (t)‖) θ (t) (48)

That is:

θ (t + 1) = [1− µσm + µ (0.5− ‖θ (t)‖)] · θ (t) (49)

Take norm on both sides and according to Lemma 1, we can
get:

‖θ (t + 1)‖ = [1− µσm + µ (0.5− ‖θ (t)‖)] · ‖θ (t)‖ (50)

Obviously, the equilibrium point of the system (50) includes
0 and 0.5− σm. Since θT (0)am 6= 0, θT (0) 6= 0.
From Lemma 1 and (37), it is known that for all t ≥ t0,

φm (0) 6= 0 and ‖θ (t)‖ 6= 0.
Based on the above analysis, according to (50), it can be

found that:
‖θ (t + 1)‖
‖θ (t)‖

= 1+ µ[0.5− ‖θ (t)‖ − σm]. (51)
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It is easy to see from the above equation that if ‖θ (t)‖ <
0.5− σm, then ‖θ (t + 1)‖ > ‖θ (t)‖.
Therefore, 0 must not be the stable equilibrium point of the

system (50), and 0.5−σm is the only stable equilibrium point.
Next, we will consider three cases to complete the proof
Situation 1: ‖θ (t0)‖ ≤ 0.5− σm
Because

µ ≤
1

0.5− σm
,

Then,

1− µ (0.5− σm) ≥ 0 (52)

Define a function K (‖θ (t)‖) as follows:

K (‖θ (t)‖) = [1− µσm + µ (0.5− ‖θ (t)‖)] · ‖θ (t)‖

Then, according to (52), it can be seen that for all ‖θ (t)‖ ≤
0.5− σm, there are

K
′

(‖θ (t)‖) = 1− µσm + 0.5µ− 2µ ‖θ (t)‖

≥ 1− µ ‖θ (t)‖

≥ 1− µ(0.5− σm)

≥ 0

The above result means that the function K (.) is monotoni-
cally increasing over the interval [0, 0.5− σm].

From (50), if ‖θ (t)‖ ≤ 0.5− σm, then

‖θ (t + 1)‖ = K (‖θ (t)‖) ≤ K (0.5− σm) = 0.5− σm.

Therefore, if ‖θ (t0)‖ ≤ 0.5− σm, then for all t ≥ t0, have

‖θ (t)‖ ≤ 0.5− σm (53)

According to (51) and (53), it is known that ‖θ (t)‖ is mono-
tonically increasing for all t ≥ t0. From (53), the following
results can be obtained:

lim
t→∞
‖θ (t)‖ = 0.5− σm

Situation 2: For all t ≥ t0, ‖θ (t)‖ > 0.5− σm
According to (51), it can be found that for all t ≥ t0, there

are

‖θ (t + 1)‖ < ‖θ (t)‖ .

At the same time, since ‖θ (t)‖ > 0.5 − σm for all t ≥ t0,
when k →∞, ‖θ (t)‖ will converge to 0.5− σm.
Situation 3: ‖θ (t0)‖ > 0.5−σm and there exists a constant

Z(Z > t0) that ‖θ (Z )‖ ≤ 0.5− σm

FIGURE 10. Comparison of convergence speeds of MCA neural network
learning algorithms.

Since ‖θ (Z )‖ ≤ 0.5 − σm, similar as Situation 1, we can
prove that ‖θ (t)‖ will converge to 0.5− σm.
Finally, following conclusions can be drawn:

lim
t→∞
‖θ (t)‖ = 0.5− σm

Combined with Theorem 2, we know that:

lim
t→∞

θ (t) = ±(0.5− σm)am

The proof is completed.
In order to verify the effectiveness of our proposed

MCA algorithm (36), we compare the performance of the
algorithm with OJAn MCA algorithm, AMEX MCA algo-
rithm and Douglas MCA algorithm. We use the direction
cosine between the neuron weight vector θ (t) and the sub-
component am as the performance index 2(t) as follows:

2(t) =

∣∣θT (t) am∣∣
‖θ (t)‖

(54)

It is not difficult to find that the velocity at which 2(t)
approaches 1 can describe the velocity at which the neuron
weight vector θ (t) converges to minor component am.
In the simulation experiment, we need to extract minor

component of a randomly generated symmetric matrix (55),
as shown at the bottom of this page.

The simulation performed a total of 100 Monte Carlo runs.
The initial weight vector of each neuron was randomly taken

R =



0.3146 0.2496 0.2198 0.2533 0.2399 0.1714 0.1798
0.2496 0.2919 0.2094 0.2477 0.2680 0.2075 0.1559
0.2198 0.2094 0.3031 0.2609 0.2718 0.1792 0.1874
0.2533 0.2477 0.2609 0.3980 0.2827 0.1730 0.1601
0.2399 0.2680 0.2718 0.2827 0.3792 0.2225 0.1449
0.1714 0.2075 0.1792 0.1730 0.2225 0.2108 0.1329
0.1798 0.1559 0.1874 0.1601 0.1449 0.1329 0.2032


(55)
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as: θ (0) = rand (7,1). The average convergence speed 2(t),
in 100 random runs, is shown in Figure 7. The learning
factor µ of the algorithm is taken as µ = 0.05. Fig.10 shows
the variation of the performance index 2(t) of the four dif-
ferent MCA algorithms. It can be seen the proposed learning
algorithm has faster convergence than OJAnMCA algorithm,
AMEX MCA algorithm and Douglas MCA algorithms.

V. CONCLUSIONS
Characteristic analysis of 5G multi-dimensional signals is
challenging and MCA is a powerful approach to leverage.
Convergence performance of MCA algorithms based on neu-
ral networks is analyzed with a deterministic discrete time
method in this paper and reveals how initial weight vectors
affect the convergence speeds of different algorithms. The
selection of initial weight vectors does not exert significant
effects on the performance of several MCA algorithms, but
selecting initial weight vectors with large norms can accel-
erate convergence in other MCA algorithms. Comparison of
the convergence speeds of several typical MCA algorithms
are conducted under different initial conditions. The results
provide useful guidelines to improve the performance of
MCA algorithms by selecting initial weight vectors. Based on
this finding, a new MCA algorithm is proposed and achieve
fast convergence and will contribute to 5Gmulti-dimensional
signals’ characteristic analysis. Both theoretical proofs and
simulation results are provided.
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